JPH0436550A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH0436550A
JPH0436550A JP2141811A JP14181190A JPH0436550A JP H0436550 A JPH0436550 A JP H0436550A JP 2141811 A JP2141811 A JP 2141811A JP 14181190 A JP14181190 A JP 14181190A JP H0436550 A JPH0436550 A JP H0436550A
Authority
JP
Japan
Prior art keywords
degree
temperature
compressor
superheat
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2141811A
Other languages
Japanese (ja)
Inventor
Nozomi Goto
望 後藤
Osami Kataoka
片岡 修身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2141811A priority Critical patent/JPH0436550A/en
Publication of JPH0436550A publication Critical patent/JPH0436550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable an operating range of a compressor to be expanded by a method wherein when a temperature of discharged gas is increased up to a predetermined temperature which is approximate to a setting temperature for stopping an operation of the compressor, a degree of opening of an electrical expansion valve is increased in such a way as the temperature becomes an over-heating temperature not exceeding the predetermined temperature. CONSTITUTION:An electrical expansion valve 6 is installed in the midway part of a liquid injection pipe 5. A temperature sensor 7 for sensing a discharged gas temperature and a pressure sensor 8 for sensing a discharged gas pressure are installed at a discharging side of a compressor 1. In turn, an over-heating degree of the discharged gas is calculated based on a result of sensing from each of the sensors 7 and 8, a command of degree of opening is outputted to the expansion valve 6 in such a way as the overheating degree of the discharged gas becomes a constant over-heating degree. When the discharged gas temperature becomes a predetermined temperature which is approximate to the set temperature for stopping the operation of the operation of the compressor 1, an overheating degree controller 9 for outputting an command of degree of opening for increasing a degree of opening of the electrical expansion valve 6 in such a way as the discharged gas temperature becomes the degree of overheating not exceeding the predetermined temperature is provided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主としてスクリュー圧縮機を備えた冷凍装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention mainly relates to a refrigeration system equipped with a screw compressor.

(従来の技術) 従来、この種冷凍装置は、例えば特公昭63−2525
5号公報に記載され、かつ、第5図に示したごとく、ス
クリューロータ(a)を備えた圧縮機(A)の冷媒吐出
側に、凝縮器(B)と膨張機構(’C)及び蒸発器(’
D )を順次接続し、前記凝縮器(B)と膨張機構(C
)との間の高圧液部に、前記圧縮機(A)のスクリュー
ロータ(a)に至るリキッドインジェクション配管(E
)t−接続すると共に、この配管(E)の途中に感温式
膨張弁(F)を介装して、該膨張弁(F)を前記圧縮機
(A)の吐出側に均圧管(G)を介して接続する一方、
前記膨張弁(F)の感温筒(f)を前記圧縮機(A)の
吐出側に配設して、前記均圧管(G)からの吐出ガス圧
力と、前記感温筒(f)で検出した吐出ガス温度とで前
記膨張弁(F)の開度制御を行って、前記配管(E)か
ら液冷媒を前記スクリューロータ(a)にインジェクシ
ョンすることにより、吐出ガスの過熱度を常に一定に保
持するようにしている。斯かる過熱度を一定に保持する
理由は、過熱度が一定以上となった場合には、前記圧縮
機(A)内に貯溜された油の分解が発生し、一方、過熱
度が一定以下となった場合には、油中に冷媒が溶は込み
、前記圧縮機(A)の給油箇所に給油するとき、フラッ
シュが発生して、給油能力の低下が起こるからである。
(Prior art) Conventionally, this type of refrigeration equipment has been developed, for example, by
5, and as shown in FIG. 5, a condenser (B), an expansion mechanism ('C), and an evaporator are installed on the refrigerant discharge side of a compressor (A) equipped with a screw rotor (a). vessel('
D) are sequentially connected, and the condenser (B) and expansion mechanism (C
) is connected to the liquid injection pipe (E) leading to the screw rotor (a) of the compressor (A).
) T-connection, and a temperature-sensitive expansion valve (F) is interposed in the middle of this pipe (E), and the expansion valve (F) is connected to a pressure equalizing pipe (G) on the discharge side of the compressor (A). ) while connecting via
The temperature-sensitive cylinder (f) of the expansion valve (F) is disposed on the discharge side of the compressor (A), and the discharge gas pressure from the pressure equalization pipe (G) and the temperature-sensitive cylinder (f) are arranged at the discharge side of the compressor (A). By controlling the opening degree of the expansion valve (F) based on the detected discharge gas temperature and injecting liquid refrigerant from the pipe (E) into the screw rotor (a), the degree of superheating of the discharge gas is always kept constant. I try to keep it that way. The reason why the degree of superheat is kept constant is that when the degree of superheat exceeds a certain level, decomposition of the oil stored in the compressor (A) occurs; If this occurs, the refrigerant will be dissolved in the oil, and when the oil is supplied to the oil supply point of the compressor (A), a flash will occur, resulting in a reduction in the oil supply capacity.

