JPH04365492A - Production of l-alanine - Google Patents

Production of l-alanine

Info

Publication number
JPH04365492A
JPH04365492A JP14421291A JP14421291A JPH04365492A JP H04365492 A JPH04365492 A JP H04365492A JP 14421291 A JP14421291 A JP 14421291A JP 14421291 A JP14421291 A JP 14421291A JP H04365492 A JPH04365492 A JP H04365492A
Authority
JP
Japan
Prior art keywords
reaction solution
alanine
reaction
decarboxylase
aspartic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14421291A
Other languages
Japanese (ja)
Inventor
Hisashi Yamagata
山縣 恒
Makoto Goto
誠 後藤
Masato Terasawa
真人 寺沢
Hideaki Yugawa
英明 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP14421291A priority Critical patent/JPH04365492A/en
Publication of JPH04365492A publication Critical patent/JPH04365492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To find out inhibition of L-aspartic beta-decarboxylase by sulfate ion derived from cells or raw material aspartic acid, to reduce influence of sulfate ion in a reaction solution and to stably and efficiently produce L-alanine. CONSTITUTION:An aqueous reaction solution containing L-aspartic acid or a salt thereof having sulfate ion concentration restricted to <=100ppm is treated with cells of a bacterium containing L-aspartic beta-decarboxylase or a treated material thereof to give L-alanine.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、酵素法によるL−アラ
ニンの製造法に関する。L−アラニンは医薬、食品又は
化学工業原料として重要なアミノ酸である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing L-alanine by an enzymatic method. L-alanine is an important amino acid as a raw material for medicine, food, or the chemical industry.

【0002】0002

【従来の技術】L−アラニンの工業的製造法として、シ
ュードモナス属に属するL−アスパラギン酸β−脱炭酸
酵素含有菌体を用いて、L−アスパラギン酸を酵素的に
脱炭酸してL−アラニンを製造する方法(特公昭43−
28951号公報、特公昭46−7560号公報)が知
られている。
[Prior Art] As an industrial method for producing L-alanine, L-aspartic acid is enzymatically decarboxylated to produce L-alanine using bacterial cells containing L-aspartate β-decarboxylase belonging to the genus Pseudomonas. Method of manufacturing
28951, Japanese Patent Publication No. 46-7560) are known.

【0003】0003

【発明が解決しようとする課題】上記従来の方法におい
てはL−アラニン生成の酵素反応に長時間を要した。本
発明者らは、その原因について鋭意研究の結果、反応液
中の硫酸イオンにより、L−アスパラギン酸脱炭酸酵素
が阻害を受けるためであることがわかった。そして、こ
のような反応液中の硫酸イオンは、培養液から微生物菌
体に持ち込まれたり、原料のL−アスパラギン酸の製造
工程中に混入して持込まれたりするものである。
[Problems to be Solved by the Invention] In the above conventional method, the enzymatic reaction for producing L-alanine required a long time. As a result of intensive research into the cause, the present inventors found that it is because L-aspartate decarboxylase is inhibited by sulfate ions in the reaction solution. Such sulfate ions in the reaction solution are brought into the microbial cells from the culture solution, or mixed into the manufacturing process of L-aspartic acid as a raw material.

【0004】本発明は、反応液中の硫酸イオンの影響を
低減し、L−アラニンを安定かつ効率的に製造する方法
を提供するものである。
The present invention provides a method for stably and efficiently producing L-alanine by reducing the influence of sulfate ions in the reaction solution.

【0005】[0005]

【課題を解決するための手段】本発明は、L−アスパラ
ギン酸β−脱炭酸酵素を含有する微生物菌体又はその処
理物を、L−アスパラギン酸又はその塩を含有する水性
反応液に作用させてL−アラニンを製造する方法におい
て、硫酸イオン濃度を100ppm 以下に抑制した該
反応液に作用させ、硫酸イオンによる酵素作用の阻害を
低減するものである。
[Means for Solving the Problems] The present invention allows microbial cells containing L-aspartate β-decarboxylase or a treated product thereof to act on an aqueous reaction solution containing L-aspartic acid or a salt thereof. In the method for producing L-alanine, the method is applied to the reaction solution in which the sulfate ion concentration is suppressed to 100 ppm or less, thereby reducing inhibition of enzyme action by sulfate ions.

