JPH0436486A - Formation of sacrificial anode film in cooling water passage of cylinder head - Google Patents

Formation of sacrificial anode film in cooling water passage of cylinder head

Info

Publication number
JPH0436486A
JPH0436486A JP13968090A JP13968090A JPH0436486A JP H0436486 A JPH0436486 A JP H0436486A JP 13968090 A JP13968090 A JP 13968090A JP 13968090 A JP13968090 A JP 13968090A JP H0436486 A JPH0436486 A JP H0436486A
Authority
JP
Japan
Prior art keywords
cooling water
water passage
cylinder head
inner peripheral
sacrificial anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13968090A
Other languages
Japanese (ja)
Inventor
Kazukimi Takayama
高山 和公
Takashi Kanazawa
金沢 孝
Masahiko Kumano
熊野 正彦
Akira Ibuki
伊吹 明
Satoru Toriyama
通山 哲
Naruyuki Morita
森田 考行
Hirokimi Etou
洋仁 衛藤
Masaji Watanabe
正次 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Iron Powder Co Ltd
Isuzu Motors Ltd
Original Assignee
Dowa Iron Powder Co Ltd
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Iron Powder Co Ltd, Isuzu Motors Ltd filed Critical Dowa Iron Powder Co Ltd
Priority to JP13968090A priority Critical patent/JPH0436486A/en
Publication of JPH0436486A publication Critical patent/JPH0436486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To form a sacrificial anode film on the inner peripheral surface of a cooling water passage by blasting composite granular bodies formed by coating the peripheries of hard metallic nucleus bodies with a base metal to the inner peripheral surface of the cooling water passage so that the inner peripheral surface is press stuck and coated with the base metal. CONSTITUTION:The composite granular bodies 9 formed by coating the peripheries of the iron nucleus bodies 7 with a zinc-rich zinc alloy 8 as the metal baser in potential than the base material of an aluminum cylinder head. The above-mentioned granular bodies 9 are blasted together with compressed air into the cooling water passage 3 from a nozzle 10 pressed to one end 3c of the cooling water passage 3 of the alumi num cylinder head. The zinc alloy 8 on the surface layer is peeled from the nucleus bodies 7 by the collision energy generated when the granular bodies 9 come into colli sion against the inner peripheral surface of the cooling water passage 3, by which the inner peripheral surface of the cooling water passage 3 is press stuck and coated with the zinc. Consequently, the sacrificial anode film of the zinc rich alloy film is formed on the inner peripheral surface of the above-mentioned cooling water passage 3 in about 30 seconds to 5 minutes from the start of the blasting.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、シリンダヘッドの吸気・排気ポート間に形成
された冷却水通路の内周面に犠牲アノード被膜を形成す
るシリンダヘッドの冷却水通路における犠牲アノード被
膜形成方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a cooling water passage of a cylinder head in which a sacrificial anode coating is formed on the inner peripheral surface of the cooling water passage formed between the intake and exhaust ports of the cylinder head. This invention relates to a method for forming a sacrificial anode film.

[従来の技術] ディーゼルエンジンやガソリンエンジン等の内燃機関に
おいて、燃焼室に臨むシリンダヘッドの触火面の温度を
下げるため、第6図に示す如くシリンダヘッド1の吸気
・排気ポート2間の隔壁に冷却水通路3を形成したもの
が知られている。
[Prior Art] In an internal combustion engine such as a diesel engine or a gasoline engine, in order to lower the temperature of the contact surface of the cylinder head facing the combustion chamber, a partition wall between the intake and exhaust ports 2 of the cylinder head 1 is installed as shown in FIG. It is known to have a cooling water passage 3 formed therein.

このようなシリンダヘッド1にあっては、吸気・排気ポ
ート2間における触火面4側(図中斜線で表す)の温度
及び温度勾配が高い(約200〜300℃程度)ため、
このポート2間の冷却水通路3の腐食環境が非常に厳し
く、この部分に局部腐食が発生しやすい。
In such a cylinder head 1, the temperature and temperature gradient on the contact surface 4 side (represented by diagonal lines in the figure) between the intake and exhaust ports 2 are high (approximately 200 to 300°C);
The corrosive environment of the cooling water passage 3 between the ports 2 is extremely severe, and local corrosion is likely to occur in this portion.