(発明が解決しようとする課題) 所で、以上の冷凍装置では、次のような問題が発生した
のである。
(Problems to be Solved by the Invention) However, in the above-mentioned refrigeration system, the following problem occurred.

第6図は、縦軸に吐出ガス温度(Td)を、横軸に吐出
圧力に相当する飽和凝縮温度(Tc)をとったTd−T
cと過熱度との関係グラフを示しており、また、同図に
おいて、直線(イ)は過熱度0℃の場合、直線(ロ)は
直線(イ)に対し25℃の過熱度をとった場合の吐出ガ
ス温度をそれぞれ示している。
In Figure 6, the vertical axis represents the discharge gas temperature (Td), and the horizontal axis represents the saturated condensation temperature (Tc) corresponding to the discharge pressure.
The graph shows the relationship between c and the degree of superheating, and in the same figure, the straight line (a) indicates a superheat degree of 0°C, and the straight line (b) shows a superheat degree of 25°C relative to the straight line (a). The discharge gas temperature in each case is shown.

以上のように、過熱度O℃に対し25℃の過熱度をとっ
たときには、吐出ガス温度が例えば100℃以上となっ
た場合に前記圧縮機の作動を停止させる高温スイッチの
作動域、つまり、圧縮機の停止設定温度との関係で、凝
縮温度の上限値が低くなり、即ち、過熱度0℃の場合、
凝縮温度の上限値は(Tc1)であるのに対し、25℃
の過熱度をとったときには、上限値が(T c 2)に
まで低下することになる。このように過熱度を所定過熱
度に設定すれば、この過熱度に対応して前記圧縮機の使
用温度範囲、つまり、圧縮機の運転範囲が制限され、前
記凝縮器の高温域での運転ができなかったり、また、熱
回収運転を行うような場合に、充分な熱回収が行えない
などの問題があった。
As described above, when the degree of superheat is 25 degrees Celsius compared to the degree of superheat 0 degrees Celsius, the operating range of the high temperature switch that stops the operation of the compressor when the discharge gas temperature becomes, for example, 100 degrees Celsius or higher, is: In relation to the compressor stop setting temperature, the upper limit of the condensing temperature is low, that is, when the degree of superheat is 0°C,
The upper limit of condensation temperature is (Tc1), whereas 25℃
When the degree of superheating is reached, the upper limit value decreases to (T c 2). If the degree of superheat is set to a predetermined degree of superheat in this way, the operating temperature range of the compressor, that is, the operating range of the compressor is limited in accordance with the degree of superheat, and the operation of the condenser in a high temperature range is restricted. There have been problems such as insufficient heat recovery when heat recovery operation is required.

本発明は以上のような問題に鑑みてなしたちので、その
目的は、吐出ガス温度が圧縮機の停止設定温度に達する
までは過熱度を一定となし、この停止設定温度近くの所
定温度に達したときには、過熱度を小さく制御して吐出
ガス温度を前記所定温度に維持することにより、圧縮機
の運転範囲を拡大することができる冷凍装置を提供する
ことにある。
The present invention was created in view of the above problems, and its purpose is to maintain the degree of superheat constant until the discharge gas temperature reaches the set stop temperature of the compressor, and to maintain a constant degree of superheating until the discharge gas temperature reaches a predetermined temperature close to the set stop temperature. The object of the present invention is to provide a refrigeration system that can expand the operating range of a compressor by controlling the degree of superheat to a small value and maintaining the discharge gas temperature at the predetermined temperature.

