JPH04363117A - Method for reducing nitrogen oxide - Google Patents

Method for reducing nitrogen oxide

Info

Publication number
JPH04363117A
JPH04363117A JP3183368A JP18336891A JPH04363117A JP H04363117 A JPH04363117 A JP H04363117A JP 3183368 A JP3183368 A JP 3183368A JP 18336891 A JP18336891 A JP 18336891A JP H04363117 A JPH04363117 A JP H04363117A
Authority
JP
Japan
Prior art keywords
chevrel phase
nitrogen oxides
phase compound
exhaust gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3183368A
Other languages
Japanese (ja)
Inventor
Masataka Wakihara
脇原 将孝
Keiichi Chiba
千葉 佳一
Yuji Nishikawa
西川 雄治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Takuma Research and Development Co Ltd
Original Assignee
Takuma Co Ltd
Takuma Research and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd, Takuma Research and Development Co Ltd filed Critical Takuma Co Ltd
Priority to JP3183368A priority Critical patent/JPH04363117A/en
Publication of JPH04363117A publication Critical patent/JPH04363117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To subject NOx in exhaust gas to catalytic decomposition or selective catalytic reduction with high efficiency over a long period of time without lowering the activity of a catalyst even when the exhaust gas contains a large amt. of soot and corrosive gases such as oxygen and SO2. CONSTITUTION:NOx in exhaust gas is subjected to catalytic decomposition or NOx in exhaust gas mixed with a reducing agent is subjected to selective catalytic reduction. In this case, a Chevrel phase compd. represented by a formula MxMo6S8-yor MxMo6S8-yO2 (where M is a metal, S is chalcogen and O is oxygen) is used as a catalyst.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、所謂接触分解法並びに
選択接触還元法による窒素酸化物の低減方法の改良に係
り、シェブレル相化合物を触媒として用いることにより
、ディーゼルエンジン、ガスタービン、ボイラ、各種焼
却炉、自動車及び原子炉等の排ガス中の窒素酸化物を、
触媒活性の低下を招くことなしに長期に亘って効率良く
除去できるようにした、窒素酸化物の低減方法に関する
ものである。
[Industrial Application Field] The present invention relates to an improvement in a method for reducing nitrogen oxides by so-called catalytic cracking method and selective catalytic reduction method, and by using a Chevrel phase compound as a catalyst, diesel engines, gas turbines, boilers, Nitrogen oxides in exhaust gas from various incinerators, automobiles, nuclear reactors, etc.
The present invention relates to a method for reducing nitrogen oxides that can be efficiently removed over a long period of time without causing a decrease in catalyst activity.

【0002】0002

【従来の技術】排ガス中の窒素酸化物、特にー酸化窒素
(NO)の除去方法は所謂湿式方法と乾式方法の二種に
大別され、夫々実用に供されている。ところで、前記湿
式方法に於いては、常にアルカリ性水溶液等の廃水処理
を必要とするため、処理コストが高くつくと共に処理設
備の保守管理にも手数がかかると云う難点がある。
2. Description of the Related Art Methods for removing nitrogen oxides, particularly nitrogen oxides (NO), from exhaust gas are roughly divided into two types, so-called wet methods and dry methods, each of which is in practical use. By the way, the wet method always requires treatment of waste water such as an alkaline aqueous solution, which has disadvantages in that the treatment cost is high and the maintenance and management of the treatment equipment is also troublesome.

【0003】これに対して、後者の乾式方法では、大量
の廃水を生ずるようなことが全く無いうえ、処理施設の
保守管理も比較的容易に行え、実用上極めて好都合であ
る。そのため、近年■貴金属や銅イオン交換ゼオライト
を触媒とする接触分解方法、■電子ビームを利用する加
速電子分解方法、■Pd−Pt−Rh系三元触媒やV2
O5−TiO2−WO3触媒を用いる選択接触還元方法
、■吸着剤を用いる吸着方法及び溶融塩を用いる吸収方
法等の各種の乾式処理方法が開発されている。
On the other hand, the latter dry method does not produce a large amount of waste water at all, and the maintenance of the treatment facility is relatively easy, making it extremely convenient in practice. Therefore, in recent years, ■ catalytic cracking method using precious metals or copper ion-exchanged zeolite as a catalyst, ■ accelerated electrolysis method using electron beam, ■ Pd-Pt-Rh three-way catalyst, and V2
Various dry treatment methods have been developed, including a selective catalytic reduction method using an O5-TiO2-WO3 catalyst, an adsorption method using an adsorbent, and an absorption method using a molten salt.

