JPH0436495B2 - - Google Patents

Info

Publication number
JPH0436495B2
JPH0436495B2 JP58240393A JP24039383A JPH0436495B2 JP H0436495 B2 JPH0436495 B2 JP H0436495B2 JP 58240393 A JP58240393 A JP 58240393A JP 24039383 A JP24039383 A JP 24039383A JP H0436495 B2 JPH0436495 B2 JP H0436495B2
Authority
JP
Japan
Prior art keywords
level
waveform
circuit
input signal
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58240393A
Other languages
Japanese (ja)
Other versions
JPS60130953A (en
Inventor
Hiroshi Okuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP24039383A priority Critical patent/JPS60130953A/en
Publication of JPS60130953A publication Critical patent/JPS60130953A/en
Publication of JPH0436495B2 publication Critical patent/JPH0436495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は、MSK(Minimum Shift Keying)
信号を遅延検波する復調回路に関し、特に無変調
信号入力時の誤動作を防止しようとするものであ
る。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to MSK (Minimum Shift Keying)
This invention relates to a demodulation circuit that performs delayed detection of signals, and is intended to prevent malfunctions particularly when an unmodulated signal is input.

従来技術と問題点 位相連続FSK(Frequency Shift Keying)の
一種で変調率0.5のMSK変調方式は、例えば第1
図aに示す符号列の“1”に対して1200Hzの波形
を、また“0”に対して1800Hzの波形を位相連続
で割り当てることにより同図bの送信信号を得
る。cは受信信号で、伝送歪等がなければbの波
形と同じである。この受信信号cは第2図の受信
BPF(バンドパスフイルタ)1を通して第1の波
形整形回路2に導びかれ、ここでデジタル波形d
に変換される。これが第1図dの波形である。
Conventional technology and problems The MSK modulation method, which is a type of phase continuous FSK (Frequency Shift Keying) and has a modulation rate of 0.5, is
By assigning a 1200 Hz waveform to "1" and a 1800 Hz waveform to "0" in a continuous phase of the code string shown in FIG. c is a received signal, which has the same waveform as b if there is no transmission distortion or the like. This received signal c is the reception signal shown in Fig. 2.
is guided through a BPF (band pass filter) 1 to a first waveform shaping circuit 2, where the digital waveform d
is converted to This is the waveform shown in FIG. 1d.

MSK復調方式には種々のものがあるが、遅延
検波方式では遅延検波回路3においてデジタル波
形dを送信符号列の1ビツトに相当する時間遅延
させ、これと原デジタル波形dのEOR(排他的論
理和)をとつて、その結果生じた微小なヒゲを受
信LPF(ローパスフイルタ)4で除去し、更にな
まつた波形を第2の波形整形回路5でデジタル波
形eに整形する方法をとる。この波形eが第1図
eに示す復調出力で、符号誤りがなければ同図a
の送信データに一致する。
There are various MSK demodulation methods, but in the delayed detection method, the digital waveform d is delayed by a time corresponding to one bit of the transmission code string in the delay detection circuit 3, and the EOR (exclusive logic) of this and the original digital waveform d is A method is adopted in which the resulting minute whiskers are removed by a receiving LPF (low pass filter) 4, and the rounded waveform is further shaped into a digital waveform e by a second waveform shaping circuit 5. If this waveform e is the demodulated output shown in Figure 1e, and there is no code error, then
matches the sent data.

ところで強電界の状態でデータ伝送を行う場
合、受信信号が無変調のとき(データがない部
分)はその残留ノイズが第1図fのような波形に
なる。この波形の振幅は同図cの1/20程度と小さ
いが、波形整形回路2の反転レベル(スレツシヨ
ルドレベル)がBPF1出力の直流レベルDCに一
致していると、波形整形出力はあかもデータがあ
るかの如くに1,0に変化する。勿論、これはラ
ンダムであるが、問題はこのようなランダムパル
スの復調出力中にフレームパターンが誤検出され
ると、パーソナル無線の場合誤受信の原因とな
る。
By the way, when data is transmitted under a strong electric field, when the received signal is unmodulated (a portion where there is no data), the residual noise has a waveform as shown in FIG. 1(f). The amplitude of this waveform is small, about 1/20 of that of c in the same figure, but if the inversion level (threshold level) of waveform shaping circuit 2 matches the DC level DC of BPF 1 output, the waveform shaping output will be very low. Changes to 1, 0 as if there is data. Of course, this is random, but the problem is that if a frame pattern is erroneously detected during the demodulation output of such a random pulse, it will cause erroneous reception in the case of a personal radio.