(課題を解決するための手段) 上記目的を達成するために、本発明では、圧縮機(1)
、凝縮器(2)、膨張機構(3)及び蒸発器(4)を備
え、前記凝縮器(2)と膨張機構(3)との間の高圧液
部に、前記圧縮機(1)における圧縮過程部に連通ずる
リキッドインジェクシーン配管(5)を接続した冷凍a
gにおいて、前記リキッドインジェクシ叢ン配管(5)
の途中に電動膨張弁(6)を介装すると共に、前記圧縮
機(1)の吐出側に、吐出ガス温度を検出する温度検出
器(7)と吐出ガス圧力を検出する圧力検出器(8)と
をそれぞれ設ける一方、これら各検出器(7)(8)か
らの検出結果をもとに吐出ガスの過熱度を演算し、前記
膨張弁(6)に吐出ガスの過熱度が一定過熱度となるよ
うに開度指令を出力し、かつ、吐出ガス温度が上昇して
前記圧縮機(1)の停止設定温度に近い所定温度になっ
たとき、吐出ガス温度が前記所定温度を越えない過熱度
となるように前記電動膨張弁(6)の開度を大きくする
開度指令を出力する過熱度制御器(9)を設けたことを
特徴とするものである。
(Means for Solving the Problem) In order to achieve the above object, the present invention provides a compressor (1).
, comprising a condenser (2), an expansion mechanism (3), and an evaporator (4), and a high-pressure liquid section between the condenser (2) and the expansion mechanism (3) is provided with a compressor in the compressor (1). Refrigeration a connected to the liquid injection scene piping (5) that communicates with the process section
In g, the liquid injection pipe (5)
An electric expansion valve (6) is interposed in the middle of the compressor (1), and a temperature detector (7) for detecting the discharge gas temperature and a pressure detector (8) for detecting the discharge gas pressure are installed on the discharge side of the compressor (1). ), and the degree of superheating of the discharged gas is calculated based on the detection results from each of these detectors (7) and (8), and the degree of superheating of the discharged gas is set at a constant superheating degree in the expansion valve (6). When the opening command is output so that the temperature of the discharge gas rises to a predetermined temperature close to the stop temperature of the compressor (1), the discharge gas temperature does not exceed the predetermined temperature. The present invention is characterized by being provided with a superheat degree controller (9) that outputs an opening command for increasing the opening degree of the electric expansion valve (6) so that the opening degree of the electric expansion valve (6) is increased.

(作用) 前記圧縮機(1)からの吐出ガス温度及び圧力が、前記
各検出器(7)(8)で検出されて、この検出結果に基
づく前記過熱度制御器(9)からの指令で前記電動膨張
弁(6)の開度が制御され、即ち、吐出ガス温度が前記
圧縮機(1)の停止設定温度近くの所定温度に達するま
では、吐出ガスに一定の過熱度が付与され、この一定の
過熱度を付与することにより、前記圧縮機(1)内にお
ける油の分解や、冷媒の油中への溶は込みによる給油能
力の低下などを招くことなく、バランス良く冷凍運転が
行われるのであり、また、吐出ガス温度が上昇して前記
停止設定温直近くの所定温度に達したときは、過熱度が
小さく制御されて、吐出ガス温度が一定の範囲にわたっ
て前記所定温度に維持されるのであり、従って、凝縮温
度の上限値が大となり、前記圧縮機(1)の運転範囲が
拡大されるのである。
(Function) The discharge gas temperature and pressure from the compressor (1) are detected by each of the detectors (7) and (8), and a command from the superheat degree controller (9) is issued based on the detection results. The opening degree of the electric expansion valve (6) is controlled, that is, until the discharge gas temperature reaches a predetermined temperature near the stop temperature of the compressor (1), a constant degree of superheat is imparted to the discharge gas, By applying this constant degree of superheating, refrigeration operation can be performed in a well-balanced manner without decomposing the oil in the compressor (1) or reducing the refueling capacity due to refrigerant dissolving into the oil. Furthermore, when the discharge gas temperature rises and reaches a predetermined temperature close to the stop set temperature, the degree of superheating is controlled to be small and the discharge gas temperature is maintained at the predetermined temperature over a certain range. Therefore, the upper limit of the condensing temperature becomes large, and the operating range of the compressor (1) is expanded.