【0004】しかし、前記加速電子分解方法には、2次
×線の漏洩対策を必要とするため施設費が嵩み、大形処
理施設へは適用し難いと云う問題がある。
However, the accelerated electron decomposition method has the problem that it requires measures against leakage of secondary x-rays, which increases facility costs and makes it difficult to apply to large-scale processing facilities.

【0005】また、前記V2O5−TiO2−WO3触
媒を用いる選択接触還元法には、未反応の還元ガス(例
えばアンモニヤ)の排出規制を厳重に行う必要があるた
め運転費が嵩み、しかも小形ボイラ等への適用が難かし
いと云う難点がある。同様に、Pd−Pt−Rh系三元
触媒を用いる選択接触還元方法には、高出力・低燃費の
希薄燃焼方式のエンジンからの排ガスの様に排ガス内に
大量の酸素が含まれている場合には、触媒がNOの還元
に十分な活性を示さなくなって、必要量の窒素酸化物の
除去が行えないと云う難点がある。
Furthermore, in the selective catalytic reduction method using the V2O5-TiO2-WO3 catalyst, it is necessary to strictly control the emission of unreacted reducing gas (for example, ammonia), which increases operating costs and requires a small boiler. The problem is that it is difficult to apply to Similarly, the selective catalytic reduction method using a Pd-Pt-Rh three-way catalyst is effective when exhaust gas contains a large amount of oxygen, such as exhaust gas from a lean-burn engine with high output and low fuel consumption. However, this method has the disadvantage that the catalyst no longer exhibits sufficient activity to reduce NO, and the required amount of nitrogen oxides cannot be removed.

【0006】更に、前記吸収方法は、近年になってYB
a2Cu3O6を用いる方法等が開発されているものの
、未だ実用化の段階には至っていないと云う問題がある
[0006] Furthermore, in recent years, the above-mentioned absorption method has been
Although methods using a2Cu3O6 have been developed, there is a problem in that they have not yet reached the stage of practical use.

【0007】最後に、触媒分解方法についてであるが、
貴金属触媒を用いる方法では、ディーゼルエンジンから
の排ガスの様に煤やNOX ,SOX 等の排出レベル
が高い場合には触媒としての活性が短期間で喪失され、
十分な窒素酸化物の除去が行えなくなると云う欠点があ
る。 同様に、銅イオン交換ゼオライト(Cu−ZSM−5)
を触媒とする方法に於いても、O2 やH2O,SO2
 の存在下で触媒活性が急激に低下することが判明して
おり、実用化にまでは至っていないと云う問題がある。
Finally, regarding the catalytic decomposition method,
In methods using precious metal catalysts, when the level of emissions of soot, NOX, SOX, etc. is high, such as in the exhaust gas from diesel engines, the activity as a catalyst is lost in a short period of time.
There is a drawback that nitrogen oxides cannot be removed sufficiently. Similarly, copper ion exchange zeolite (Cu-ZSM-5)
Even in the method using O2 as a catalyst, O2, H2O, SO2
It has been found that the catalytic activity decreases rapidly in the presence of , and there is a problem that it has not been put into practical use yet.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従前の乾式
方法による窒素酸化物の除去に於ける上述の如き問題、
即ち触媒を用いる接触分解方法や選択接触還元方法に於
いては、O2 やH2O,SO2 の存在下に於いて触
媒の活性が大幅に低下して、十分な窒素酸化物の除去が
行えないと云う問題を解決せんとするものであり、多量
の煤やO2 ,H2O,SO2等を含有する排ガスであ
っても、触媒活性の低下を招くことなく長期に亘って高
能率で窒素酸化物を除去することができると共に、処理
設備の保守や運転管理を容易に出来るようにした窒素酸
化物の低減方法を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in removing nitrogen oxides by the conventional dry method.
In other words, in catalytic cracking methods and selective catalytic reduction methods that use catalysts, the activity of the catalyst decreases significantly in the presence of O2, H2O, and SO2, making it impossible to remove nitrogen oxides sufficiently. It aims to solve the problem and removes nitrogen oxides with high efficiency over a long period of time without causing a decrease in catalyst activity, even if the exhaust gas contains large amounts of soot, O2, H2O, SO2, etc. The purpose of the present invention is to provide a method for reducing nitrogen oxides that allows for easy maintenance and operational management of processing equipment.