【0006】本発明において使用するL−アスパラギン
酸β−脱炭酸酵素を含有する微生物菌体としては、シュ
ードモナス属に属する該酵素含有菌体、例えばシュード
モナス・ダクネー(Pseudomonas dacu
nhae)IAM1152、同ATCC21192、シ
ュードモナス・プチダ(Pseudomonas pu
tida)ATCC21812,同IAM1506、シ
ュードモナス・フルオレッセンス(Pseudomon
as fluorescens)IFO3081、シュ
ードモナス・アエルギノーザ(Pseudomonas
 aeruginosa)IAM1054などが挙げら
れ、これらの菌体が好適に用いられる。また、上記微生
物菌体の処理物、例えば菌体の破壊物を使用することも
できる。菌体の破壊は、それ自体既知の、例えば超音波
処理、圧搾などの方法を用いて行うことができる。
[0006] The microorganism containing L-aspartate β-decarboxylase used in the present invention is a microorganism containing the enzyme belonging to the genus Pseudomonas, such as Pseudomonas dacu.
nhae) IAM1152, ATCC21192, Pseudomonas pu
ATCC21812, IAM1506, Pseudomonas fluorescens
as fluorescens) IFO3081, Pseudomonas aeruginosa (Pseudomonas
aeruginosa) IAM1054, and these bacterial cells are preferably used. Furthermore, a processed product of the above-mentioned microbial cells, such as a destroyed product of the microbial cells, can also be used. Destruction of bacterial cells can be performed using methods known per se, such as ultrasonication and squeezing.

【0007】L−アスパラギン酸β−脱炭酸酵素含有菌
体は上記微生物を通常の方法で培養して得られる。培地
に用いられる炭素源としては、特に制限はないが、例え
ばフマル酸、コハク酸、アスパラギン酸などを挙げるこ
とができ、中でもフマル酸が好ましい。培地の窒素源と
しては、アンモニア、硫酸アンモニウム、塩化アンモニ
ウム、硝酸アンモニウム、尿素などの無機塩を用いるこ
とができるし、ペプトン、酵母エキス、コーンスティー
プリカー、カザミノ酸などの有機窒素源を使用すること
もできる。無機塩としては、リン酸一水素カリウム、リ
ン酸二水素カリウム、硫酸マグネシウムなどが用いられ
る。
[0007] L-aspartate β-decarboxylase-containing bacterial cells can be obtained by culturing the above-mentioned microorganisms by a conventional method. The carbon source used in the culture medium is not particularly limited, and examples thereof include fumaric acid, succinic acid, aspartic acid, and the like, with fumaric acid being preferred. As a nitrogen source for the culture medium, inorganic salts such as ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea, etc. can be used, and organic nitrogen sources such as peptone, yeast extract, corn steep liquor, casamino acids, etc. can also be used. . As the inorganic salt, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, etc. are used.

【0008】L−アスパラギン酸β−脱炭酸酵素含有微
生物菌体の培養は、通気撹拌、振盪などの好気的条件下
で行い、培養温度は20〜40℃、好ましくは28〜3
2℃である。培養中のpHは5〜10、好ましくは7〜
8付近であり、その調整は酸またはアルカリを用いて行
う。培養開始時のフマル酸濃度は、好ましくは0.1〜
5重量%、さらに好ましくは0.5〜2重量%である。 培養時間は8時間〜4日間、好ましくは10時間〜3日
間である。
[0008] The microbial cells containing L-aspartate β-decarboxylase are cultured under aerobic conditions such as aeration and shaking, and the culture temperature is 20-40°C, preferably 28-30°C.
It is 2℃. pH during culture is 5-10, preferably 7-10
It is around 8, and its adjustment is performed using acid or alkali. The fumaric acid concentration at the start of culture is preferably 0.1-
It is 5% by weight, more preferably 0.5-2% by weight. The culture time is 8 hours to 4 days, preferably 10 hours to 3 days.