(実施例) 第1図に示した冷凍装置は、スクリュー圧縮機(1)の
冷媒吐出側に、凝縮器(2)と感温式の膨張機構(3)
並びに蒸発器(4)をそれぞれ順次接続すると共に、前
記膨張機構(3)の感温筒(3a)を前記蒸発器(4)
の吐出側に配置し、この感温筒(3a)の検出結果に基
づいて前記膨張機構(3)を開閉制御するようになす一
方、前記凝縮器(2)と膨張機構(3)との間の高圧液
部に、前記圧縮機(1)の冷媒圧縮過程部に至るリキッ
ドインジェクシeン配管(5)を接続している。
(Example) The refrigeration system shown in Fig. 1 includes a condenser (2) and a temperature-sensitive expansion mechanism (3) on the refrigerant discharge side of a screw compressor (1).
and the evaporator (4) are connected in sequence, and the temperature sensing tube (3a) of the expansion mechanism (3) is connected to the evaporator (4).
The expansion mechanism (3) is arranged on the discharge side of the thermosensor (3a), and the expansion mechanism (3) is controlled to open and close based on the detection result of the thermosensor (3a). A liquid injection pipe (5) leading to the refrigerant compression process section of the compressor (1) is connected to the high pressure liquid section of the compressor (1).

前記圧縮機(1)は、内部にスクリューロータ(11)
を備え、該ロータ(11)の−側に圧縮冷媒の吐出室(
12)を設けると共に、この吐出室(12)の底部に油
溜室(13)を形成して、この油溜室(13)から給油
管(図示せず)を介して前記ロータ(11)などに給油
するようになす一方、該ロータ(11)に前記リキッド
インジェクシロン配管(5)の先端を臨ませ、この配管
(5)からの高圧液冷媒を前記ロータ(11)にインジ
ェクシロンすることにより、吐出ガスの過熱度を常に一
定に保持するようにしている。
The compressor (1) has a screw rotor (11) inside.
and a compressed refrigerant discharge chamber (
12), an oil reservoir chamber (13) is formed at the bottom of the discharge chamber (12), and the rotor (11), etc. is supplied from this oil reservoir chamber (13) via an oil supply pipe (not shown). At the same time, the tip of the liquid injection pipe (5) is made to face the rotor (11), and the high pressure liquid refrigerant from this pipe (5) is injected into the rotor (11). , the degree of superheating of the discharged gas is always kept constant.

しかして、以上の冷凍装置において、前記リキッドイン
ジェクタ1ン配管(5)の途中に電動膨張弁(6)を介
装すると共に、前記圧縮機(1)の吐出室(12)に、
吐出ガス温度を検出する温度検出器(7)と、吐出ガス
圧力を検出する圧力検出器(8)とをそれぞれ配設する
一方、これら各検出器(7)(8)を過熱度制御器(9
)に接続して、前記各検出器(7)(8)の検出結果を
下に、前記制御器(9)で吐出ガスの過熱度を演算し、
この演算結果に基づいて前記膨張弁(6)に吐出ガスの
過熱度が常に一定過熱度となるように開度指令を出力し
、また、吐出ガス温度が前記圧縮機(1)の作動を停止
させる高温スイッチの作動域、即ち、前記圧縮機(1)
の停止設定温度に近い所定温度に上昇するとき、前記制
御器(9)から前記膨張弁(6)に、前記吐出ガス温度
が前記所定温度を越えない過熱度となるように前記電動
膨張弁(6)の開度を大きくする開度指令を出力するよ
うになすのである。
Therefore, in the above refrigeration system, an electric expansion valve (6) is interposed in the middle of the liquid injector piping (5), and in the discharge chamber (12) of the compressor (1),
A temperature detector (7) for detecting the discharge gas temperature and a pressure detector (8) for detecting the discharge gas pressure are respectively provided, and each of these detectors (7) and (8) is connected to a superheat degree controller ( 9
), the controller (9) calculates the degree of superheating of the discharged gas based on the detection results of the respective detectors (7) and (8),
Based on this calculation result, an opening command is output to the expansion valve (6) so that the degree of superheating of the discharged gas always remains constant, and when the temperature of the discharged gas reaches a certain value, the operation of the compressor (1) is stopped. The operating range of the high temperature switch, that is, the compressor (1)
When the temperature rises to a predetermined temperature close to the set stop temperature of the motor-driven expansion valve ( 6) is configured to output an opening degree command that increases the opening degree.