【0009】[0009]

【課題を解決するための手段】本件請求項1に記載の発
明は、MXMo6S8−y及びMXMo6S8−yOZ
(但し、Mは金属、Sはカルコゲン、Oは酸素、xは1
〜5、8−yは7.4〜8.5、zは2〜8)で表され
るシェブル相化合物を触媒として、排ガス中の窒素酸化
物を接触分解することを発明の基本構成とするものであ
る。前記金属Mとしては銅、ニッケル、コバルト、クロ
ム、鉄、マンガン、マグネシウム、亜鉛が、またカルコ
ゲンSとしては硫黄やセレン等が主として用いられる。
[Means for Solving the Problems] The invention according to claim 1 of the present invention provides MXMo6S8-y and MXMo6S8-yOZ.
(However, M is metal, S is chalcogen, O is oxygen, x is 1
The basic structure of the invention is to catalytically decompose nitrogen oxides in exhaust gas using a chevre phase compound represented by ~5,8-y is 7.4-8.5 and z is 2-8) as a catalyst. It is something. As the metal M, copper, nickel, cobalt, chromium, iron, manganese, magnesium, and zinc are mainly used, and as the chalcogen S, sulfur, selenium, etc. are mainly used.

【0010】また、本件請求項5に記載の発明は、前記
請求項1に記載のシェブレル相化合物を触媒とすると共
に、これに還元剤を混合した排ガスを接触させ、排ガス
中の窒素酸化物を選択接触還元することを発明の基本構
成とするものである。前記還元剤としては、炭化水素、
一酸化炭素、アンモニヤ、尿素等が使用される。
[0010] Furthermore, the invention according to claim 5 uses the Chevrel phase compound according to claim 1 as a catalyst, and contacts this with exhaust gas mixed with a reducing agent to remove nitrogen oxides in the exhaust gas. The basic structure of the invention is selective catalytic reduction. The reducing agent may include hydrocarbons,
Carbon monoxide, ammonia, urea, etc. are used.

【0011】[0011]

【作用】請求項1に記載の発明に於いては、セラミック
等に担持したシェブレル相化合物を100〜350℃程
度まで加熱し、その表面に窒素酸化物(NOX)を含む
排ガスを接触させつつ通過させる。これにより、窒素酸
化物(NOX)が接触分解され、単体の窒素(N2)と
酸素(O2)に戻り、排ガス中の窒素酸化物(NOX)
が除去されて行く。また、請求項5に記載の発明に於い
ては、セラミック等に担持したシェブレル相化合物を1
00〜350℃程度まで加熱し、その表面に炭化水素(
例えばオレフィン系やパラフィン系の炭化水素)、ー酸
化炭素(CO)、アンモニヤ(NH3)、尿素等の還元
剤を混入した窒素酸化物(NOX)を含む排ガスを接触
させつつ通過させる。これにより、窒素酸化物(NOX
)が接触還元されて単体の窒素(N2)と酸素(O2)
に分離する。生成したO2 は排ガスの他成分と反応し
て水若しくはCO2 を生じ、これによって排ガス中の
NOX が除去される。
[Operation] In the invention described in claim 1, a Chevrel phase compound supported on a ceramic or the like is heated to about 100 to 350°C, and exhaust gas containing nitrogen oxides (NOX) is passed through while being in contact with the surface of the Chevrel phase compound. let As a result, nitrogen oxides (NOX) are catalytically decomposed and returned to simple nitrogen (N2) and oxygen (O2), reducing nitrogen oxides (NOX) in the exhaust gas.
will be removed. In addition, in the invention described in claim 5, the Chevrel phase compound supported on ceramic etc.
It is heated to about 00 to 350℃, and hydrocarbons (
Exhaust gas containing nitrogen oxides (NOX) mixed with a reducing agent such as olefinic or paraffinic hydrocarbons), carbon oxide (CO), ammonia (NH3), or urea is passed through while being brought into contact with the exhaust gas. As a result, nitrogen oxides (NOX
) is catalytically reduced to form nitrogen (N2) and oxygen (O2).
Separate into The generated O2 reacts with other components of the exhaust gas to produce water or CO2, thereby removing NOX from the exhaust gas.

【0012】0012

【実施例】【Example】

(1)理論的及び技術的背景 シェブレル相化合物は、1970年代初めにシェブレル
(CHEVREL)らにより合成され[ジャーナル・オ
ブ・ソリッド・ステート・ケミストリー,3,515〜
519(1971)参照]、その後イボン(K.Yvo
n,SolidState  Communicati
on,25,327,1978)やフィッシャ(O.F
ischer,Applied  Physics,1
6,1,1978)等によりその構造や化学式が明らか
にされた化合物であり、Mo6S8−yクラスターが単
純立方に近い形で配列してできる間隙に、第3成分の金
属M(2種以上のこともある)が入り込んで、クラスタ
ー間の結合を安定化する構造を有するものである。
(1) Theoretical and technical background Chevrel phase compounds were synthesized by CHEVREL et al. in the early 1970s [Journal of Solid State Chemistry, 3,515-
519 (1971)], then K. Yvo
n, Solid State Communicati
on, 25, 327, 1978) and Fisher (O.F.
ischer, Applied Physics, 1
6, 1, 1978), etc., whose structure and chemical formula have been clarified by Mo6S8-y clusters arranged in a form close to a simple cube. ) has a structure that stabilizes the bonds between clusters.

