JPH04363151A - Separation of catalyst and catalyst separator - Google Patents

Separation of catalyst and catalyst separator

Info

Publication number
JPH04363151A
JPH04363151A JP3504191A JP3504191A JPH04363151A JP H04363151 A JPH04363151 A JP H04363151A JP 3504191 A JP3504191 A JP 3504191A JP 3504191 A JP3504191 A JP 3504191A JP H04363151 A JPH04363151 A JP H04363151A
Authority
JP
Japan
Prior art keywords
slurry oil
catalyst
separation
oil
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3504191A
Other languages
Japanese (ja)
Inventor
Shinji Sato
佐藤 新次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU SEKIYU KK
Original Assignee
KYUSHU SEKIYU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU SEKIYU KK filed Critical KYUSHU SEKIYU KK
Priority to JP3504191A priority Critical patent/JPH04363151A/en
Publication of JPH04363151A publication Critical patent/JPH04363151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To remove catalyst particles from the slurry oil of a fluidized catalytic cracking device with high efficiency and decrease the bulk of separated catalysts by supplying the slurry oil into a horizontal type chamber, maintaining the inside of this horizontal type chamber at a high temp. state and subjecting the catalyst particles in the slurry oil to a gravity settling sepn. CONSTITUTION:The slurry oil of the fluidized catalytic cracking device is supplied from a supply port 11 into the horizontal type chamber 1 and the high temp. state is maintained in the horizontal type chamber 1. The catalyst particles in the slurry oil are then subjected to the gravity settling sepn. Consequently, the catalyst particles are removed from the slurry oil with the high efficiency and the bulk of the separated catalysts is decreased. In addition, initial costs, running costs, etc., are low and the economical catalyst separating means is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は触媒分離方法及び触媒分
離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst separation method and a catalyst separation apparatus.

【0002】0002

【従来の技術】流動接触分解装置は、重油等の重質油か
ら、ガソリン、灯軽油等の軽質油を製造する装置として
、石油精製工場でその比重を増やしつつある。
BACKGROUND OF THE INVENTION Fluid catalytic cracking units are increasingly used in petroleum refineries as equipment for producing light oils such as gasoline and kerosene from heavy oils such as heavy oil.

【0003】流動接触分解装置は、10〜80μの無定
型シリカアルミナあるいはゼオライトを主体とする触媒
微粒子が浮遊している流動層内で、触媒微粒子と重質油
とを接触させ重質油を分解する。
[0003] Fluid catalytic cracking equipment decomposes heavy oil by bringing the catalyst particles into contact with heavy oil in a fluidized bed in which catalyst particles mainly composed of amorphous silica alumina or zeolite of 10 to 80 μm are suspended. do.

【0004】その結果、水素、メタン、エタン、エチレ
ン、プロパン、プロピレン、ブタン、ブチレン、ガソリ
ン、灯油、軽油、スラリーオイルが生成する。
As a result, hydrogen, methane, ethane, ethylene, propane, propylene, butane, butylene, gasoline, kerosene, light oil, and slurry oil are produced.

【0005】スラリーオイル中には直径10μ程度の触
媒微粒子が1000〜2000ppm混入しているので
、スラリーオイルと重油とを混合した混合オイルを舶用
エンジン燃料として使用する際には、スラリーオイル中
に存在する触媒微粒子によるピストンリングの摩擦等の
悪影響が懸念されている。
[0005] Slurry oil contains 1,000 to 2,000 ppm of catalyst fine particles with a diameter of about 10 μm, so when a mixed oil of slurry oil and heavy oil is used as a marine engine fuel, the amount of catalyst particles present in the slurry oil must be reduced. There are concerns that the catalyst particles may cause adverse effects such as friction on piston rings.

【0006】従って、触媒微粒子をスラリーオイルから
効率よく分離することが求められている。
[0006]Therefore, there is a need for efficient separation of catalyst fine particles from slurry oil.

【0007】一般的に触媒微粒子をスラリーオイルから
取り除くには、図2に示すように、通常、セトラー21
で、スラリーオイル供給路21aから供給されるスラリ
ーオイルと、リサイクル油供給路21bから供給される
リサイクル油と混合し、触媒微粒子を多く含む抜き出し
油をセトラー下部のスラリーオイル取出路21cから取
り出して再び反応塔へ戻し、他方、触媒微粒子を取り除
いたスラリーオイルをセトラー上部のリサイクル油取出
路21dから取り出す事が行なわれている。
Generally, in order to remove catalyst fine particles from slurry oil, a settler 21 is usually used as shown in FIG.
Then, the slurry oil supplied from the slurry oil supply passage 21a and the recycled oil supplied from the recycled oil supply passage 21b are mixed, and the extracted oil containing many catalyst particles is taken out from the slurry oil extraction passage 21c at the lower part of the settler and recycled again. The slurry oil is returned to the reaction tower, and on the other hand, the slurry oil from which catalyst fine particles have been removed is taken out from the recycled oil take-out passage 21d in the upper part of the settler.