第3図aはパーソナル無線のデータフオーマツ
トで、1フレーム(200mS)は1,0を繰り返す
40mSのビツト同期パターン、15ビツトのフレー
ムパターンF、そしてデータ部からなる。パーソ
ナル無線ではフレームパターンFの14ビツト正常
に検出されるとそれ以後をデータとして受けるの
で、前述したランダムパルスからフレームパター
ンを誤検出するとそれ以降をデータとして誤受信
することは明らかである。第3図bは無変調部分
の一部にランダムパルスによるフレームパターン
F′が含まれていることを示す例である。この場合
は、F′を検出した時点からそれ以降をデータとし
て受信するが、そこはビツト同期パターン等であ
るので、正規の交信は期待できない。
Figure 3a shows the personal radio data format, where one frame (200mS) repeats 1 and 0.
It consists of a 40mS bit synchronization pattern, a 15-bit frame pattern F, and a data section. In a personal radio, when the 14 bits of frame pattern F are normally detected, the subsequent bits are received as data, so it is clear that if the frame pattern is erroneously detected from the random pulse described above, the subsequent portions will be erroneously received as data. Figure 3b shows a frame pattern with random pulses in part of the non-modulated part.
This is an example showing that F′ is included. In this case, the data from the time when F' is detected is received as data, but since this is a bit synchronization pattern, regular communication cannot be expected.

このような問題を解決するため、従来はフレー
ムパターンFに先立つビツト同期パターンも検出
し、両者が検出されたときに初めてデータとして
受け入れる様にする方式がある。しかし、このよ
うにすると逆にビツト同期パターンを正常に検出
できないと、以後にフレームパターンFが正規に
ある場合でもこれを検出することができず、従つ
て正規のデータを受けることができない欠点があ
る。また、ビツト同期パターンを検出する回路の
構成が複雑である難点もある。
In order to solve this problem, there is a conventional method in which a bit synchronization pattern preceding frame pattern F is also detected, and only when both are detected is the bit synchronization pattern accepted as data. However, in this case, if the bit synchronization pattern cannot be detected normally, it will not be possible to detect the frame pattern F even if it exists in the future, and therefore it will not be possible to receive the regular data. be. Another disadvantage is that the circuit for detecting the bit synchronization pattern has a complicated configuration.

発明の目的 本発明は、遅延検波前の波形整形に際し、反転
レベルと入力信号との間にオフセツト電圧を設定
して残留ノイズは検出しないようにすることによ
り、簡単な回路構成で上述した欠点を除去しよう
とするものである。
Purpose of the Invention The present invention solves the above-mentioned drawbacks with a simple circuit configuration by setting an offset voltage between the inverted level and the input signal so that residual noise is not detected during waveform shaping before delayed detection. This is what we are trying to remove.

発明の構成 本発明は、受信したMSK信号をバンドパスフ
イルタを通して波形整形回路に与え、該回路でデ
ジタル波形に変換した後遅延検波するMSK復調
回路において、該波形整形回路の反転レベルと入
力信号の直流レベルとの間に、該入力信号の残留
ノイズのレベル以上且つ該入力信号の振幅の1/2
以下の範囲に定められるオフセツト電圧を設定す
るレベルシフト回路を設けたことを特徴とする
が、以下図示の実施例を参照しながらこれを詳細
に説明する。
Composition of the Invention The present invention provides an MSK demodulation circuit that applies a received MSK signal to a waveform shaping circuit through a bandpass filter, converts it into a digital waveform, and then performs delayed detection. between the DC level and the level of the residual noise of the input signal and 1/2 of the amplitude of the input signal.
The present invention is characterized in that it includes a level shift circuit that sets an offset voltage within the following range, which will be described in detail below with reference to the illustrated embodiment.

発明の実施例 第4図は本発明の一実施例を示す構成図で、第
1図と同一部分には同一符号が付してある。本例
では受信BPF1と波形整形回路2の間に、波形
整形回路2への入力信号の直流レベルを該回路2
の反転レベル(スレツシヨルドレベル)より低く
(逆でもよい)するレベルシフト回路6を設けて
ある。具体的には反転レベルはVDD/2である
が、非反転入力に加えられる入力信号の直流レベ
ルDCは抵抗R1,R2の分圧比で定まる値に低下さ
せられている。この分圧比によるオフセツト電圧
VOS=VDD/2−DCが第1図fの残留ノイズの振
幅を越えればノイズによるランダムパターンは再
生しない。しかし、オフセツト電圧VOSが大きす
ぎると正規の信号に対する復調パターンのデユー
テイが変化し過ぎて送信データを再生できない。
Embodiment of the Invention FIG. 4 is a block diagram showing an embodiment of the present invention, in which the same parts as in FIG. 1 are given the same reference numerals. In this example, the DC level of the input signal to the waveform shaping circuit 2 is connected between the receiving BPF 1 and the waveform shaping circuit 2.
A level shift circuit 6 is provided which lowers (or vice versa) the inversion level (threshold level) of . Specifically, the inversion level is V DD /2, but the DC level DC of the input signal applied to the non-inversion input is lowered to a value determined by the voltage division ratio of the resistors R 1 and R 2 . Offset voltage due to this voltage division ratio
If V OS =V DD /2-DC exceeds the amplitude of the residual noise shown in FIG. 1f, the random pattern due to noise will not be reproduced. However, if the offset voltage V OS is too large, the duty of the demodulation pattern for the normal signal changes too much, making it impossible to reproduce the transmitted data.