【0013】即ち、シェブレル相化合物には、一般式M
XMo6S8−yで表される化合物(即ちシェブレル相
硫化物)と、前記式中のSの一部が酸素Oに置換した一
般式MXMo6S8−yOZで表される化合物(即ちシ
ェブレル相酸化硫化物)が存在する。尚前記、各式に於
いてMは金属、Moはモリブデン、Sはカルコゲン、O
は酸素である。
That is, the Chevrel phase compound has the general formula M
A compound represented by XMo6S8-y (i.e. Chevrel phase sulfide) and a compound represented by the general formula MXMo6S8-yOZ in which a part of S in the above formula is replaced with oxygen O (i.e. Chevrel phase oxidized sulfide) exist. In each of the above formulas, M is metal, Mo is molybdenum, S is chalcogen, O
is oxygen.

【0014】当該シェブレル相化合物は一般に導電性が
高く、極低温において超伝導を示すものもある。例えば
、PbMo6S8は比較的高い超伝導臨界温度(Tc≒
14K)と共に、高い上部臨界磁場(Hc2 ≒600
KG)を持つことが報告されている。また、一般式Cu
xMo6S8−y(2≦×≦4、7.75≦8−y≦8
)で表される銅シェブレル相化合物は、銅組成範囲に広
い幅があり、クラスター間隙に入り込んだ銅イオンが極
めて動きやすいことと、103 S・cm−1以上とい
う高い電導度を有することから、最近ではリチウムおよ
び銅の2次電池の正極活物質や、ジョセフソン素子のた
めの材料として注目されている。更に、シェブレル相化
合物としては、この他にも、M(金属)がニッケル(N
i),鉄(Fe)、クロム(Cr)などで広い固溶領域
を有するシェブレル相化合物が知られており、金属組成
の変化による硫黄組成変化が少なく、構造内の余分の電
子は共有結合に使われたり、遍歴電子とて構造内を動く
と推察されている。
The Chevrel phase compounds generally have high electrical conductivity, and some exhibit superconductivity at extremely low temperatures. For example, PbMo6S8 has a relatively high superconducting critical temperature (Tc≒
14K) and a high upper critical magnetic field (Hc2 ≒600
KG) has been reported. Also, the general formula Cu
xMo6S8-y (2≦x≦4, 7.75≦8-y≦8
The copper Chevrel phase compound represented by ) has a wide copper composition range, the copper ions that have entered the cluster gaps are extremely mobile, and it has a high electrical conductivity of 103 S cm or more. Recently, it has attracted attention as a positive electrode active material for lithium and copper secondary batteries and as a material for Josephson devices. Furthermore, as a Chevrel phase compound, in addition to this, M (metal) is nickel (N
i) Chevrel phase compounds are known that have a wide solid solution region with iron (Fe), chromium (Cr), etc., and there is little change in sulfur composition due to changes in metal composition, and extra electrons in the structure are converted to covalent bonds. It is speculated that the electrons are used and move within the structure as itinerant electrons.

【0015】一方、窒素酸化物(NOX)中の主成分で
あるー酸化窒素(NO)は、窒素が奇数電子をもつため
反結合性パイ(π*)軌道に1個の不対電子があり、も
しこのパイ(π*)軌道にもう1個の電子が加わると、
結合エネルギーが減少して窒素ガス(N2)と酸素ガス
(O2)に分解しやすくなる。ー酸化窒素(NO)への
電子供与体として上記シェブレル相化合物を用いると、
理論的にはー酸化窒素(NO)へ容易に電子を与えて窒
素ガス(N2)と酸素ガス(O2)への分解が促進され
る。また、オレフィン系やパラフィン系の炭化水素やー
酸化炭素、アンモニヤ、尿素等の還元剤を用いると、シ
ェブレル相化合物によるー酸化窒素(NO)の接触還元
による低減が極めて容易になる。
On the other hand, nitrogen oxide (NO), which is the main component in nitrogen oxides (NOX), has one unpaired electron in the antibonding pi (π*) orbit because nitrogen has an odd number of electrons. , if one more electron is added to this pi (π*) orbital, then
The binding energy decreases, making it easier to decompose into nitrogen gas (N2) and oxygen gas (O2). - When the above Chevrel phase compound is used as an electron donor to nitrogen oxide (NO),
Theoretically, electrons are easily given to nitrogen oxide (NO), promoting its decomposition into nitrogen gas (N2) and oxygen gas (O2). Further, when a reducing agent such as an olefinic or paraffinic hydrocarbon, carbon oxide, ammonia, or urea is used, it becomes extremely easy to reduce nitrogen oxide (NO) by catalytic reduction by a Chevrel phase compound.