【0009】本発明の方法においては、上記で調製され
た微生物菌体又はその破砕物の存在下、L−アスパラギ
ン酸又はその塩を含有する水溶液に酵素反応させる。こ
こで該水溶液に添加されるL−アスパラギン酸又はその
塩の添加濃度は0.5〜50重量%、好ましくは3〜3
0重量%である。なお、L−アスパラギン酸は、反応液
への溶解度の関係から溶解させた状態でも粉体で存在(
不溶解状態)していてもさしつかえない。反応液のpH
の調整はアルカリ溶液、例えばアンモニア水、水酸化ナ
トリウム、水酸化カリウム等の水溶液が好適に使用され
る。
In the method of the present invention, an aqueous solution containing L-aspartic acid or a salt thereof is subjected to an enzymatic reaction in the presence of the microbial cells prepared above or a crushed product thereof. Here, the concentration of L-aspartic acid or its salt added to the aqueous solution is 0.5 to 50% by weight, preferably 3 to 3% by weight.
It is 0% by weight. Note that L-aspartic acid exists in powder form even when dissolved due to its solubility in the reaction solution (
There is no problem even if it is in an undissolved state. pH of reaction solution
For the adjustment, an alkaline solution, for example, an aqueous solution of aqueous ammonia, sodium hydroxide, potassium hydroxide, etc., is suitably used.

【0010】該水溶液には、さらにピリドキサール  
5´−リン酸を0.0005〜0.05重量%、好まし
くは0.001〜0.01重量%添加して用いることが
できる。さらに必要な場合には非イオン性の界面活性剤
、例えばポリオキシエチレンオクチルフェニルエーテル
、ポリオキシエチレンソルビタンモノラウレート等を0
.01〜0.5重量%、好ましくは0.03〜0.2重
量%を添加して用いることができる。また必要な場合に
はピルビン酸、α−ケト酪酸等のα−ケト酸を0.00
01〜0.5重量%、好ましくは0.001〜0.2重
量%を添加して用いることができる。本発明において、
酵素反応時のpHは4.3〜5.0、好ましくは4.5
〜4.8であり、反応温度は40〜47℃、好ましくは
42〜45℃であり、反応は通常約3〜約48時間行わ
れる。又、さらに必要であれば塩化ナトリウムを添加す
ることができ、濃度は0.02〜1.0重量%、好まし
くは0.03〜0.5重量%が用いられる。
[0010] The aqueous solution further contains pyridoxal.
5'-phosphoric acid may be added in an amount of 0.0005 to 0.05% by weight, preferably 0.001 to 0.01% by weight. Furthermore, if necessary, nonionic surfactants such as polyoxyethylene octylphenyl ether, polyoxyethylene sorbitan monolaurate, etc.
.. It can be used in an amount of 0.01 to 0.5% by weight, preferably 0.03 to 0.2% by weight. If necessary, add 0.00% α-keto acid such as pyruvic acid or α-ketobutyric acid.
01 to 0.5% by weight, preferably 0.001 to 0.2% by weight. In the present invention,
pH during enzyme reaction is 4.3 to 5.0, preferably 4.5
-4.8, the reaction temperature is 40-47°C, preferably 42-45°C, and the reaction is usually carried out for about 3 to about 48 hours. Further, if necessary, sodium chloride can be added, and the concentration used is 0.02 to 1.0% by weight, preferably 0.03 to 0.5% by weight.

【0011】水溶性バリウム塩を添加した反応液に作用
させる場合に、水溶性バリウム塩としては、塩化バリウ
ム、臭化バリウム、硝酸バリウム、酢酸バリウムなどが
用いられる。その添加濃度は、単独あるいは組み合わせ
て添加する場合にも、バリウムとして0.001〜0.
5重量%、好ましくは0.01〜0.1重量%が用いら
れる。
When acting on a reaction solution to which a water-soluble barium salt has been added, barium chloride, barium bromide, barium nitrate, barium acetate, etc. are used as the water-soluble barium salt. The concentration of barium to be added is 0.001 to 0.00, whether added alone or in combination.
5% by weight, preferably 0.01-0.1% by weight is used.

【0012】アルカリ金属塩化物又はアルカリ土類金属
塩化物を含有する水溶液で微生物菌体又はその処理物を
洗浄する場合、そのような塩化物としては、塩化ナトリ
ウム、塩化カリウム、塩化カルシウム等のアルカリ金属
塩化物又はアルカリ土類金属の塩化物が好ましい。その
濃度は3〜500mM、好ましくは10〜400mMが
用いられる。
[0012] When cleaning microbial cells or their treated products with an aqueous solution containing an alkali metal chloride or an alkaline earth metal chloride, the chloride may be an alkali such as sodium chloride, potassium chloride, calcium chloride, etc. Metal chlorides or alkaline earth metal chlorides are preferred. Its concentration is 3-500mM, preferably 10-400mM.