【0008】しかし、この操作だけでは触媒微粒子をス
ラリーオイルから完全に取り除くことができず、100
0〜2000ppm残留する。
However, this operation alone cannot completely remove the catalyst particles from the slurry oil;
0 to 2000 ppm remains.

【0009】そのため、セトラー上部から取り出したス
ラリーオイルから、更に触媒微粒子を取り除くために、
種々の触媒分離手段が提案されている。
[0009] Therefore, in order to further remove catalyst particles from the slurry oil taken out from the upper part of the settler,
Various catalyst separation means have been proposed.

【0010】例えば、液体サイクロン、遠心分離機、各
種フィルター(エッチングしたデスク、ワイヤメッシュ
、硅藻土をプレコーティングしたもの等)、電気凝集分
離、スラリーオイルの貯蔵タンクを利用した凝集剤によ
る沈澱分離等がある。
For example, hydrocyclone, centrifugal separator, various filters (etched desk, wire mesh, pre-coated with diatomaceous earth, etc.), electrocoagulation separation, and precipitation separation using a flocculant using a slurry oil storage tank. etc.

【0011】なお、図2中、22は重力沈降槽、23は
熱交換器を示している。
In FIG. 2, 22 indicates a gravity settling tank, and 23 indicates a heat exchanger.

【0012】0012

【発明が解決しようとする課題】しかしながら、上記し
た種々の触媒分離手段の中で触媒分離に効果がある手段
は、一般に設備が高価であったり、運転費が高かったり
、また、分離した触媒微粒子の嵩がある等の処理上の問
題があったりして、それぞれ一長一短である。
[Problems to be Solved by the Invention] However, among the above-mentioned various catalyst separation means, those that are effective for catalyst separation generally have expensive equipment, high operating costs, or Each type has its own advantages and disadvantages, as there are processing problems such as bulkiness.

【0013】また、従来の貯蔵タンクにおける凝集剤を
用いた重力沈降方式では、薬剤費がかかる上に、大きな
タンクが必要であり、コストがかかり、更に、微粒子を
除去しにくいため除去率も低い。
[0013] In addition, the conventional gravity sedimentation method using a flocculant in a storage tank requires chemicals and a large tank, which is costly, and furthermore, the removal rate is low because it is difficult to remove fine particles. .

【0014】本発明の目的は、触媒微粒子をスラリーオ
イルから高効率で除去することができ、かつ、分離した
触媒の嵩を減らすことができ、しかも設備費、運転費等
が安くてコストがかからず、経済的な触媒分離手段を提
供することにある。
The object of the present invention is to be able to remove catalyst fine particles from slurry oil with high efficiency, to reduce the bulk of the separated catalyst, and to reduce equipment costs, operating costs, etc. The object of the present invention is to provide an economical catalyst separation means.

【0015】[0015]

【課題を解決するための手段】本発明の課題を解決する
ための手段は、下記のとおりである。
[Means for Solving the Problems] The means for solving the problems of the present invention are as follows.

【0016】第1に、流動接触分解装置のスラリーオイ
ルを横型槽内に供給し、該横型槽内を高温状態に保ち、
スラリーオイル中の触媒微粒子を重力沈降分離する、触
媒分離方法である。
First, the slurry oil of the fluid catalytic cracking apparatus is supplied into a horizontal tank, and the inside of the horizontal tank is maintained at a high temperature.
This is a catalyst separation method in which fine catalyst particles in slurry oil are separated by gravity sedimentation.

【0017】第2に、流動接触分解装置のスラリーオイ
ルを横型槽内に供給し、該横型槽内におけるスラリーオ
イルの温度を200℃以上に保ち、滞留時間を5時間以
上とし、スラリーオイル中の触媒微粒子を重力沈降分離
する、触媒分離方法である。
Second, the slurry oil of the fluid catalytic cracking apparatus is supplied into a horizontal tank, the temperature of the slurry oil in the horizontal tank is maintained at 200° C. or higher, the residence time is set to 5 hours or more, and the slurry oil in the slurry oil is This is a catalyst separation method in which fine catalyst particles are separated by gravity sedimentation.