一旦、冷却水通路3に局部腐食が発生するとその腐食部
分に集中的に腐食が進行してそこに応力が集中し、シリ
ンダヘッド1自体の耐久性・信頼性が損なわれることに
なる。
Once local corrosion occurs in the cooling water passage 3, the corrosion progresses intensively in the corroded portion, stress is concentrated there, and the durability and reliability of the cylinder head 1 itself is impaired.

特に、近年のエンジンの耐用年数の長期化及び高出力化
の要請により、上記冷却水通路の腐食環境はますます厳
しくなっており、何等かの対策が望まれていた。
In particular, the corrosive environment in the cooling water passages has become increasingly severe due to the recent demands for longer engine lifespans and higher outputs, and some countermeasures have been desired.

[発明が解決しようとする課題] この対策として、第6図のA−A線断面図である第7図
に示すように、上記冷却水通路3に、シリンダヘッド1
母材より電位的に卑な金属で成形されたパイプ5を圧入
して、このパイプ5を犠牲アノードとして機能させ、シ
リンダヘッド1自体の局部腐食を防止する技術が開発さ
れている。
[Problems to be Solved by the Invention] As a countermeasure to this problem, as shown in FIG. 7, which is a cross-sectional view taken along line A-A in FIG.
A technique has been developed that prevents local corrosion of the cylinder head 1 itself by press-fitting a pipe 5 made of a metal that has a lower potential than the base material and causing the pipe 5 to function as a sacrificial anode.

(実開昭57−31544号) しかしながらこの技術では、パイプ5とこれが圧入され
る冷却水通FI@3との相互の圧入面6の表面粗さが悪
いと、冷却水通路3の通路入口部3aから通路出口部3
bへ向かって冷却水が流れる際に、上記圧入面6に冷却
水が浸入してシリンダヘッド1自体に局部腐食が発生し
てしまい、シリンダヘッド1の耐久性・信頼性が充分確
保できない。
(Utility Model Application No. 57-31544) However, in this technique, if the surface roughness of the mutual press-fitting surface 6 of the pipe 5 and the cooling water passage FI@3 into which it is press-fitted is poor, the passage inlet of the cooling water passage 3 3a to the passage exit part 3
When the cooling water flows toward b, the cooling water intrudes into the press-fitting surface 6 and local corrosion occurs in the cylinder head 1 itself, making it impossible to ensure sufficient durability and reliability of the cylinder head 1.

以上の事情を考慮して創案された本発明の目的は、上記
冷却水通路が形成されたシリンダヘッドの局部腐食をに
防止し、耐食性を可及的に向上させるシリンダヘッドの
冷却水通路における犠牲アノード被膜形成方法を提供す
るものである。
The purpose of the present invention, which was created in consideration of the above circumstances, is to prevent local corrosion of the cylinder head in which the cooling water passage is formed, and to improve corrosion resistance as much as possible in the cooling water passage of the cylinder head. A method for forming an anode film is provided.

[課題を解決するための手段] 上記目的を達成するため本発明は、硬い金属を核体とし
てその周りにシリンダヘッド母材よりも電位的に卑な金
属を被覆してなる複合粒体を形成し、シリンダヘッドの
吸気・排気ポート間に形成された冷却水通路の内周面に
上記複合粒体をブラストし、その衝突エネルギによって
複合粒体の卑な金属を核体から剥離させて冷却水通路の
内周面に圧着コーティングさせ、冷却水通路の内周面に
犠牲アノード被膜を形成するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention forms composite granules in which a hard metal is used as a core and a metal having a lower potential than the cylinder head base material is coated around the core. Then, the above composite particles are blasted onto the inner circumferential surface of the cooling water passage formed between the intake and exhaust ports of the cylinder head, and the impact energy causes the base metals of the composite particles to be separated from the core body, and the cooling water is released. A sacrificial anode coating is formed on the inner circumferential surface of the cooling water passage by press-coating the inner circumferential surface of the passage.

[作 用コ 複合粒体を冷却水通路の内周面にブラストした際に、複
合粒体から剥離した卑な金属の剥離片は、ファンデル・
ワールスカにより冷却水通路内周面と結合して、そこに
犠牲アノード被膜を形成する。
[Function] When the composite particles are blasted onto the inner circumferential surface of the cooling water passage, flakes of base metal that are separated from the composite particles are van der
It is bonded to the inner circumferential surface of the cooling water passage by the Waalska to form a sacrificial anode film there.