【0013】洗浄は、菌体又はその処理物を該塩化物水
溶液中に懸濁した後に遠心分離、限外ろ過等により固液
分離を行う操作にかけ、菌体を集める。必要であれば洗
浄を繰り返し行うことも可能である。
[0013] For washing, the bacterial cells or their treated product are suspended in the chloride aqueous solution and then subjected to solid-liquid separation by centrifugation, ultrafiltration, etc., and the bacterial cells are collected. It is also possible to repeat the cleaning if necessary.

【0014】上記の反応液中に生成したL−アラニンの
分離・精製は公知のイオン交換樹脂処理等により行うこ
とができる。
Separation and purification of L-alanine produced in the above reaction solution can be carried out by known ion exchange resin treatment or the like.

【0015】[0015]

【実施例】以下実施例により本発明を具体的に説明する
。なお、以下の参考例及び実施例において、%は特記し
ないかぎり重量%を意味する。
[Examples] The present invention will be explained in detail with reference to Examples below. In addition, in the following reference examples and examples, % means weight % unless otherwise specified.

【0016】参考例1 培地1(フマル酸ナトリウム0.5%、フマル酸アンモ
ニウム1.0%、酵母エキス0.5%、KH2 PO4
 0.1%及びMgSO4・・7H2 O  0.05
%、pH7.0)100mlを500ml容三角フラス
コに分注し、120℃で20分間滅菌したものに、シュ
ードモナス・ダクネ(Pseudomonas dac
unhae)IAM1152を一白金耳植菌し、30℃
で12時間振盪培養を行った。
Reference Example 1 Medium 1 (sodium fumarate 0.5%, ammonium fumarate 1.0%, yeast extract 0.5%, KH2 PO4
0.1% and MgSO4..7H2O 0.05
%, pH 7.0) into a 500 ml Erlenmeyer flask, sterilized it at 120°C for 20 minutes, and then added Pseudomonas dacne to it.
Inoculate one platinum loop of IAM1152 (unhae) at 30°C.
Shaking culture was performed for 12 hours.

【0017】培地1の1,500mlを3,000ml
容ジャーファーメンターに入れ、120℃で20分間滅
菌したものに、前記三角フラスコ培養液を30ml植菌
し、回転数600rpm 、通気1vvm 、30℃で
培養を行った。 濃硫酸を脱イオン水で5倍希釈した液を用いてpHを7
.3に調節し、同時に、培養途中の溶存酸素濃度を溶存
酸素電極(オリエンタル電気製、S−1型)を用いて測
定し、炭素源であるフマル酸の消費枯渇に伴う溶存酸素
濃度の上昇を観察した時点で、20%フマル酸アンモニ
ウム水溶液(pH6.5)を100mlずつ計2回添加
しながら培養を続け、19時間後に培養を終了し、遠心
分離により菌体を回収し、湿菌体約45gを得た。
1,500ml of medium 1 to 3,000ml
30 ml of the Erlenmeyer flask culture solution was inoculated into a jar fermenter that had been sterilized at 120°C for 20 minutes, and cultured at 30°C with a rotation speed of 600 rpm and a ventilation of 1 vvm. Adjust the pH to 7 using concentrated sulfuric acid diluted 5 times with deionized water.
.. At the same time, the dissolved oxygen concentration during the culture was measured using a dissolved oxygen electrode (Model S-1, manufactured by Oriental Electric), and the increase in dissolved oxygen concentration due to consumption and depletion of fumaric acid, which is a carbon source, was measured. At the time of observation, the culture was continued while adding 100 ml of 20% ammonium fumarate aqueous solution (pH 6.5) twice in total. After 19 hours, the culture was terminated, and the bacterial cells were collected by centrifugation, and the wet bacterial cells were approximately 45g was obtained.