【0018】第3に、全体形状が横型で高温維持機構を
有し、側面に流動接触分解装置のスラリーオイルの供給
路に接続される入口ノズルが設けられ、該入口ノズルの
前方に邪魔板を設置した触媒分離装置である。
Thirdly, the overall shape is horizontal and has a high temperature maintenance mechanism, an inlet nozzle connected to the slurry oil supply path of the fluid catalytic cracker is provided on the side, and a baffle plate is provided in front of the inlet nozzle. This is the installed catalyst separation equipment.

【0019】[0019]

【作用】本発明によれば、触媒微粒子が含まれたスラリ
ーオイルが、流動接触分解装置から横型槽内に供給され
、該横型槽内で重力沈降分離によって、触媒微粒子がス
ラリーオイルから分離される
[Operation] According to the present invention, slurry oil containing catalyst fine particles is supplied from a fluid catalytic cracking device into a horizontal tank, and the catalyst fine particles are separated from the slurry oil by gravity sedimentation separation in the horizontal tank.

【0020】ここで、重力沈降は、式1に示すストーク
スの式に従うことが知られている。
[0020] Here, it is known that gravitational sedimentation follows the Stokes equation shown in Equation 1.

【0021】[0021]

【式1】[Formula 1]

【0022】液体比重の温度変化は、固体と比較すると
はるかに大きく、しかも液体粘度は高い温度ほど小さい
ので、ストークスの式に従えば、高い温度ほど触媒沈降
速度は大きくなる。
[0022] The temperature change in the specific gravity of a liquid is much larger than that of a solid, and the higher the temperature, the lower the viscosity of the liquid, so according to Stokes' equation, the higher the temperature, the higher the catalyst sedimentation rate.

【0023】そのため、できるだけ高い温度で、固液沈
降分離することが望ましい。
[0023] Therefore, it is desirable to carry out solid-liquid sedimentation separation at as high a temperature as possible.

【0024】なお、従来、高い温度でスラリーオイルを
槽内に長時間滞留させると、熱分解が進みコークスが析
出して装置が閉塞する恐れがあるため行なわれていなか
ったが、本発明者らによって、コークスの析出は温度と
滞留時間の関数であるが、高温状態、例えば、300℃
程度の温度では長時間滞留させてもコークスの析出は問
題とならず、装置の閉塞等のトラブルもなく、触媒微粒
子の分離が有効に行なわれることが見いだされた。
[0024] Conventionally, it has not been done if slurry oil is allowed to remain in a tank for a long time at high temperatures, as there is a risk that thermal decomposition will proceed and coke will precipitate, clogging the equipment. Accordingly, coke precipitation is a function of temperature and residence time, but at high temperature conditions, e.g.
It has been found that at a certain temperature, even if the temperature is kept for a long time, coke precipitation does not become a problem, and catalyst fine particles can be effectively separated without any problems such as clogging of the apparatus.

【0025】したがって、本発明によれば、横型槽が高
温状態に保たれているので、コークスが析出することが
なく、触媒微粒子の分離が有効に行なわれる。
Therefore, according to the present invention, since the horizontal tank is maintained at a high temperature, coke does not precipitate, and catalyst fine particles are effectively separated.

【0026】また、横型槽とすることで、流体入口速度
を殺して流体の乱れを極力抑えると共に、触媒の沈降流
とスラリーオイルとの衝突が、竪型と比較して少なくな
る。
Furthermore, by using a horizontal tank, the fluid inlet velocity is reduced to suppress fluid turbulence as much as possible, and collisions between the sedimentation flow of the catalyst and the slurry oil are reduced compared to a vertical tank.

【0027】横型槽のスラリーオイルの滞留時間は、5
時間以上、好ましくは、10時間以上とする。
The residence time of slurry oil in the horizontal tank is 5
The duration is at least 10 hours, preferably at least 10 hours.

【0028】ここで、横型槽は滞留時間を確保するため
大型のものを採用するので、沈澱した触媒微粒子の除去
作業を年1回程度の清掃で済ますことが出来る。
[0028] Here, since the horizontal tank is large in order to ensure residence time, the work of removing precipitated catalyst fine particles can be completed by cleaning about once a year.

【0029】[0029]

【実施例】(1) 実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
(1) Example An example of the present invention will be described below with reference to the drawings.

【0030】図1は本発明に係る触媒分離装置の側面概
略図である。
FIG. 1 is a schematic side view of a catalyst separation apparatus according to the present invention.

【0031】本発明に係る触媒分離装置について説明す
る。
[0031] The catalyst separation device according to the present invention will be explained.