この犠牲アノード被膜は、上記剥離片相互の電子的な結
合によって形成されるため、非常に密着性がよく、且つ
冷却水通路内周面に隙間なく形成される。
Since this sacrificial anode film is formed by electronic bonding of the peeled pieces, it has very good adhesion and is formed on the inner circumferential surface of the cooling water passage without any gaps.

このように犠牲アノード被膜が形成されたシリンダヘッ
ドの冷却水通路は、たとえ腐食を起こしても犠牲アノー
ド被膜が自ら全面腐食することによって、シリンダヘッ
ド自体の局部腐食が抑制される。
Even if corrosion occurs in the cooling water passage of the cylinder head in which the sacrificial anode coating is formed in this manner, the sacrificial anode coating corrodes the entire surface by itself, thereby suppressing local corrosion of the cylinder head itself.

[実施例] 本発明の一実施例を添付図面に従って説明する。[Example] An embodiment of the present invention will be described with reference to the accompanying drawings.

第1図は第6図に示すアルミシリンダヘッド1(JJS
 AC2B製)の吸気−排気ポート2間の隔壁内に形成
された冷却水通路3の側断面図である。
Figure 1 shows the aluminum cylinder head 1 (JJS) shown in Figure 6.
2 is a side sectional view of a cooling water passage 3 formed in a partition wall between intake and exhaust ports 2 of the AC2B).

図示するようにこの冷却水通路3は、シリンダブロック
のウォータジャケット(図示せず)からの冷却水が通路
入口部3aより通路3内に流入し、通路出口部3bより
流出するようになっており、アルミシリンダヘッドlの
吸気・排気ポート2間を冷却するものである0図中、4
はシリンダヘッド1が燃焼室に臨む触火面である。
As shown in the figure, the cooling water passage 3 is configured such that cooling water from a water jacket (not shown) of the cylinder block flows into the passage 3 from the passage entrance part 3a and flows out from the passage outlet part 3b. , 4 in Figure 0, which cools between the intake and exhaust ports 2 of the aluminum cylinder head l.
is the ignition surface where the cylinder head 1 faces the combustion chamber.

上記冷却水通83の内周面に以下の方法によって犠牲ア
ノード被膜を形成する。
A sacrificial anode film is formed on the inner peripheral surface of the cooling water passage 83 by the following method.

先ず、第3図に示すように、鉄製核体7の周りに、上記
アルミシリンダヘッドl i材(JIS ACZB製)
よりも電位的に卑な金属として亜鉛リッチな亜鉛合金8
を被覆してなる複合粒体(以下Zアイアン粒体9と呼ぶ
)を形成する。この2アイアン粒体9の粒径は、0.3
111程度が望ましい。
First, as shown in FIG. 3, the aluminum cylinder head l material (manufactured by JIS ACZB) is placed around the iron core body 7.
Zinc-rich zinc alloy 8 is a metal with a lower potential than
A composite granule (hereinafter referred to as Z iron granule 9) is formed by coating the Z iron granules. The particle size of the 2-iron particles 9 is 0.3
Approximately 111 is desirable.

次に、第1図に示すように、冷却水通路3の一端部3c
にノズル1oを押し当て、このノズル10から冷却水通
路3内に上記Zアイアン粒体9を圧縮エアと共にブラス
トする。冷却水通#r3の内径をφ5匝〜φ10mとす
ると、ブラスト時の吐出圧力は3 kg / aIY〜
6 kg / cll程度、吐出量は1 、0kg/n
in 〜2 、6kg/min程度がよい。
Next, as shown in FIG. 1, one end 3c of the cooling water passage 3
A nozzle 1o is pressed against the nozzle 10, and the Z iron particles 9 are blasted together with compressed air from the nozzle 10 into the cooling water passage 3. If the inner diameter of cooling water port #r3 is φ5 sam ~ φ10 m, the discharge pressure during blasting is 3 kg / aIY ~
Approximately 6 kg/cll, discharge amount is 1,0 kg/n
In ~2, about 6 kg/min is good.