【0016】窒素酸化物の接触分解若しくは選択接触分
解用触媒として使用するシェブレル相化合物は、結晶構
造が菱面体であって約95°の軸角α(rhomboh
edral  angle  α)を有する化合物が、
活性度の点から最適である。このことは、本件発明者が
実施した多くの窒素酸化物の分解除去試験の結果から判
明したものである。また、前記シェブレル相化合物の結
晶構造とその軸角αから、シェブレル相化合物の金属M
としては、イオン半径が約1Å以下の三元系金属、例え
ば銅、ニッケル、コバルト、クロム、鉄、マンガン、マ
グネシウム、亜鉛等がこれに適合することとなる。
The Chevrel phase compound used as a catalyst for catalytic cracking or selective catalytic cracking of nitrogen oxides has a rhombohedral crystal structure and an axial angle α of about 95°.
edral angle α) is
Optimum in terms of activity. This was found from the results of many nitrogen oxide decomposition and removal tests conducted by the inventor of the present invention. In addition, from the crystal structure of the Chevrel phase compound and its axis angle α, the metal M of the Chevrel phase compound
As such, ternary metals having an ionic radius of about 1 Å or less, such as copper, nickel, cobalt, chromium, iron, manganese, magnesium, and zinc, are suitable.

【0017】同様に、本発明に於いて窒素酸化物の接触
分解若しくは選択接触用触媒として使用するシェブレル
相化合物は、触媒活性度の点からこれを構成する各元素
の組成範囲x,8−y,zが夫々x=1〜5,8−y=
7.4〜8.5及びz=2〜8のものが最適である。こ
のことは、本件発明者が実施した多くの窒素酸化物の分
解除去試験の結果から判明したものである。また、前記
カルコゲンSには、硫黄、セレン、テルルが含まれるが
、通常は硫黄が最適である。
Similarly, in the present invention, the Chevrel phase compound used as a catalyst for catalytic decomposition or selective contact of nitrogen oxides has a composition range x, 8-y of each element constituting it in terms of catalytic activity. , z are respectively x=1 to 5, 8−y=
7.4-8.5 and z=2-8 are optimal. This was found from the results of many nitrogen oxide decomposition and removal tests conducted by the inventor of the present invention. Further, the chalcogen S includes sulfur, selenium, and tellurium, but sulfur is usually most suitable.

【0018】(2)シェブレル相化合物触媒の製造例シ
ェブレル相化合物例えば銅シェブレル相硫化物の安定領
域は、既に本発明者らにより確立されている(マテリア
ルリサーチ、ビュレチン、18,1311〜1316(
1983)参照)ので、これに基づき、今回は中間固溶
体組成の1つであるCu2 Mo6 S7.85を合成
し、これを触媒として用いた。合成方法は、硫化モリブ
デン(MoS2)、銅(Cu)、モリブデン(Mo)を
所定の比率で混合し、石英管中に真空封印した後、10
00℃で3日間反応させ、その後これを急冷した。得ら
れた粉末試料は、X線回析法により相同定を行った結果
、単相のシェブレル相硫化物であることを確認した。こ
のシェブレル相硫化物の粉末をメノウ乳鉢で200メッ
シュ以下に粉砕した後、プロピレングリコール(PG)
中に加え、1g/cm3の濃度の分散液とした。次に、
この分散液を外径6mmのアルミナ棒の表面に長さ15
cmに渡って塗布した後、約10分間100℃にて真空
脱気し、PGを蒸発除去した。前記の如き方法により、
本件発明の実施に使用する触媒のーつが製作された。同
様に、金属の種類並びにその組成範囲を変えて、多種類
の触媒を製作した。
(2) Example of production of Chevrel phase compound catalyst The stability region of Chevrel phase compounds such as copper Chevrel phase sulfides has already been established by the present inventors (Material Research, Buretin, 18, 1311-1316 (
(1983)), based on this, Cu2Mo6S7.85, which is one of the intermediate solid solution compositions, was synthesized and used as a catalyst. The synthesis method is to mix molybdenum sulfide (MoS2), copper (Cu), and molybdenum (Mo) in a predetermined ratio, vacuum seal it in a quartz tube, and then
The reaction was carried out at 00°C for 3 days and then rapidly cooled. As a result of phase identification of the obtained powder sample by X-ray diffraction, it was confirmed that it was a single-phase Chevrel phase sulfide. This Chevrel phase sulfide powder was ground to 200 mesh or less in an agate mortar, and then converted into propylene glycol (PG).
A dispersion liquid having a concentration of 1 g/cm3 was prepared. next,
This dispersion was applied to the surface of an alumina rod with an outer diameter of 6 mm for a length of 15 mm.
After coating over a cm length, vacuum degassing was performed at 100° C. for about 10 minutes to evaporate and remove PG. By the method as described above,
One of the catalysts used in the practice of the present invention was fabricated. Similarly, various types of catalysts were fabricated by changing the types of metals and their composition ranges.