【0032】該装置は、流動接触分解装置から供給され
るスラリーオイルの供給口11に、入口ノズル12が取
り付けられ、また、該供給口11と反対側の上面にスラ
リーオイルの出口13が取り付けられた横型の槽1から
なる。
[0032] In this device, an inlet nozzle 12 is attached to a supply port 11 for slurry oil supplied from the fluid catalytic cracking device, and an outlet 13 for slurry oil is attached to the upper surface on the opposite side from the supply port 11. It consists of a horizontal tank 1.

【0033】該槽1には、例えば断熱材等により、供給
されたスラリーオイルの温度を維持できる機構(図示せ
ず)が設けられている。
[0033] The tank 1 is provided with a mechanism (not shown) that can maintain the temperature of the supplied slurry oil using, for example, a heat insulating material.

【0034】また、供給口11に取り付けられた入口ノ
ズル12の前方には、スラリーオイルの吹出方向を遮る
ように、邪魔板12aが取り付けられている。
Further, a baffle plate 12a is attached in front of the inlet nozzle 12 attached to the supply port 11 so as to block the blowing direction of the slurry oil.

【0035】なお、図1中、14,15は、槽1内部の
掃除用の開孔口である。
In FIG. 1, 14 and 15 are openings for cleaning the inside of the tank 1.

【0036】(2) 試験例 スラリーオイルを、3m3程度の試験用の横型の槽へ分
流し、温度条件を同一にして、スラリーオイルの供給量
、滞留時間を4通り(試験例 No.1〜 No.4)
に変えて、触媒除去率の変化等を調べ、その結果を表1
に示した。
(2) Test Example The slurry oil was distributed into a horizontal test tank of about 3 m3, and the temperature conditions were kept the same, and the supply amount and residence time of the slurry oil were set in four ways (Test Example No. 1 to No. 4)
The changes in the catalyst removal rate were investigated, and the results are shown in Table 1.
It was shown to.

【0037】[0037]

【表1】[Table 1]

【0038】(3) 比較例 スラリーオイルを、3m3程度の比較用の槽へ分流し、
試験例と同一温度において、槽形式、邪魔板の有無、ス
ラリーオイルの供給量、滞留時間を組み合わせて4通り
(試験例 No.1〜 No.4)に変えて、触媒除去
率の変化等を調べ、その結果を表2に示した。
(3) Comparative Example Slurry oil was divided into a comparative tank of about 3 m3,
At the same temperature as in the test example, we changed the tank type, presence or absence of baffle plates, slurry oil supply amount, and residence time in four different combinations (test example No. 1 to No. 4) to observe changes in catalyst removal rate, etc. The results are shown in Table 2.

【0039】[0039]

【表2】[Table 2]

【0040】なお、比較例と試験例の結果を比較すると
、槽形式が横型で、且つ邪魔板が有るものが良い結果を
示していることが確認できる。
By comparing the results of the comparative example and the test example, it can be confirmed that the horizontal tank type and the one with a baffle plate gave better results.

【0041】[0041]

【発明の効果】本発明の触媒粒子除去手段は、構造が単
純であり、触媒微粒子をスラリーオイルから高効率で除
去することができ、かつ、分離した触媒の嵩を減らすこ
とができ、しかも設備費、運転費等が安くてコストがか
からず、経済的である。
Effects of the Invention The catalyst particle removal means of the present invention has a simple structure, can remove catalyst particles from slurry oil with high efficiency, can reduce the bulk of the separated catalyst, and is easy to use with equipment. It is economical, with low operating costs and low costs.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る触媒分離装置の側面概略図である
FIG. 1 is a schematic side view of a catalyst separation device according to the present invention.

【図2】セトラーの概略説明図である。FIG. 2 is a schematic explanatory diagram of a settler.

【符号の説明】[Explanation of symbols]

1  槽 11  供給口 12  入口ノズル 12a  邪魔板 13  出口 14  開孔口 15  開孔口 21  セトラー 21a  スラリーオイル供給路 21b  リサイクル油供給路 21c  スラリーオイル取出路 21d  リサイクル油取出路 22  重力沈降槽 23  熱交換器 1 tank 11 Supply port 12 Inlet nozzle 12a Baffle board 13 Exit 14 Opening hole 15 Opening hole 21 Settler 21a Slurry oil supply path 21b Recycled oil supply path 21c Slurry oil extraction path 21d Recycling oil extraction path 22 Gravity settling tank 23 Heat exchanger