そこで、オフセツト電圧VOSの設定幅を受信入
力信号の振幅Hの1/200〜1/2とする。オフセツト
電圧VOSの下限H/20は、残留ノイズの振幅に相
当する。その理由は残留ノイズの一部を波形整形
しても連続したランダムパターンとはならないの
で、フレームパターンと誤る確率は著しく低下す
るからである。これに対し、オフセツト電圧VS
の上限H/2は符号誤り率との関係で規制され
る。第5図〜第9図はこれを波形上で示すもの
で、各図のAは入力信号の直流レベルDCと反転
レベルVDD/2との間のオフセツト電圧VOSを入
力信号の振幅Hとの関係で示したものである。即
ち、第5図はOS=0、第6図はVOS=H/10、第
7図はVOS=H/4、第8図はVOS=H/2、第
9図はVOS=3H/4である。また各図のBは波形
整形回路2の出力、Cはそれを遅延検波回路3で
1ビツトシフトしたもの、Dは波形B,Cの
EOR出力、従つて遅延検波出力である。
Therefore, the setting range of the offset voltage V OS is set to 1/200 to 1/2 of the amplitude H of the received input signal. The lower limit H/20 of the offset voltage V OS corresponds to the amplitude of the residual noise. The reason for this is that even if a part of the residual noise is waveform-shaped, it will not become a continuous random pattern, so the probability of mistaking it for a frame pattern is significantly reduced. On the other hand, the offset voltage V S
The upper limit H/2 is regulated in relation to the bit error rate. Figures 5 to 9 show this on the waveform. A in each figure is the offset voltage V OS between the DC level DC of the input signal and the inverted level V DD /2, and the amplitude H of the input signal. This is shown in relation to That is, OS = 0 in Figure 5, V OS = H/10 in Figure 6, V OS = H/4 in Figure 7, V OS = H/2 in Figure 8, and V OS = H/2 in Figure 9. It is 3H/4. In each figure, B is the output of the waveform shaping circuit 2, C is the output shifted by 1 bit by the delay detection circuit 3, and D is the output of the waveforms B and C.
This is the EOR output, and therefore the delayed detection output.

この遅延検波出力Dに送信データの情報が含ま
れているが、同時に検波時のノイズ(ヒゲ)Nが
あるので、これを次段のLPF4で除去する必要
がある。VOSの上限はこのノイズNの除去に際
し、データが欠落しないことである。一例として
第5図DのスペースS1,S2とその間のマークM1
に注目すると、このマーク部分が第6図Dではノ
イズ(ヒゲ)NによつてM11とM12に分割される
が、ノイズNは充分に細い(周波数が高い)ので
LPF4での除去が可能である。しかし、第9図
DではこのノイズNの幅と両端のマークM11
M12の幅が同様になるので、ノイズNを除去しよ
うとすればマークM11,M12も欠落する。第7図
D或いは第8図Dはこの中間で、LPF4の定数
設定でノイズNが除去できる。
This delayed detection output D contains information on the transmission data, but at the same time there is noise (whisker) N during detection, which must be removed by the next stage LPF 4. The upper limit of V OS is that no data is lost when this noise N is removed. As an example, the spaces S 1 and S 2 in Figure 5D and the mark M 1 between them
If you pay attention to , this mark part is divided into M 11 and M 12 by the noise (whisker) N in Figure 6D, but since the noise N is sufficiently thin (high frequency),
Removal is possible with LPF4. However, in FIG. 9D, the width of this noise N and the marks M 11 at both ends,
Since the widths of M 12 are the same, if noise N is removed, marks M 11 and M 12 will also be missing. FIG. 7D or FIG. 8D is in the middle, and the noise N can be removed by setting the constant of LPF4.

