JPH04363408A - Water bottom original position soil nature test device - Google Patents

Water bottom original position soil nature test device

Info

Publication number
JPH04363408A
JPH04363408A JP13799791A JP13799791A JPH04363408A JP H04363408 A JPH04363408 A JP H04363408A JP 13799791 A JP13799791 A JP 13799791A JP 13799791 A JP13799791 A JP 13799791A JP H04363408 A JPH04363408 A JP H04363408A
Authority
JP
Japan
Prior art keywords
soil
ballast tank
water
original position
test device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13799791A
Other languages
Japanese (ja)
Other versions
JPH0726383B2 (en
Inventor
Michio Gomyo
五明 美智男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DRUM ENG KK
Toa Corp
Original Assignee
DRUM ENG KK
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DRUM ENG KK, Toa Corp filed Critical DRUM ENG KK
Priority to JP3137997A priority Critical patent/JPH0726383B2/en
Publication of JPH04363408A publication Critical patent/JPH04363408A/en
Publication of JPH0726383B2 publication Critical patent/JPH0726383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a test device at an original position on soft water bottom nature soil without destroying its bottom mud and perform soil nature testing at the original position. CONSTITUTION:At appropriate positions at a ballast tank 3 provided coveringly over a soil nature tester, valve devices that conduct freely underwater weight adjustment as to the ballast tank 3, such as plural fixed valves 4A, 4B, 4C to regulate a ballast tank 3 inside air quantity at a predetermined maximum value and valves 7A, 7B to conduct the injection and discharge of compressed air into and out of the ballast tank 3 by remote control, are equipped.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、主に内湾、河川、湖沼
等に堆積する軟弱な底質土の強度を、原位置で測定する
ことができる水底の原位置土質試験装置に関するもので
ある。
[Field of Industrial Application] The present invention relates to an in-situ underwater soil testing device that can measure in-situ the strength of soft bottom soil deposited mainly in inner bays, rivers, lakes, etc. .

【0002】0002

【従来の技術】近年、水底の有害な底質土を覆砂して、
その有害物質を封じ込めることにより、有害物質成分の
溶出を防止することが行なわれているが、覆砂する厚さ
を決定するためには、底質土の強度を知る必要がある。 そこで、従来水底の底質土の強度測定は、サンプラーな
どでサンプリングした試料を用いた室内試験によって行
なわれており、サンプリングによる試料の乱れの影響が
測定値におよび、正確な強度を知ることができないとい
う問題があった。
[Prior art] In recent years, harmful bottom soil at the bottom of the water is covered with sand.
The elution of harmful substances is prevented by containing them, but in order to determine the thickness of sand covering, it is necessary to know the strength of the bottom soil. Therefore, conventionally, the strength measurement of bottom soil at the bottom of water has been carried out by laboratory tests using samples sampled with a sampler, etc., but the disturbance of the sample due to sampling affects the measured value, making it difficult to know the exact strength. The problem was that I couldn't do it.

【0003】また、現行の土質試験法においては、貫入
ロッド先端のベーンエンペラーの回転トルクを検出し、
その土の抵抗により強度を測定するベーン試験機や、土
に対するコーンの貫入抵抗を測定するコーン貫入試験機
などの使用がJISなどで規定されており、これらの試
験機を用いて原位置で底質土の試験を行なおうとしても
、試験機を底質土上に設置した際に試験機の重量で底質
土が破壊してしまい、試験ができないという問題があっ
た。
[0003] In addition, in the current soil testing method, the rotational torque of the vane emperor at the tip of the penetrating rod is detected,
JIS and other regulations specify the use of vane testing machines that measure strength based on the resistance of the soil, and cone penetration testing machines that measure the penetration resistance of cones into soil. Even if an attempt was made to conduct a soil test, there was a problem in that when the testing machine was installed on the bottom soil, the bottom soil would be destroyed by the weight of the testing machine, making it impossible to perform the test.