【0019】(3)窒素酸化物の除去試験(NO.1)
先ず、前記アルミナ棒3本を1セットとして反応管内に
設置した。3本のアルミナ棒に塗布されたシェブレル相
硫化物の総量は、約1.2gであった。次に、電気炉で
反応管(内径24mm、外径28mm)を加熱し、その
温度を300℃±2℃に保持した。一方、窒素(N2)
とー酸化窒素(NO)の混合気体を形成し、これを排ガ
スとして実験に用いた。尚、混合比はガス混合器を用い
て調節した。また、全ガス流量は3.7cm3 /se
c(線速度=1cm/sec)とした。電気炉を通過し
たー酸化窒素(NO)の量はガラス製検知管(ガステッ
ク社製)又はNOX メータ(島津製作所製NOA−3
05A)により測定した。窒素酸化物の低減試験の結果
は、入口のー酸化窒素(NO)濃度が5800ppmの
場合、出口のNO濃度は4000ppmであり、転化率
は31%であった。また入口のNOの濃度が2000p
pmでは、出口のNO濃度が1300ppmとなり、転
化率は35%であった。また、混合気体を通じたまま、
30分後に再測定をしても転化率には全く変化がなく、
シェブレル相硫化物の触媒としての機能が持続している
ことを確認した。
(3) Nitrogen oxide removal test (NO.1)
First, a set of three alumina rods was placed in a reaction tube. The total amount of Chevrel phase sulfide applied to the three alumina rods was approximately 1.2 g. Next, the reaction tube (inner diameter 24 mm, outer diameter 28 mm) was heated in an electric furnace, and the temperature was maintained at 300°C±2°C. On the other hand, nitrogen (N2)
A mixed gas of nitrogen oxide (NO) and nitrogen oxide (NO) was formed and used as exhaust gas in the experiment. Note that the mixing ratio was adjusted using a gas mixer. Also, the total gas flow rate is 3.7cm3/se
c (linear velocity = 1 cm/sec). The amount of nitrogen oxide (NO) that has passed through the electric furnace can be measured using a glass detection tube (manufactured by Gastech) or a NOX meter (manufactured by Shimadzu Corporation NOA-3).
05A). The results of the nitrogen oxide reduction test showed that when the nitrogen oxide (NO) concentration at the inlet was 5800 ppm, the NO concentration at the outlet was 4000 ppm, and the conversion rate was 31%. Also, the concentration of NO at the inlet is 2000p.
pm, the NO concentration at the outlet was 1300 ppm, and the conversion rate was 35%. Also, while passing the mixed gas,
There was no change in the conversion rate even after re-measuring after 30 minutes.
It was confirmed that the function of Chevrel phase sulfide as a catalyst continued.

【0020】同様の窒素酸化物の除去試験を、反応管の
温度を変えて行った。その結果、温度が約100℃に於
いても、触媒活性度に殆ど変化のないことが確認された
。また、シェブレル相化合物の種類を変えて各種の窒素
酸化物の除去試験を行ったが、これにより、金属Mの種
類及び化合物を構成する各元素の組成値を前記の範囲内
とすることにより、ほぼ同等の窒素酸化物の転化率を達
成し得ることが確認できた。
A similar nitrogen oxide removal test was conducted by varying the temperature of the reaction tube. As a result, it was confirmed that there was almost no change in catalyst activity even at a temperature of about 100°C. In addition, we conducted various nitrogen oxide removal tests by changing the type of Chevrel phase compound, and found that by keeping the type of metal M and the composition value of each element constituting the compound within the above range, It was confirmed that almost the same conversion rate of nitrogen oxides could be achieved.