具体的には、第2図に示したごとく、前記過熱度制御器
(9)としてコンピュータの中央処理装置を使用し、こ
の制御器(9)の入力側に、前記温度検出器(7)と圧
力検出器(8)とをそれぞれ接続すると共に、前記制御
器(9)の出力側に前記電動膨張弁(6)を接続して、
該電動膨張弁(6)の開度を前記制御器(9)からの出
力信号で調整するようになす。
Specifically, as shown in FIG. 2, a central processing unit of a computer is used as the superheat degree controller (9), and the temperature detector (7) and the temperature detector (7) are connected to the input side of the controller (9). A pressure detector (8) is connected to the output side of the controller (9), and the electric expansion valve (6) is connected to the output side of the controller (9).
The opening degree of the electric expansion valve (6) is adjusted by an output signal from the controller (9).

次に、以上の過熱度制御器(9)による電動膨張弁(8
)の制御態様を、第3図に基づいて説明する。この第3
図は、前述した第6図と同様に、縦軸に吐出ガス温度(
Td)を、横軸に吐出圧力に相当する飽和凝縮温度(T
c)をとったTd−Tcと過熱度との関係グラフを示し
、同図において、直線(イ)は第6図の場合と同じく過
熱度O℃の場合、一方、線(ハ)は前記直線(イ)に対
し25℃の過熱度をとった場合で、前記制御器(9)で
過熱度を制御したときの吐出ガス温度をそれぞれ示して
いる。
Next, the electric expansion valve (8) is operated by the superheat degree controller (9).
) will be explained based on FIG. This third
In the figure, the vertical axis is the discharge gas temperature (similar to Figure 6 above).
Td) is plotted on the horizontal axis, and the saturated condensation temperature (T
A graph of the relationship between Td-Tc and the degree of superheat obtained by taking c) is shown. In the same figure, the straight line (A) is for the case where the degree of superheat is 0°C as in the case of Fig. 6, while the line (C) is for the above-mentioned straight line. In the case where the degree of superheat is set to 25° C. with respect to (a), the discharge gas temperature is shown when the degree of superheat is controlled by the controller (9).

第3図の線(ハ)で明らかなように、吐出ガス温度が、
前記圧縮機(1)の停止設定温度(例えば100℃)近
くの所定温度(例えば95℃)に達するまでは、前記制
御器(9)で前記電動膨張弁(6)の開度が調整されて
、吐出ガスに常に一定の過熱度(25℃)が付けられ、
この一定の過熱度を付与することにより、前記圧縮機(
1)内における油の分解や、冷媒の油中への溶は込みに
よる給油能力の低下などを招くことなく、バランス良く
冷凍運転が行われるのであり、また、前記所定温度(9
5℃)に達したときには、前記制御器(9)からの指令
で電動膨張弁(6)の開度が大に制御され、過熱度が設
定過熱度(25’ C)より低い例えば10’Cに制御
されるのであり、この結果、吐出ガス温度が一定範囲に
わたって、前記所定温度つまり95℃線上に維持される
のであり、従って、凝縮温度(Tc)の上限値が従来に
比べて増大され、即ち、第6図の場合、凝縮温度の上限
値が(Tc2)であったのに対し、その上限値(Tc3
)が、過熱度0℃の場合の上限値(Tc 1)近くにま
で増大され、前記圧縮機(1)の使用温度範囲、つまり
、該圧縮機(1)の運転範囲が拡大されるのである。尚
、制御する過熱度は、前記した10”Cに限ることなく
それより低い過熱度としてもよい。
As is clear from the line (c) in Figure 3, the discharge gas temperature is
The opening degree of the electric expansion valve (6) is adjusted by the controller (9) until the compressor (1) reaches a predetermined temperature (for example, 95°C) near the stop temperature (for example, 100°C). , the discharged gas is always kept at a constant degree of superheat (25°C),
By applying this constant degree of superheat, the compressor (
Refrigeration operation is performed in a well-balanced manner without decomposing the oil in the oil tank or reducing the refueling capacity due to refrigerant dissolving into the oil.
5°C), the opening degree of the electric expansion valve (6) is greatly controlled by a command from the controller (9), and the degree of superheat is lower than the set superheat degree (25'C), for example, 10'C. As a result, the discharge gas temperature is maintained at the predetermined temperature, that is, on the 95° C. line, over a certain range, and therefore, the upper limit of the condensation temperature (Tc) is increased compared to the conventional method. That is, in the case of FIG. 6, the upper limit of the condensation temperature was (Tc2), but the upper limit of the condensation temperature was (Tc3).
) is increased to nearly the upper limit value (Tc 1) when the degree of superheat is 0°C, and the operating temperature range of the compressor (1), that is, the operating range of the compressor (1) is expanded. . Note that the degree of superheat to be controlled is not limited to the above-mentioned 10''C, but may be a degree of superheat lower than that.