【0004】0004

【発明の解決しようとする課題】本発明は、前記従来の
問題点を解決するためになされたものであり、軟弱な水
底の底質土上に、その底質土を破壊することなく原位置
に設置でき、原位置での土質試験を行なうことのできる
水底の原位置土質試験装置を提供することを解決課題と
したものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems, and it is an object of the present invention to provide an in-situ product on the bottom soil of a soft water bottom without destroying the bottom soil. The object of the present invention is to provide an in-situ soil testing device at the bottom of the water that can be installed in water and perform in-situ soil testing.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、本発明の水底の原位置土質試験装置は
、ベーン試験機や、コーン貫入試験機などの土質試験機
を覆って設けられたバラストタンクに、水中重量の調整
を自在とするバルブ装置を装備することにより構成され
、具体的には、バラストタンクの適宜な位置に、そのバ
ラストタンク内の空気量を所定の最大値で規制する複数
の固定バルブを設けると共に、バラストタンク内への圧
縮空気の注入及びその排出を遠隔操作自在とする電磁バ
ルブなどからなるバルブ装置を装備することが好ましい
[Means for Solving the Problems] As a means for solving the above-mentioned problems, the in-situ underwater soil testing device of the present invention is installed over a soil testing machine such as a vane testing machine or a cone penetration testing machine. It is constructed by equipping a ballast tank with a valve device that can freely adjust the weight in the water. In addition to providing a plurality of fixed valves for regulation, it is preferable to equip a valve device consisting of an electromagnetic valve or the like that can remotely control the injection and discharge of compressed air into the ballast tank.

【0006】上記の装置においては、土質試験機を覆っ
たバラストタンク内の空気量に応じて、その装置全体の
水中重量が適宜減少し、しか遠隔操作で水中重量を調整
できるので、その土質試験を、底質土の原位置で、底質
土の破壊なしに行なうことができる。
[0006] In the above device, the underwater weight of the entire device is appropriately reduced depending on the amount of air in the ballast tank covering the soil tester, and since the underwater weight can be adjusted by remote control, the soil tester can be easily adjusted. can be carried out in situ on the sediment without destroying the sediment.

【0007】[0007]

【実施例】以下図面を参照して本発明の実施例について
説明するが、図1はその一実施例における水底の原位置
土質試験装置の全体側断面図であり、ベーン試験機1や
、コーン貫入試験機2などの土質試験機を覆って設けら
れたバラストタンク3の側部の適宜な位置に、そのバラ
ストタンク3内の空気量を所定の最大値に規制する複数
の固定式の空気抜きバルブ4A,4B,4Cを設けてい
る。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 is a side sectional view of the whole of an in-situ soil testing device on the water bottom in one embodiment. A plurality of fixed air vent valves are installed at appropriate positions on the side of a ballast tank 3 that covers a soil testing machine such as a penetration testing machine 2 to regulate the amount of air in the ballast tank 3 to a predetermined maximum value. 4A, 4B, and 4C are provided.

【0008】すなわち、これら空気抜きバルブ4A,4
B,4Cの取付け位置は、これらバラストタンク3を含
む装置自体が最小水中重量、例えば60kgf(バルブ
4A)、120kgf(バルブ4B)、180kgf(
バルブ4C)になるよう設定されており、その操作とし
ては、この装置の着水前にマニュアルで開閉させるもの
であり、バラストタンク3内の空気量に応じて水中重量
が減少するものであり、図中5で示すのは開放穴である
。開放穴5は、バルブ4A,4B,4Cを閉じて空気を
満たしたときに、水中重量が0kgf となる位置に設
けている。
That is, these air vent valves 4A, 4
The mounting positions of B and 4C are based on the minimum underwater weight of the device itself including these ballast tanks 3, such as 60 kgf (valve 4A), 120 kgf (valve 4B), 180 kgf (
Valve 4C) is set up, and its operation is to manually open and close the device before landing on the water, and the underwater weight is reduced according to the amount of air in the ballast tank 3. In the figure, 5 indicates an open hole. The open hole 5 is provided at a position where the underwater weight becomes 0 kgf when the valves 4A, 4B, and 4C are closed and filled with air.

【0009】次に、このバラストタンク3にはコンプレ
ッサ6からの圧縮空気をバラストタンク3に注入するバ
ルブとして電磁バルブ7Aが、そしてバラストタンク3
内の圧縮空気を排出するバルブとして電磁バルブ7Bが
あり、遠隔監視制御装置8及び制御装置9を介して遠隔
操作自在としている。すなわち、上記バラストタンク3
を含む装置本体の水中重量の調整をコントロール自在と
するために、上記空気抜きバルブ4A,4B,4C及び
電磁バルブ7A,7Bなどのバルブ装置を装備すること
が本発明の特徴であり、あらかじめ空気抜きバルブ4A
,4B,4Cを開閉させておいて、空気の排出を行なう
調整手段と、遠隔操作により電磁バルブ7A,7Bを開
閉させて圧縮空気の注入及び排出を行なう調整手段とに
より、水中重量を調整するようにしているのがこの実施
例である。
Next, this ballast tank 3 includes an electromagnetic valve 7A as a valve for injecting compressed air from the compressor 6 into the ballast tank 3.
There is an electromagnetic valve 7B as a valve for discharging the compressed air inside, and it can be remotely operated via a remote monitoring and control device 8 and a control device 9. That is, the ballast tank 3
In order to freely control the adjustment of the underwater weight of the main body of the device including 4A
, 4B, 4C open and close to discharge air, and an adjustment means that remotely controls solenoid valves 7A, 7B to open and close solenoid valves 7A, 7B to inject and discharge compressed air. This embodiment does this.