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  流動接触分解装置のスラリーオイルを
横型槽内に供給し、該横型槽内を高温状態に保ち、スラ
リーオイル中の触媒微粒子を、重力沈降分離する、触媒
分離方法。
1. A catalyst separation method, which comprises supplying slurry oil of a fluid catalytic cracking apparatus into a horizontal tank, maintaining the interior of the horizontal tank at a high temperature, and separating catalyst fine particles in the slurry oil by gravity sedimentation.
【請求項2】  流動接触分解装置のスラリーオイルを
横型槽内に供給し、該横型槽内におけるスラリーオイル
の温度を200℃以上に保ち、滞留時間を5時間以上と
し、スラリーオイル中の触媒微粒子を、重力沈降分離す
ることを特徴とする、触媒分離方法。
2. The slurry oil of the fluid catalytic cracking device is supplied into a horizontal tank, the temperature of the slurry oil in the horizontal tank is maintained at 200° C. or higher, and the residence time is set to 5 hours or more, so that the catalyst fine particles in the slurry oil are A catalytic separation method characterized by gravity sedimentation separation.
【請求項3】  全体形状が横型で高温維持機構を有し
、側面に流動接触分解装置のスラリーオイルの供給路に
接続される入口ノズルが設けられ、該入口ノズルの前方
に邪魔板を設置した触媒分離装置。
Claim 3: The overall shape is horizontal and has a high temperature maintenance mechanism, an inlet nozzle connected to a slurry oil supply path of a fluid catalytic cracker is provided on the side, and a baffle plate is installed in front of the inlet nozzle. Catalyst separation equipment.
JP3504191A 1991-02-06 1991-02-06 Separation of catalyst and catalyst separator Pending JPH04363151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3504191A JPH04363151A (en) 1991-02-06 1991-02-06 Separation of catalyst and catalyst separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3504191A JPH04363151A (en) 1991-02-06 1991-02-06 Separation of catalyst and catalyst separator

Publications (1)

Publication Number Publication Date
JPH04363151A true JPH04363151A (en) 1992-12-16

Family

ID=12430960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3504191A Pending JPH04363151A (en) 1991-02-06 1991-02-06 Separation of catalyst and catalyst separator

Country Status (1)

Country Link
JP (1) JPH04363151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938462A (en) * 2019-11-29 2020-03-31 中国石油大学(华东) Method for removing solid particles of oil slurry by using heat treatment centrifugal sedimentation-electrostatic method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938462A (en) * 2019-11-29 2020-03-31 中国石油大学(华东) Method for removing solid particles of oil slurry by using heat treatment centrifugal sedimentation-electrostatic method
CN110938462B (en) * 2019-11-29 2021-06-18 中国石油大学(华东) Method for removing solid particles of oil slurry by using heat treatment centrifugal sedimentation-electrostatic method

Similar Documents

Publication Publication Date Title
US6068760A (en) Catalyst/wax separation device for slurry Fischer-Tropsch reactor
US2367694A (en) Powdered solids stripping system
EP0015715B1 (en) Conversion of lower alcohols and ether derivatives thereof into hydrocarbons in a baffled reactor system
US2728714A (en) Deashing hydrocarbon oils by water washing
US2433798A (en) Catalytic hydrocarbon conversion process and apparatus therefor
CN109628136B (en) Solid content removing device and catalytic cracking slurry oil solid content removing method
US2391944A (en) Conversion of hydrocarbon oils
US2370816A (en) Treating hydrocarbon fluids
US3338821A (en) Quenching of catalytic cracking reactor vapors in feed line to fractionator
US2328325A (en) Powdered catalyst recovery
US2768935A (en) Process and apparatus for the conversion of hydrocarbonaceous substances in a molten medium
CA2274579C (en) Catalyst/wax separation device for slurry fischer-tropsch reactor
US2311978A (en) Powdered catalyst recovery
US2498088A (en) Conversion of hydrocarbons with suspended catalyst
US2789696A (en) Treating hydrocarbon oils
US2595909A (en) Method and apparatus for treating hydrocarbon oils
US2689823A (en) Fluid hydroforming process
US5076915A (en) Apparatus for removing suspended solids from a liquid
JPH04363151A (en) Separation of catalyst and catalyst separator
US2761821A (en) Purification of hydrocarbon oils
US9446364B2 (en) Surge drum mixing system
US2349575A (en) Catalytic treatment of vapors
US2895811A (en) Unitary vessel catalytic reactor, regenerator and vacuum stripper
US4022675A (en) Filtering process
US2425532A (en) Process for removing inorganic impurities from mineral oils preparatory to catalyticcracking