発明の効果 以上述べたように本発明によれば、簡単なレベ
ルシフト回路を追加するだけで残留ノイズによる
影響を除去でき、しかも正規のデータ受信には支
障のないMSK復調回路が構成できる利点がある。
Effects of the Invention As described above, the present invention has the advantage that the influence of residual noise can be removed by simply adding a simple level shift circuit, and an MSK demodulation circuit that does not interfere with normal data reception can be constructed. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMSK方式の波形図、第2図は従来の
MSK復調回路の一例を示すブロツク図、第3図
はパーソナル無線のデータフオーマツトの説明
図、第4図は本発明の一実施例を示すブロツク
図、第5図〜第9図はオフセツト電圧を異ならせ
た動作波形図である。 図中、1は受信バンドパスフイルタ、2は波形
整形回路、3は遅延検波回路、6はレベルシフト
回路である。
Figure 1 is a waveform diagram of the MSK method, and Figure 2 is a waveform diagram of the conventional method.
A block diagram showing an example of an MSK demodulation circuit, FIG. 3 is an explanatory diagram of a data format for personal radio, FIG. 4 is a block diagram showing an embodiment of the present invention, and FIGS. 5 to 9 show offset voltages. It is a diagram of different operation waveforms. In the figure, 1 is a reception bandpass filter, 2 is a waveform shaping circuit, 3 is a delay detection circuit, and 6 is a level shift circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 受信したMSK信号をバンドパスフイルタを
通して波形整形回路に与え、該回路でデジタル波
形に変換した後遅延検波するMSK復調回路にお
いて、該波形整形回路の反転レベルと入力信号の
直流レベルとの間に、該入力信号の残留ノイズの
レベル以上且つ該入力信号の振幅の1/2以下の範
囲に定められるオフセツト電圧を設定するレベル
シフト回路を設けたことを特徴とするMSK復調
回路。
1. In an MSK demodulation circuit that applies the received MSK signal to a waveform shaping circuit through a bandpass filter, converts it into a digital waveform, and then performs delayed detection, there is a difference between the inversion level of the waveform shaping circuit and the DC level of the input signal. An MSK demodulation circuit comprising: a level shift circuit that sets an offset voltage within a range that is above the level of residual noise of the input signal and below 1/2 the amplitude of the input signal.
JP24039383A 1983-12-19 1983-12-19 Msk demodulating circuit Granted JPS60130953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24039383A JPS60130953A (en) 1983-12-19 1983-12-19 Msk demodulating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24039383A JPS60130953A (en) 1983-12-19 1983-12-19 Msk demodulating circuit

Publications (2)

Publication Number Publication Date
JPS60130953A JPS60130953A (en) 1985-07-12
JPH0436495B2 true JPH0436495B2 (en) 1992-06-16

Family

ID=17058809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24039383A Granted JPS60130953A (en) 1983-12-19 1983-12-19 Msk demodulating circuit

Country Status (1)

Country Link
JP (1) JPS60130953A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685962A (en) * 1979-12-14 1981-07-13 Nippon Telegr & Teleph Corp <Ntt> Demodulating circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685962A (en) * 1979-12-14 1981-07-13 Nippon Telegr & Teleph Corp <Ntt> Demodulating circuit

Also Published As

Publication number Publication date
JPS60130953A (en) 1985-07-12

Similar Documents

Publication Publication Date Title
US4870659A (en) FSK demodulation circuit
US3733550A (en) Multilevel signal transmission system
US4881245A (en) Improved signalling method and apparatus
IL39522A (en) Data demodulator employing multiple correlations and filters
EP0881640A3 (en) A demodulation circuit, a decode circuit and a digital PLL circuit for an optical disc apparatus
US5625645A (en) Differential pulse encoding and decoding for binary data transmissions
JP3108364B2 (en) Data demodulator
JPH059975B2 (en)
JPH0436495B2 (en)
US4703494A (en) PCM signal transmission system
EP0206203B1 (en) Recording and reproducing apparatus using a modulator/demodulator for Offset Quadrature Differential Phase-Shift Keying
JPS6034859B2 (en) Signal transmission method
JP3383717B2 (en) Phase modulation wave demodulator
JP2000134269A5 (en)
JPS632444A (en) Phase coherent demodulator
JP4178680B2 (en) PLL circuit and phase error detection method
US6959051B2 (en) Clock regenerator for use in demodulating digital modulated signals
JP4195759B2 (en) Intercom transmission system
JP2795761B2 (en) MSK signal demodulation circuit
US5111482A (en) Msk signal detector
JPH0193950A (en) Digital fm detecting and demodulating system
JP3441378B2 (en) Encoding method, encoding device, decoding method, decoding device, and information recording medium
JP3015680B2 (en) Bi-phase BPSK signal decoding circuit
JPH043552A (en) Code identification recovery device for gmsk modulation wave
JPH0584100B2 (en)