【0010】次に、図1の装置を水中に沈降させた場合
、各空気抜きバルブ4A,4B,4Cの開閉位置によっ
て装置自体の水中重量が変化する状態を図2に示してい
る。図2の■は空気抜きバルブ4Cのみを開き、■は空
気抜きバルブ4Bのみを開き、■は空気抜きバルブ4A
のみを開き、そして■は空気抜きバルブ4A,4B,4
Cの全てを閉じた状態をそれぞれ示し、また図中の右側
には図1に示すこの装置の底板10の接地圧を示してい
る。
Next, when the apparatus shown in FIG. 1 is submerged in water, FIG. 2 shows how the weight of the apparatus itself changes in water depending on the opening and closing positions of the air vent valves 4A, 4B, and 4C. ■ in Figure 2 opens only the air vent valve 4C, ■ opens only the air vent valve 4B, and ■ indicates air vent valve 4A.
Open only the air vent valves 4A, 4B, 4.
The ground pressure of the bottom plate 10 of this device shown in FIG. 1 is shown on the right side of the figure.

【0011】すなわち、この装置本体を水中に沈降する
と、水圧によりバラストタンク3内の空気が圧縮され、
水中重量は、増加するが、図2に示すごとく、水中重量
の増加は、水深が深くなるに従って緩やかなカーブを描
く。電磁バルブ7A,7Bの遠隔操作を行なわない場合
は、水中重量は各空気抜きバルブ4A,4B,4Cの開
閉位置と水深とから計算により求められる。
That is, when the main body of the device is submerged in water, the air in the ballast tank 3 is compressed by the water pressure.
The underwater weight increases, but as shown in FIG. 2, the increase in the underwater weight draws a gentle curve as the water depth becomes deeper. When the electromagnetic valves 7A, 7B are not remotely operated, the underwater weight is calculated from the opening/closing position of each air vent valve 4A, 4B, 4C and the water depth.

【0012】次に、水深にかかわらず水中重量を一定に
保ちたい場合に圧縮空気の調整を行なうが、この場合、
一定に保ちたい重量の空気抜きバルブ4A,4Bまたは
4Cの選択をして、あらかじめその位置の空気抜きバル
ブ(4A,4Bまたは4C)を開けておく。所定の水深
まで沈降させた後、バラストタンク3内に圧縮空気を注
入すると、開放された空気抜きバルブ(4A,4Bまた
は4C)まで圧縮空気が入り、それ以上はその空気抜き
バルブより排出される。
Next, if you want to keep the underwater weight constant regardless of the water depth, the compressed air is adjusted.
Select the air vent valve 4A, 4B, or 4C whose weight you want to keep constant, and open the air vent valve (4A, 4B, or 4C) at that position in advance. When compressed air is injected into the ballast tank 3 after settling to a predetermined water depth, the compressed air enters up to the opened air vent valve (4A, 4B, or 4C), and any further air is discharged from the air vent valve.

【0013】図3は全ての空気抜きバルブ4A,4B,
4Cを閉じた状態で水深20mまで沈降させ、強制的に
圧縮空気を注入した時の水中重量の変化を示しており、
その操作は以下の手順で行なわれる。まず、空気抜きバ
ルブ4A,4B,4Cをすべて閉じて空気が開放穴5の
位置まで満たされた状態で着水させるが、この時の水中
重量は0kgf であり、次に所定の水深、すなわち2
0mまで沈降させるが、沈降にしたがって水中重量は増
加して行く。そして水深20mで圧縮空気をバラストタ
ンク3内に注入すると、圧縮空気は開放穴の位置まで充
填され、水中重量は0kgf まで減少する。
FIG. 3 shows all the air vent valves 4A, 4B,
It shows the change in weight underwater when 4C is closed and submerged to a depth of 20 meters and compressed air is forcibly injected.
The operation is performed in the following steps. First, all the air vent valves 4A, 4B, and 4C are closed, and the water is filled with air up to the position of the open hole 5, and the water is landed on the water.At this time, the underwater weight is 0 kgf, and then the water depth is set to
It is allowed to sink to 0 m, but its weight in the water increases as it sinks. When compressed air is injected into the ballast tank 3 at a depth of 20 m, the compressed air fills up to the open hole and the underwater weight decreases to 0 kgf.