ブラストされな2アイアン粉末9は、冷却水通路3内を
はねがえりながら通#I3の奥部3dへ向かう、この際
、2アイアン粉末9は、その表面部の亜鉛合金8が中心
部の鉄製核体7より軟らがいので、第2図に示すように
冷却水通路3内周面に衝突した際に、その衝突エネルギ
によって表層の亜鉛合金8が核体7がら剥離して、亜鉛
合金8のみが冷却水通路3内周面に圧着コーティングさ
れる。この圧着コーティングの付着力の主体は、ファン
デル・ワールスカであると考えられる。この結果、ブラ
スト開始時から30秒〜5分程度で、上記冷却水通F#
I3内周面に、亜鉛リッチ合金膜の犠牲アノード被膜1
1(1μm〜10μm)が形成される。
The unblasted 2-iron powder 9 bounces inside the cooling water passage 3 and heads toward the inner part 3d of the passage #I3. At this time, the 2-iron powder 9 has the zinc alloy 8 on the surface part and the iron core in the center part. Since it is softer than the core body 7, when it collides with the inner circumferential surface of the cooling water passage 3 as shown in FIG. is pressure-bonded and coated on the inner circumferential surface of the cooling water passage 3. It is believed that the adhesion of this pressure coating is primarily due to van der Waalska. As a result, within 30 seconds to 5 minutes from the start of blasting, the above cooling water flow F#
Sacrificial anode coating 1 of zinc-rich alloy film on the inner peripheral surface of I3
1 (1 μm to 10 μm) is formed.

犠牲アノード被膜11が形成された後、ノズル10が押
し当てられた冷却水通路3の一端部3Cには栓材(図示
せず)が嵌め込まれ、シリンタブロックのウォータジャ
ケット(図示せず)からの冷却水が通路入口部3aより
通路3内に流入し通路出口部3bより流出するよ、うに
構成される。
After the sacrificial anode film 11 is formed, a plug (not shown) is fitted into one end 3C of the cooling water passage 3 against which the nozzle 10 is pressed, and a plug material (not shown) is inserted from the water jacket (not shown) of the cylinder block. The cooling water is configured such that it flows into the passage 3 from the passage inlet 3a and flows out from the passage outlet 3b.

このように犠牲アノード被WA11が形成されたシリン
ダヘッド1の冷却水通路3は、たとえ腐食を起こしても
犠牲アノード被膜11が自ら全面腐食することによって
シリンダヘッド1自体の局部腐食が抑制されることにな
る。
Even if corrosion occurs in the cooling water passage 3 of the cylinder head 1 in which the sacrificial anode coating WA 11 is formed in this way, the sacrificial anode coating 11 corrodes the entire surface by itself, thereby suppressing local corrosion of the cylinder head 1 itself. become.

よって、シリンダヘッド1自体が局部腐食して、その部
分の腐食が進行して、そこに応力が集中することが防止
でき、シリンダヘッド1の耐久性・信頼性が向上する。
Therefore, it is possible to prevent the cylinder head 1 itself from being locally corroded, the corrosion progressing in that area, and stress being concentrated there, thereby improving the durability and reliability of the cylinder head 1.

ところで、実際の犠牲アノード被膜11の形成メカニズ
ムとしては次の2つのメカニズムが考えられる。
By the way, the following two mechanisms can be considered as the actual formation mechanism of the sacrificial anode film 11.

くメカニズム1〉 第4図(a)、 (bL (C)に示すように、2アイ
アン粒体9が冷却水通路3内周面に衝突した際に、2ア
イアン粒体9の表層の亜鉛合金8が素地としての冷却水
通路3内周面と電子的に結合し、亜鉛合金8の一部が破
断12して、被膜11が形成される。この結合力をFI
とし、一方上記亜鉛合金8の剪断応力をEとすると、F
I>Eの場合、被膜11が形成されることになる。従っ
て、FI>Eを満たす衝突エネルギが必要である。
Mechanism 1> As shown in FIGS. 4(a) and 4(c), when the 2-iron particles 9 collide with the inner peripheral surface of the cooling water passage 3, the zinc alloy on the surface layer of the 2-iron particles 9 8 is electronically bonded to the inner circumferential surface of the cooling water passage 3 as a substrate, and a part of the zinc alloy 8 is broken 12 to form a coating 11. This bonding force is expressed as FI
On the other hand, if the shear stress of the zinc alloy 8 is E, then F
If I>E, a coating 11 will be formed. Therefore, a collision energy that satisfies FI>E is required.