【0018】参考例2 参考例1で得られた菌体を0.9%NaCl水溶液に懸
濁、遠心分離による洗浄を3回繰り返し、その湿菌体0
.2gを、表1に示したように、硫酸イオンが所定の濃
度となるよう硫酸アンモニウムを添加した水性反応液(
L−アスパラギン酸30%、ポリオキシエチレンオクチ
ルフェニルエーテル0.05%、ピリドキサル5´−リ
ン酸0.001%及びピルビン酸ナトリウム0.05%
含有、28%アンモニア水にてpH4.7に調整)20
mlに懸濁し、42℃で反応させた。反応開始後2時間
にて反応を停止し、液中の生成L−アラニン濃度を高速
液体クロマトグラフィーにて定量した。
Reference Example 2 The bacterial cells obtained in Reference Example 1 were suspended in a 0.9% NaCl aqueous solution and washed by centrifugation three times.
.. 2g was added to an aqueous reaction solution (as shown in Table 1) with ammonium sulfate added so that the sulfate ions had a predetermined concentration.
L-aspartic acid 30%, polyoxyethylene octylphenyl ether 0.05%, pyridoxal 5'-phosphate 0.001% and sodium pyruvate 0.05%
Contains, adjusted to pH 4.7 with 28% ammonia water) 20
ml and reacted at 42°C. The reaction was stopped 2 hours after the start of the reaction, and the concentration of produced L-alanine in the liquid was determined by high performance liquid chromatography.

【0019】硫酸アンモニウムを全く添加しない場合の
硫酸イオン濃度を0として、その時の生成L−アラニン
濃度を100%とする相対値にて表示した。なお、用い
たL−アスパラギン酸は試薬特級(和光純薬工業、大阪
、日本)であり、硫酸含量は、「SO4 max0.0
3%」との表示があった。
[0019] The sulfate ion concentration when no ammonium sulfate is added is 0, and the L-alanine concentration produced at that time is 100%, and the values are expressed as relative values. The L-aspartic acid used was a special reagent grade (Wako Pure Chemical Industries, Osaka, Japan), and the sulfuric acid content was "SO4 max 0.0".
3%" was displayed.

【0020】[0020]

【表1】[Table 1]

【0021】反応開始後2時間の初期段階においても1
00ppm のSO42− により5%、500ppm
 のSO42− により約20%の阻害を受けることが
わかる。
Even at the initial stage of 2 hours after the start of the reaction, 1
5% by 00ppm SO42-, 500ppm
It can be seen that about 20% inhibition is caused by SO42-.

【0022】実施例1 参考例1で得られた湿菌体0.2gを、表2〜表4に示
した実施区にて、各表に示したように水溶性バリウム塩
を加えた水性反応液(L−アスパラギン酸30%、ポリ
オキシエチレンオクチルフェニルエーテル0.05%、
ピリドキサル5´−リン酸0.001%及びピルビン酸
ナトリウム0.05%含有、28%NH3 含有アンモ
ニア水でpH4.7に調整)20mlに懸濁し、42℃
で反応させた。結果は反応終了に要する時間で示した。
Example 1 0.2 g of wet bacterial cells obtained in Reference Example 1 were subjected to an aqueous reaction in the experimental areas shown in Tables 2 to 4, with the addition of water-soluble barium salts as shown in each table. liquid (L-aspartic acid 30%, polyoxyethylene octylphenyl ether 0.05%,
Containing 0.001% of pyridoxal 5'-phosphate and 0.05% of sodium pyruvate, adjusted to pH 4.7 with aqueous ammonia containing 28% NH3), suspended in 20 ml and heated to 42°C.
I reacted with The results were expressed as the time required to complete the reaction.

【0023】[0023]

【表2】[Table 2]

【0024】[0024]

【表3】[Table 3]

【0025】[0025]

【表4】[Table 4]

【0026】実施例2 参考例1で得られた湿菌体を、0.9%NaCl水溶液
で3回洗浄したもの0.2gを、硫酸イオンを外部より
添加しない参考例2の反応液20mlに懸濁し、42℃
で反応させた。対照区として、全く洗浄を行わない湿菌
体について同様に反応させた。結果は反応終了に要する
時間で示した。
Example 2 0.2 g of the wet bacterial cells obtained in Reference Example 1 washed three times with 0.9% NaCl aqueous solution was added to 20 ml of the reaction solution of Reference Example 2 in which sulfate ions were not added externally. Suspend at 42℃
I reacted with As a control, wet bacterial cells that were not washed at all were reacted in the same manner. The results were expressed as the time required to complete the reaction.