【0014】次に、図4は空気抜きバルブ4Aを開いた
時の水深20mまで沈降して圧縮空気を注入することに
よる空気量調整による水中重量の変化を示している。さ
らに、図5は空気抜きバルブ4Bを開いた時の水深20
mまで沈降して圧縮空気を注入することによる水中重量
の変化を示しており、また、図6は空気抜きバルブ4C
を開いた時の水深20mまで沈降して圧縮空気を注入す
ることによる水中重量の変化を示している。
Next, FIG. 4 shows the change in the underwater weight due to the adjustment of the air amount by submerging to a depth of 20 m and injecting compressed air when the air vent valve 4A is opened. Furthermore, Figure 5 shows the water depth of 20 when the air vent valve 4B is opened.
Figure 6 shows the change in underwater weight due to the injection of compressed air after sinking to a depth of 4C.
The figure shows the change in weight underwater when the vessel is opened to a depth of 20 meters and compressed air is injected into the vessel.

【0015】次に、図7は、底質土の測定位置の直上に
試験装置を接地させずに、少し離れた位置で反力を得る
ように底板10を両側に延長し、その両端に接地プレー
ト10Aを取付けた他の実施例の水底の原位置土質試験
装置の下部側面図である。図面には、この試験装置によ
る応力球根を破線のSで示しており、各土質試験機の下
端部を沈降時底質土に直接接触させないので、測定位置
での応力増加や、乱れの影響を避けることができ、水の
流れ、波浪などに対する安定性の向上がはかれるという
利点がある。
Next, in FIG. 7, the test device is not grounded directly above the bottom soil measurement position, but the bottom plate 10 is extended on both sides so that the reaction force is obtained at a slightly distant position, and the bottom plate 10 is grounded at both ends. It is a lower part side view of the underwater in-situ soil test device of another Example with plate 10A attached. In the drawing, the stress bulb produced by this test device is indicated by a broken line S, and since the lower end of each soil test device does not come into direct contact with the sediment during settling, there is no stress increase at the measurement position or the influence of disturbance. This has the advantage of improving stability against water flow, waves, etc.

【0016】[0016]

【発明の効果】以上に説明した本発明の水底の原位置土
質試験装置によれば、その装置本体の水中重量が適宜に
装備されたバルブ装置により調節可能であるので、底泥
上においてその底質土を破壊することなく原位置試験装
置の土質試験機を設置できる利点があり、原位置での底
質土の乱れの影響なしに試験ができるので、正確な底質
土強度が得られるという効果がある。
Effects of the Invention According to the underwater in-situ soil testing device of the present invention as described above, the underwater weight of the device body can be adjusted by an appropriately equipped valve device. It has the advantage of being able to install a soil tester using an in-situ testing device without destroying the soil, and it is possible to conduct tests without disturbing the sediment in situ, so accurate soil strength can be obtained. effective.

【0017】[0017]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例における水底の原位置土質試
験装置の全体側断面図である。
FIG. 1 is an overall side cross-sectional view of an in-situ soil testing device at the bottom of water in an embodiment of the present invention.

【図2】図1の装置の空気抜きバルブの開閉位置による
水中重量の変化を示す線図である。
FIG. 2 is a diagram showing changes in underwater weight depending on the opening/closing position of the air vent valve of the device in FIG. 1;

【図3】図1の装置の全ての空気抜きバルブ閉時におけ
る圧縮空気調整による水中重量の変化を示す線図である
FIG. 3 is a diagram showing changes in underwater weight due to compressed air adjustment when all air vent valves of the device in FIG. 1 are closed;

【図4】図1の装置の空気抜きバルブ4Aの開時におけ
る圧縮空気調整による水中重量の変化を示す線図である
4 is a diagram showing changes in underwater weight due to compressed air adjustment when the air vent valve 4A of the device shown in FIG. 1 is open; FIG.