次に、以上の構成とした冷凍装置の作用を、第4図に示
すフローチャートに基づいて説明スる。
Next, the operation of the refrigeration system configured as above will be explained based on the flowchart shown in FIG. 4.

先ず、運転開始(ステップ1)に伴い、前記温度検出器
(7)と圧力検出器(8)とで吐出ガス温度(Td)と
吐出圧力(Pc)とが検出されて前記制御器(9)に入
力(ステップ2)され、次に、ステップ3において、前
記制御器(9)で吐出ガス温度(Td)が前記所定温度
(95℃)以上であるか否かが判断されて、ノーの場合
、つまり、吐出ガス温度(Td)が95℃に未だ達して
いない場合には、吐出ガスの吐出圧力(Pc)が相当飽
和凝縮温度(Tc)に変換(ステップ4)され、また、
前記吐出ガス温度(Td)と凝縮温度(Tc)とに基づ
き、前記制御器(9)で過熱度(SH)が演算(ステッ
プ5)され、更に、ステップ6において、過熱度(SH
)が25℃以上であるか否かが判断され、イエスの場合
、つまり、過熱度(S H)が25℃以上に達している
ときには、ステップ7において、前記膨張弁(6)に開
信号が出力され、前記リキッドインジェクシーン配管(
5)から圧縮機(1)に液冷媒を供給し、過熱度を下げ
るように制御されるのであり、この後、システムの応答
待ち(ステップ8)をした後に、ステップ9において、
運転中であるか否かが判断され、イエスの場合には、前
記ステップ2へとリターンされ、ノーの場合には、ステ
ップ10において、制御が終了される。また、前記ステ
ップ3において、イエスの場合、つまり、吐出ガス温度
(Td)が95℃以上に達している場合は、ステップ1
1において、前記膨張弁(6)に開信号が出力され、前
記リキッドインジェクション配管(5)から圧縮機(1
)に液冷媒が供給され、過熱度を低くして、吐出ガス温
度を下げるように制御され、更に、前記ステップ6にお
いて、ノーの場合、つまり、過熱度(SH)が25℃以
下である場合には、ステップ12において、前記膨張弁
(6)に閉信号が出力されて、前記リキッドインジェク
シ廚ン配管(5)から圧縮機(1)への液冷媒の供給が
制限され、過熱度を高め所定の設定過熱度(25@C)
に制御され、以上のステップ11及び12を終了した後
には、前記ステップ8からの制御が行われるのである。
First, with the start of operation (step 1), the temperature detector (7) and the pressure detector (8) detect the discharge gas temperature (Td) and the discharge pressure (Pc), and the controller (9) detects the discharge gas temperature (Td) and the discharge pressure (Pc). (Step 2), and then, in Step 3, the controller (9) determines whether the discharge gas temperature (Td) is equal to or higher than the predetermined temperature (95°C), and if no That is, if the discharge gas temperature (Td) has not yet reached 95° C., the discharge pressure (Pc) of the discharge gas is converted to the equivalent saturation condensation temperature (Tc) (step 4), and
Based on the discharge gas temperature (Td) and condensation temperature (Tc), the controller (9) calculates the degree of superheat (SH) (step 5), and further, in step 6, the degree of superheat (SH) is calculated by the controller (9).
) is 25°C or higher, and if the answer is yes, that is, the degree of superheat (S H) has reached 25°C or higher, an open signal is sent to the expansion valve (6) in step 7. Output and said liquid inject scene piping (
5) supplies liquid refrigerant to the compressor (1) and is controlled to reduce the degree of superheating.After this, after waiting for a response from the system (step 8), in step 9,
It is determined whether or not the vehicle is in operation. If yes, the process returns to step 2; if no, the control is terminated in step 10. In addition, in the case of YES in step 3, that is, if the discharge gas temperature (Td) has reached 95°C or higher, step 1
1, an open signal is output to the expansion valve (6), and the compressor (1) is output from the liquid injection pipe (5).
) is supplied with liquid refrigerant and controlled to lower the degree of superheat and discharge gas temperature, and further, if the answer in step 6 is NO, that is, if the degree of superheat (SH) is 25° C. or less In step 12, a close signal is output to the expansion valve (6) to restrict the supply of liquid refrigerant from the liquid injection pipe (5) to the compressor (1), thereby reducing the degree of superheating. High predetermined superheat setting (25@C)
After the above steps 11 and 12 are completed, the control from step 8 is performed.