〈メカニズム2〉 第5図(a)、 (b)、 (c)に示すように、素地
としての冷却水通路3の内周面に付着した亜鉛合金微粒
子13(約10μ■以下)が、2アイアン粒体9の衝突
力によって通路3内周面に圧着され、被膜11が形成さ
れる。#地との結合力はメカニズム1と変わらないが、
微粒子になる程その表面近くの電子が不安定となること
から、衝突力が比較小さくても結合力が生じる。上記亜
鉛合金微粒子13は、2アイアン粒体9の表層から剥離
したものであり、Zアイアン粒体9自体の表面に付着し
た場合でも同様に上記衝突力によって通路3内周面に圧
着され、被膜11が形成される。
<Mechanism 2> As shown in FIGS. 5(a), (b), and (c), zinc alloy fine particles 13 (approximately 10μ■ or less) attached to the inner circumferential surface of the cooling water passage 3 as a substrate are The iron particles 9 are pressed against the inner circumferential surface of the passage 3 by the collision force, and a coating 11 is formed. # The bonding power with the earth is the same as mechanism 1, but
The finer the particle, the more unstable the electrons near its surface, so a bonding force occurs even if the collision force is relatively small. The zinc alloy fine particles 13 are peeled off from the surface layer of the 2-iron granules 9, and even if they adhere to the surface of the Z-iron granules 9 themselves, they are similarly pressed against the inner circumferential surface of the passage 3 by the collision force, forming a coating. 11 is formed.

以上のメカニズム1.2の組合せにより相乗的に、第4
図に示す如く、冷却水通路3内周面に犠牲アノード被膜
11が形成される。この被膜11は個々の粒子のファン
デル・ワールスカによる電子的な結合によって形成され
るため、非常に密着性がよい。
The combination of mechanisms 1.2 and 4th
As shown in the figure, a sacrificial anode coating 11 is formed on the inner peripheral surface of the cooling water passage 3. This coating 11 is formed by van der Waalska electronic bonding of individual particles, and therefore has very good adhesion.

U発明の効果] 以上説明したように本発明によれば次のごとき優れた効
果が発揮できる。
U Effects of the Invention] As explained above, according to the present invention, the following excellent effects can be exhibited.

(1)シリンダヘッドの吸気・排気ポート間に形成され
た冷却水通路内周面に、犠牲アノード被膜を密着させて
形成することができる。
(1) A sacrificial anode film can be formed in close contact with the inner peripheral surface of the cooling water passage formed between the intake and exhaust ports of the cylinder head.

(2)上記犠牲アノード被膜が自ら全面腐食することに
よって、上記シリンダヘッドの局部腐食が抑制でき、シ
リンダヘッドの耐久性・信頼性を向上させることができ
る。
(2) Since the sacrificial anode coating corrodes the entire surface by itself, local corrosion of the cylinder head can be suppressed, and the durability and reliability of the cylinder head can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すシリンダヘッドの冷却
水通路における犠牲アノード被膜形成方法の概略図、第
2図は複合粒体としての2アイアン粒体が冷却水通路に
衝突する様子を表す概略図、第3図は複合粒体としての
2アイアン粒体を示す断面図、第4図及び第5図は犠牲
アノード被膜の形成メカニズムを表す概略図、第6図は
シリンダヘッドの斜視図、第7図は従来例を表すシリン
ダヘッドの冷却水通路の概略図である。 図中、1はシリンダヘッド、2は吸気・排気ポート、3
は冷却水通路、7は鉄製核体、8は卑な金属としての亜
鉛合金、9は複合粒体としてのZアイアン粒体、11は
犠牲アノード被膜である。 図面の浄書(内容に変更なし) 第1 図 (Q) (b) (C) 手続補正書動創 平成2年9月6日
Fig. 1 is a schematic diagram of a method for forming a sacrificial anode film in a cooling water passage of a cylinder head, showing an embodiment of the present invention, and Fig. 2 shows how 2-iron particles as composite particles collide with the cooling water passage. 3 is a cross-sectional view showing 2-iron granules as composite granules, FIGS. 4 and 5 are schematic diagrams showing the formation mechanism of the sacrificial anode film, and FIG. 6 is a perspective view of the cylinder head. , FIG. 7 is a schematic diagram of a cooling water passage of a cylinder head representing a conventional example. In the diagram, 1 is the cylinder head, 2 is the intake/exhaust port, and 3 is the cylinder head.
7 is a cooling water passage, 7 is an iron core, 8 is a zinc alloy as a base metal, 9 is a Z iron grain as a composite grain, and 11 is a sacrificial anode coating. Engraving of the drawings (no changes in content) Figure 1 (Q) (b) (C) Procedural amendments September 6, 1990

Claims (1)