【図5】図1の装置の空気抜きバルブ4Bの開時におけ
る圧縮空気調整による水中重量の変化を示す線図である
5 is a diagram showing changes in underwater weight due to compressed air adjustment when the air vent valve 4B of the device in FIG. 1 is open; FIG.

【図6】図1の装置の空気抜きバルブ4Cの開時におけ
る圧縮空気調整による水中重量の変化を示す線図である
6 is a diagram showing changes in underwater weight due to compressed air adjustment when the air vent valve 4C of the device in FIG. 1 is open; FIG.

【図7】本発明の他の実施例の水底の原位置土質試験装
置の下部側面図である。
FIG. 7 is a lower side view of an in-situ soil testing device on the bottom of water according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1……ベーン試験機、2……コーン貫入試験機、3……
バラストタンク、4A,4B,4C……空気抜きバルブ
、7A,7B……電磁バルブ、8……遠隔監視制御装置
、9……制御装置
1... Vane testing machine, 2... Cone penetration testing machine, 3...
Ballast tank, 4A, 4B, 4C...Air vent valve, 7A, 7B...Solenoid valve, 8...Remote monitoring and control device, 9...Control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  土質試験機を覆って設けられたバラス
トタンクに、水中重量の調整を自在とするバルブ装置を
装備した水底の原位置土質試験装置
[Claim 1] An in-situ soil testing device at the bottom of the water, which is equipped with a valve device that allows the underwater weight to be freely adjusted in a ballast tank installed over the soil testing device.
JP3137997A 1991-06-10 1991-06-10 In-situ soil test equipment on the bottom of the water Expired - Fee Related JPH0726383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137997A JPH0726383B2 (en) 1991-06-10 1991-06-10 In-situ soil test equipment on the bottom of the water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137997A JPH0726383B2 (en) 1991-06-10 1991-06-10 In-situ soil test equipment on the bottom of the water

Publications (2)

Publication Number Publication Date
JPH04363408A true JPH04363408A (en) 1992-12-16
JPH0726383B2 JPH0726383B2 (en) 1995-03-22

Family

ID=15211654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137997A Expired - Fee Related JPH0726383B2 (en) 1991-06-10 1991-06-10 In-situ soil test equipment on the bottom of the water

Country Status (1)

Country Link
JP (1) JPH0726383B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021000345A1 (en) * 2019-07-01 2021-01-07 大连理工大学 Horizontal continuous measuring method for soil mass parameters of soft soil site

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021000345A1 (en) * 2019-07-01 2021-01-07 大连理工大学 Horizontal continuous measuring method for soil mass parameters of soft soil site
US11332904B2 (en) 2019-07-01 2022-05-17 Dalian University Of Technology Lateral and continuous measurement method for soil parameters in soft soil field

Also Published As

Publication number Publication date
JPH0726383B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
CA1176077A (en) Device for taking ground water samples in soil and rock
Puppala et al. Cone penetration in very weakly cemented sand
US7363972B2 (en) Method and apparatus for well testing
US20140013833A1 (en) Water absorption test method and water absorption test device for concrete surface
Marcuson III et al. SPT and relative density in coarse sands
CA2546080C (en) Technique and apparatus for use in well testing
CA2228439A1 (en) Method and apparatus for testing and sampling open-hole oil and gas wells
Hollick Towards a routine test for the assessment of the critical tractive forces of cohesive soils
US5168748A (en) Leak simulation device for storage tanks
US5520046A (en) Process for the chemical logging of a liquid and chemical logging installation for performing said process
CN108802188B (en) Grouting fullness detection method and system based on sleeve surface excitation
JPH04363408A (en) Water bottom original position soil nature test device
US6801857B2 (en) Method and device for determining the quality of an oil well reserve
EP0858550B1 (en) Sampling device
Kim et al. Deformation characteristics of soils with variations of capillary pressure and water content
CN110736692A (en) automatic device and method for measuring permeability coefficient of soil body
CN206656948U (en) A kind of device of the latent erosion of temperature control lab simulation karst
JPH10281905A (en) Vibrating ground pore water pressure measuring device
US4348897A (en) Method and device for determining the transmissibility of a fluid-conducting borehole layer
US2852081A (en) Fluid sampling apparatus
Carrubba Stress relief disturbance and residual pore pressure in cohesive soils
Miller Development of instrumentation to study the effects of aging on the small strain behavior of sands
JPS62170834A (en) Collector of slime, sludge water or the like at original position
CN211206025U (en) Shrinkage deformation testing device for shield synchronous grouting material
SU901490A1 (en) Sampler for formation tester