【0021】(4)窒素酸化物の除去試験(NO.2)
上記(3)項の除去試験とほぼ同じ条件下で、混合気体
のなかに炭化水素を混合した場合、混合気体の中にー酸
化炭素を混合した場合及び混合気体の中にアンモニヤ又
は尿素を混合した場合の夫々について、NOの転化率と
30分間連続して混合気体を通した場合のNOの転化率
の変化を調査した。その結果、前記(3)項の接触分解
の場合とほぼ同等のNO転化率が、選択接触還元方法に
於いても得られることが判明した。また、連続して混合
気体を通してもNO転化率には変化が殆どなく、長期に
亘って触媒活性が保持されていることが確認された。
(4) Nitrogen oxide removal test (NO.2)
Under almost the same conditions as the removal test in item (3) above, when a hydrocarbon is mixed in a gas mixture, when carbon oxide is mixed in a gas mixture, and when ammonia or urea is mixed in a gas mixture. For each case, the NO conversion rate and the change in NO conversion rate when the mixed gas was passed continuously for 30 minutes were investigated. As a result, it was found that the selective catalytic reduction method can also obtain an NO conversion rate that is almost the same as that of the catalytic cracking described in item (3) above. Further, even when the mixed gas was continuously passed through, there was almost no change in the NO conversion rate, and it was confirmed that the catalyst activity was maintained over a long period of time.

【0022】同様の選択接触還元法による窒素酸化物の
除去試験を、触媒温度並びにシェブレル相化合物の種類
を変えて行ったが、これにより、温度が約100℃以上
で、且つ金属Mの種類及び各元素の組成値が前記の範囲
内とすることにより、ほぼ同等の窒素酸化物の転化率を
達成し得ることが確認できた。
A similar test for removing nitrogen oxides by selective catalytic reduction was carried out by changing the catalyst temperature and the type of Chevrel phase compound. It was confirmed that almost the same conversion rate of nitrogen oxides could be achieved by setting the composition values of each element within the above ranges.

【0023】(5)シェブレル相化合物の安定性試験シ
ェブレル相化合物は一般に空気中でも350℃までは安
定であることが知られている。また、本試験により水素
気流中では約730℃までは、安定であり、亜硫酸ガス
(SO2)雰囲気中でも、約450℃までは安定である
ことが確認された。
(5) Stability test of Chevrel phase compounds Chevrel phase compounds are generally known to be stable even in air up to 350°C. Furthermore, this test confirmed that it is stable up to about 730°C in a hydrogen stream, and stable up to about 450°C in a sulfur dioxide gas (SO2) atmosphere.

【0024】換言すれば、シェブレル相化合物はモリブ
デン硫化物(MXMo6S8−y)若しくはモリブデン
酸化硫化物(MXMo6S8−yOZ)であるので、亜
硫酸ガス(SO2)などの腐食性ガス中や水素、炭化水
素、アンモニヤ等を含む還元性ガス中でも安定且つ有効
に作用し、他に例を見ない画期的な窒素酸化物(NOX
)低減用触媒であることが判明した。また、前記実施例
に於いては、アルミナ棒に銅シェブレル相硫化物の微粉
末を塗布して形成した触媒を使用しているが、触媒坦体
はセラミック等が好都合である。
In other words, since the Chevrel phase compound is molybdenum sulfide (MXMo6S8-y) or molybdenum oxidized sulfide (MXMo6S8-yOZ), it can be used in corrosive gases such as sulfur dioxide gas (SO2), hydrogen, hydrocarbons, etc. It works stably and effectively even in reducing gases such as ammonia, and is an unprecedented nitrogen oxide (NOx) product.
) was found to be a catalyst for reduction. Further, in the above embodiments, a catalyst formed by applying fine powder of copper Chevrel phase sulfide to an alumina rod is used, but it is convenient to use ceramic or the like as the catalyst carrier.

【0025】[0025]