【特許請求の範囲】[Claims] 1.硬い金属を核体としてその周りにシリンダヘッド母
材よりも電位的に卑な金属を被覆してなる複合粒体を形
成し、シリンダヘッドの吸気・排気ポート間に形成され
た冷却水通路の内周面に上記複合粒体をブラストし、そ
の衝突エネルギによつて複合粒体の卑な金属を核体から
剥離させて冷却水通路の内周面に圧着コーティングさせ
、冷却水通路の内周面に犠牲アノード被膜を形成するこ
とを特徴とするシリンダヘッドの冷却水通路における犠
牲アノード被膜形成方法。
1. Composite granules are formed by using a hard metal as a core and surrounding it with a metal that has a lower potential than the base material of the cylinder head. The above-mentioned composite particles are blasted onto the circumferential surface, and the base metal of the composite particles is peeled off from the core body by the collision energy, and the base metal of the composite particles is peeled off from the core and coated on the inner circumferential surface of the cooling water passage. A method for forming a sacrificial anode film in a cooling water passage of a cylinder head, the method comprising forming a sacrificial anode film on a cooling water passage of a cylinder head.
JP13968090A 1990-05-31 1990-05-31 Formation of sacrificial anode film in cooling water passage of cylinder head Pending JPH0436486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13968090A JPH0436486A (en) 1990-05-31 1990-05-31 Formation of sacrificial anode film in cooling water passage of cylinder head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13968090A JPH0436486A (en) 1990-05-31 1990-05-31 Formation of sacrificial anode film in cooling water passage of cylinder head

Publications (1)

Publication Number Publication Date
JPH0436486A true JPH0436486A (en) 1992-02-06

Family

ID=15250927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13968090A Pending JPH0436486A (en) 1990-05-31 1990-05-31 Formation of sacrificial anode film in cooling water passage of cylinder head

Country Status (1)

Country Link
JP (1) JPH0436486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160339A2 (en) * 2000-05-30 2001-12-05 Meritor Suspension Systems Company Anti-corrosion coating applied during shot peening process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160339A2 (en) * 2000-05-30 2001-12-05 Meritor Suspension Systems Company Anti-corrosion coating applied during shot peening process
EP1160339A3 (en) * 2000-05-30 2003-10-22 Meritor Suspension Systems Company Anti-corrosion coating applied during shot peening process
US6874214B1 (en) 2000-05-30 2005-04-05 Meritor Suspension Systems Company Anti-corrosion coating applied during shot peening process

Similar Documents

Publication Publication Date Title
US5894053A (en) Process for applying a metallic adhesion layer for ceramic thermal barrier coatings to metallic components
CA2560030C (en) A thermal spraying material, a thermally sprayed coating, a thermal spraying method an also a thermally coated workpiece
US5254413A (en) Method for repair and restoration of a ceramic thermal barrier-coated substrate by providing an intermetallic coating
JP2002303272A (en) Compressor having protective coating and compressor coating method
US20050016489A1 (en) Method of producing coated engine components
CN103890220A (en) Cylinder liner with a thermal barrier coating
KR20030005413A (en) Diesel engine piston
US5499672A (en) Mold for continuous casting which comprises a flame sprayed coating layer of a tungsten carbide-based wear-resistant material
US6254997B1 (en) Article with metallic surface layer for heat transfer augmentation and method for making
US20090110841A1 (en) Method for coating a cylinder sleeve
JP2001191160A (en) Manufacturing method of metal component such as wheel for vehicle rolling system, and the wheel
JP3011076B2 (en) Cylinder head of internal combustion engine
JPH0436486A (en) Formation of sacrificial anode film in cooling water passage of cylinder head
Pungaiya et al. A review of surface coating technology to increase the heat transfer
CN1198848A (en) Electrode for spark plugs of internal combustion engines and process for manufacturing the same
CN108220865A (en) The thermal spray deposition of hollow microsphere
EP3276039B1 (en) Outer airseal abradable rub strip manufacture methods and apparatus
JP2018197370A (en) Thermally-sprayed film forming method
JP2018012875A (en) Film deposition method of spray deposit
JP2005180660A (en) Cylinder head gasket
GB2320929A (en) Electric arc spray process for applying a heat transfer enhancement metallic coating
US6537619B2 (en) Method of salvaging castings with defective cast cooling bumps
US7296610B2 (en) Method of manufacturing metallic components
US20240044382A1 (en) Method for manufacturing a braking band for a brake disc made of titanium, braking band, and brake disc made of titanium
JP2003053508A (en) Heat-conductive cylindrical member and its producing method, and aluminum alloy-made engine using heat- conductive cylindrical member