(発明の効果) 以上説明したように、本発明の冷凍装置では、リキ、ド
インジェクシ廚ン・配管(5)の途中に電動膨張弁(6
)を介装すると共に、圧縮機(1)の吐出側に温度検出
器(7)と圧力検出器(8)とを設けると共に、これら
各検出器C7)(8)からの検出結果をもとに吐出ガス
の過熱度を演算し、前記膨張弁(6)に吐出ガスの過熱
度が一定過熱度となるように開度指令を出力し、かつ、
前記吐出ガス温度が上昇して前記圧縮機(1)の停止設
定温度に近い所定温度になったとき、前記吐出ガス温度
が前記所定温度を越えない過熱度となるように前記電動
膨張弁(6)の開度を大きくする開度指令を出力する過
熱度制御器(9)を設けたから、前記圧縮機(1)の使
用温度範囲、即ち、該圧縮機(1)の運転範囲を拡大す
ることができて、凝縮器(2)の高温域での運転が可能
となるばかりか、熱回収運転を行うような場合に、充分
な熱回収を行い得るに至ったのである。
(Effects of the Invention) As explained above, in the refrigeration system of the present invention, the electric expansion valve (6
), a temperature detector (7) and a pressure detector (8) are provided on the discharge side of the compressor (1), and the detection results from each of these detectors C7) and (8) are calculates the degree of superheat of the discharged gas, outputs an opening command to the expansion valve (6) so that the degree of superheat of the discharged gas becomes a constant degree of superheat, and
When the discharge gas temperature rises to a predetermined temperature close to the set stop temperature of the compressor (1), the electric expansion valve (6 ) is provided, so that the operating temperature range of the compressor (1), that is, the operating range of the compressor (1) can be expanded. This not only makes it possible to operate the condenser (2) in a high temperature range, but also enables sufficient heat recovery when performing heat recovery operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる冷凍装置の配管図、第2図は同
冷凍装置を制御する制御ブロック図、第3図は吐出ガス
温度Td及び凝縮温度Tcと過熱度との関係を示すグラ
フ、第4図は同冷凍装置の制御態様を説明するフローチ
ャート図、第5図は従来の冷凍装置を示す配管図、第6
図は同冷凍vtlfの吐出ガス温度Td及び凝縮温度T
cと過熱度との関係を示すグラフである。 (1)−−−−−圧縮機 (2)・・・・・凝縮器 (3)・・・・嗜膨張機構 (4)・・・拳・蒸発器 (5)・・・・リキッドインジェクション配管(6)・
・・・・電動膨張弁 (7)・・・・・温度検出器 (8)・・・・・圧力検出器 (9)・・・・・過熱度制御器 第3図 凝6温/k(TO 第1図 4層発器 3層(張帆橘 第4図
FIG. 1 is a piping diagram of a refrigeration system according to the present invention, FIG. 2 is a control block diagram for controlling the refrigeration system, and FIG. 3 is a graph showing the relationship between discharge gas temperature Td, condensation temperature Tc, and degree of superheat. FIG. 4 is a flowchart explaining the control mode of the refrigeration system, FIG. 5 is a piping diagram showing the conventional refrigeration system, and FIG.
The figure shows the discharge gas temperature Td and condensation temperature T of the same refrigerated VTLF.
It is a graph which shows the relationship between c and superheat degree. (1) --- Compressor (2) Condenser (3) Restrictive expansion mechanism (4) Fist/evaporator (5) Liquid injection piping (6)・
...Electric expansion valve (7) ...Temperature detector (8) ...Pressure detector (9) ...Superheat degree controller Fig. 3 Condensation 6 temperature/k ( TO Fig. 1 4-layer generator 3-layer (Zhangfanchiang Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1)圧縮機(1)、凝縮器(2)、膨張機構(3)及び
蒸発器(4)を備え、前記凝縮器(2)と膨張機構(3
)との間の高圧液部に、前記圧縮機(1)における圧縮
過程部に連通するリキッドインジェクション配管(5)
を接続した冷凍装置において、前記リキッドインジェク
ション配管(5)の途中に電動膨張弁(8)を介装する
と共に、前記圧縮機(1)の吐出側に、吐出ガス温度を
検出する温度検出器(7)と吐出ガス圧力を検出する圧
力検出器(8)とを設ける一方、これら各検出器(7)
(8)からの検出結果をもとに吐出ガスの過熱度を演算
し、前記膨張弁(6)に吐出ガスの過熱度が一定過熱度
となるように開度指令を出力し、かつ、前記吐出ガス温
度が上昇して前記圧縮機(1)の停止設定温度に近い所
定温度になったとき、前記吐出ガス温度が前記所定温度
を越えない過熱度となるように前記電動膨張弁(6)の
開度を大きくする開度指令を出力する過熱度制御器(9
)を設けたことを特徴とする冷凍装置。
1) Comprising a compressor (1), a condenser (2), an expansion mechanism (3), and an evaporator (4), the condenser (2) and the expansion mechanism (3)
), a liquid injection pipe (5) that communicates with the compression process section of the compressor (1).
In the refrigeration system, an electric expansion valve (8) is interposed in the middle of the liquid injection pipe (5), and a temperature detector (8) is installed on the discharge side of the compressor (1) to detect the discharge gas temperature. 7) and a pressure detector (8) for detecting the discharge gas pressure.
The degree of superheat of the discharged gas is calculated based on the detection result from (8), and an opening degree command is output to the expansion valve (6) so that the degree of superheat of the discharged gas becomes a constant degree of superheat, and When the discharge gas temperature rises to a predetermined temperature close to the set stop temperature of the compressor (1), the electric expansion valve (6) is configured such that the discharge gas temperature reaches a degree of superheat that does not exceed the predetermined temperature. A superheat degree controller (9) that outputs an opening degree command to increase the opening degree of
).
JP2141811A 1990-05-30 1990-05-30 Refrigerator Pending JPH0436550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2141811A JPH0436550A (en) 1990-05-30 1990-05-30 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2141811A JPH0436550A (en) 1990-05-30 1990-05-30 Refrigerator