【0027】[0027]

【表5】[Table 5]

【0028】[0028]

【発明の効果】以上のように、反応液中の硫酸イオン濃
度を低く抑えることにより、硫酸イオンによるL−アス
パラギン酸β−脱炭酸酵素活性の阻害が回避され、反応
終了時間が著しく短縮された。
[Effect of the invention] As described above, by keeping the sulfate ion concentration in the reaction solution low, inhibition of L-aspartate β-decarboxylase activity by sulfate ions was avoided, and the reaction completion time was significantly shortened. .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  L−アスパラギン酸β−脱炭酸酵素を
含有する微生物菌体又はその処理物を、L−アスパラギ
ン酸又はその塩を含有する水性反応液に作用させてL−
アラニンを製造する方法において、硫酸イオン濃度を1
00ppm 以下に抑制した反応液に作用させることを
特徴とするL−アラニンの製造法。
Claim 1: A microbial cell containing L-aspartate β-decarboxylase or a treated product thereof is allowed to act on an aqueous reaction solution containing L-aspartic acid or a salt thereof to produce L-aspartate.
In the method for producing alanine, the sulfate ion concentration is reduced to 1
A method for producing L-alanine, which is characterized in that the reaction is carried out in a reaction solution whose concentration is suppressed to 00 ppm or less.
【請求項2】  該微生物菌体又はその処理物を水溶性
バリウム塩を添加した該反応液に作用させる請求項1の
方法。
2. The method according to claim 1, wherein the microorganism cells or a treated product thereof are allowed to act on the reaction solution to which a water-soluble barium salt has been added.
【請求項3】  アルカリ金属塩化物又はアルカリ土類
金属塩化物を含有する水溶液で洗浄した該微生物菌体又
はその処理物を該反応液に作用させる請求項1又は請求
項2の方法。
3. The method according to claim 1 or 2, wherein the microorganism cells or a treated product thereof washed with an aqueous solution containing an alkali metal chloride or an alkaline earth metal chloride act on the reaction solution.
JP14421291A 1991-04-05 1991-05-21 Production of l-alanine Pending JPH04365492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14421291A JPH04365492A (en) 1991-04-05 1991-05-21 Production of l-alanine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9966791 1991-04-05
JP3-99667 1991-04-05
JP14421291A JPH04365492A (en) 1991-04-05 1991-05-21 Production of l-alanine

Publications (1)

Publication Number Publication Date
JPH04365492A true JPH04365492A (en) 1992-12-17

Family

ID=26440780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14421291A Pending JPH04365492A (en) 1991-04-05 1991-05-21 Production of l-alanine

Country Status (1)

Country Link
JP (1) JPH04365492A (en)

Similar Documents

Publication Publication Date Title
JPH0559709B2 (en)
JPH04131088A (en) Making of 6-hydroxynicotinic acid
JPS62289A (en) Enzymatic production of l-alpha-amino acid from alpha-ketoic acid
KR940010020B1 (en) Process for culturing microorganisms of the genus pseudomonas and process for producing l-alanine using said microorganisms
JPH04365492A (en) Production of l-alanine
JPH044888A (en) Production of amino acid by fermentation
JP3116102B2 (en) Method for producing L-3,4-dihydroxyphenylalanine
JP3085783B2 (en) Process for producing optically active 2-phenylpropionic acid and 2-phenylpropionamide
JPH0468906B2 (en)
JPH02242690A (en) Production of l-alanine
JP2942995B2 (en) Method for producing L-alanine
JPH0347084A (en) Production of l-alanine
JPH0538292A (en) Production of l-alanine
JP2830029B2 (en) Method of removing fumarase activity
JPH02207794A (en) Removal of fumarase activity
JPH04197190A (en) Production of l-alanine
JPH0822235B2 (en) Fermentation method for producing L-glutamic acid
JPS61173789A (en) Production of 4-chloro-3-hydroxybutyric acid
JPH03266977A (en) Incubation of beta-tyrosinase-containing microbe
JPH0525476B2 (en)
JPS62289194A (en) Production of phenylalanine or its derivative
JPS63245693A (en) Production of d-(-)-tartaric acid
JPH06181783A (en) Method for enzymatic reaction
JPH04320677A (en) Culture of bacterium belonging to genus pseudomonas
JPH06181782A (en) Method for enzymatic reaction