Publications (1)

Publication Number Publication Date
JPH0436550A true JPH0436550A (en) 1992-02-06

Family

ID=15300684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2141811A Pending JPH0436550A (en) 1990-05-30 1990-05-30 Refrigerator

Country Status (1)

Country Link
JP (1) JPH0436550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203608A1 (en) * 2016-05-24 2017-11-30 三菱電機株式会社 Refrigeration cycle device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202458A (en) * 1981-06-05 1982-12-11 Mitsubishi Electric Corp Refrigerator
JPS60194260A (en) * 1984-03-15 1985-10-02 ダイキン工業株式会社 Refrigerator with electric expansion valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202458A (en) * 1981-06-05 1982-12-11 Mitsubishi Electric Corp Refrigerator
JPS60194260A (en) * 1984-03-15 1985-10-02 ダイキン工業株式会社 Refrigerator with electric expansion valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203608A1 (en) * 2016-05-24 2017-11-30 三菱電機株式会社 Refrigeration cycle device
CN109154455A (en) * 2016-05-24 2019-01-04 三菱电机株式会社 Refrigerating circulatory device

Similar Documents

Publication Publication Date Title
US6467288B2 (en) Heat-pump water heater
US6041605A (en) Compressor protection
JPH09178274A (en) Refrigerating system
CN102165194A (en) Compressor discharge control on a transport refrigeration system
CN105909493A (en) Cryopump system, cryopump controller, and cryopump regeneration method
WO2013004233A1 (en) A method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
US20060150646A1 (en) Method of operation and regulation of a vapour compression system
JP4716937B2 (en) Refrigeration cycle apparatus, heat pump water heater, and control method for refrigeration cycle apparatus
JPH0436550A (en) Refrigerator
JPH03129255A (en) Freezer
JPH0575937B2 (en)
JP2007107756A (en) Heat pump water heater
JPH0384366A (en) Freezing device
JP2923133B2 (en) Refrigeration equipment
CN209541243U (en) Dual system low temperature storage box
JPS603354Y2 (en) Refrigeration equipment
JPH01123966A (en) Refrigerator
JPH08189709A (en) Refrigerating device and operation control system therefor
JP2000320910A (en) Control method for freezing cycle and freezing cycle using this method
JPH01114668A (en) Two-stage compression refrigeration cycle device
JP2646917B2 (en) Refrigeration equipment
JPH09159287A (en) Refrigerator
JP2785546B2 (en) Refrigeration equipment
KR0182133B1 (en) Method and apparatus for controlling the compressor of a refrigerator
JPS599442A (en) Control of heat source equipment