【発明の効果】本発明に於いては、シェブレル相化合物
を触媒としているため、排ガス内に煤や酸素、亜硫酸ガ
ス(SO2)などの腐食性ガスが大量に混合していても
、長期に亘って高いNO転化率を達成することが出来る
。即ち、本発明で使用するシェブレル相化合物触媒は三
元系モリブデン硫化物(MXMo6S8−y)若しくは
モリブデン酸化硫化物(MXMo6S8−yOZ)であ
るため、空気若しくは酸素や腐食性の亜硫酸ガス(SO
2)などを含んだ排ガス中であっても、或いは水素や炭
化水素、ー酸化炭素、アンモニヤ、尿素等の還元剤を含
む排ガス中であっても、安定且つ有効に窒素酸化物(N
OX)を接触分解或いは選択接触還元することが出来、
効率のよい窒素酸化物の除去を行なえる。また、シェブ
レル相化合物触媒は極めて安定した物質であるため、窒
素酸化物除去装置の運転並びに保守管理も極めて容易と
なり、排ガス処理費の大幅な引き下げが可能となる。上
述の通り、これ迄の乾式方法による窒素酸化物の除去に
於いては、亜硫酸ガス(SO2)などの腐食性ガスや空
気若しくは酸素中で、安定且つ有効に窒素酸化物(NO
X)を接触分解あるいは選択接触還元することが不可能
であったが、本件方法発明では、前述の如く長期に亘っ
て安定した高NO転化率を達成することができ、本発明
は他に例を見ない優れた実用的効用を有する窒素酸化物
の低減方法である。
[Effects of the Invention] Since the present invention uses a Chevrel phase compound as a catalyst, it can be used for a long period of time even if a large amount of corrosive gases such as soot, oxygen, and sulfur dioxide gas (SO2) are mixed in the exhaust gas. A high NO conversion rate can be achieved. That is, since the Chevrel phase compound catalyst used in the present invention is ternary molybdenum sulfide (MXMo6S8-y) or molybdenum oxidized sulfide (MXMo6S8-yOZ), it is free from air or oxygen or corrosive sulfur dioxide gas (SO
2), or even in exhaust gas containing reducing agents such as hydrogen, hydrocarbons, carbon oxide, ammonia, and urea, nitrogen oxides (N) can be stably and effectively removed.
OX) can be catalytically cracked or selectively reduced,
Nitrogen oxides can be removed efficiently. Furthermore, since the Chevrel phase compound catalyst is an extremely stable substance, the operation and maintenance of the nitrogen oxide removal device are extremely easy, making it possible to significantly reduce exhaust gas treatment costs. As mentioned above, in the conventional dry method for removing nitrogen oxides, nitrogen oxides (NO
Although it was impossible to catalytically crack or selectively catalytically reduce This is a method for reducing nitrogen oxides that has excellent practical effects without causing any problems.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  MXMo6S8−y及びMXMo6S
8−yOZ(但し、Mは金属、Sはカルコゲン、Oは酸
素)で表されるシェブレル相化合物を触媒として、排ガ
ス中の窒素酸化物を接触分解することを特徴とする窒素
酸化物の低減方法。
[Claim 1] MXMo6S8-y and MXMo6S
A method for reducing nitrogen oxides, characterized by catalytically decomposing nitrogen oxides in exhaust gas using a Chevrel phase compound represented by 8-yOZ (where M is a metal, S is a chalcogen, and O is oxygen) as a catalyst. .
【請求項2】  請求項1のシェブレル相化合物に於い
て、xを1〜5、8−yを7.4〜8.5、zを2〜8
とするようにした請求項1に記載の窒素酸化物の低減方
法。
2. In the Chevrel phase compound of claim 1, x is 1 to 5, 8-y is 7.4 to 8.5, and z is 2 to 8.
The method for reducing nitrogen oxides according to claim 1.
【請求項3】  請求項1のシェブレル相化合物に於い
て、カルコゲンSを硫黄とすると共に、金属Mを銅、ニ
ッケル、コバルト、クロム、鉄、マンガン、マグネシウ
ム、亜鉛の何れかとした窒素酸化物の低減方法。
3. In the Chevrel phase compound of claim 1, a nitrogen oxide in which chalcogen S is sulfur and metal M is copper, nickel, cobalt, chromium, iron, manganese, magnesium, or zinc. Reduction method.
【請求項4】  セラミック等に担持したシェブレル相
化合物を100℃〜350℃の温度に加熱するようにし
た請求項1に記載の窒素酸化物の低減方法。
4. The method for reducing nitrogen oxides according to claim 1, wherein the Chevrel phase compound supported on ceramic or the like is heated to a temperature of 100° C. to 350° C.
【請求項5】  MXMo6S8−y及びMXMo6S
8−yOZ(但し、Mは金属、Sはカルコゲン、Oは酸
素)で表されるシェブレル相化合物を触媒とすると共に
、還元剤を混合した排ガス中の窒素酸化物を前記シェブ
レル相化合物を触媒として選択接触還元することを特徴
とする窒素酸化物の低減方法。
[Claim 5] MXMo6S8-y and MXMo6S
A Chevrel phase compound represented by 8-yOZ (where M is a metal, S is a chalcogen, and O is oxygen) is used as a catalyst, and nitrogen oxides in the exhaust gas mixed with a reducing agent are treated using the Chevrel phase compound as a catalyst. A method for reducing nitrogen oxides, characterized by selective catalytic reduction.
【請求項6】  還元剤としてアンモニヤ、尿素、炭化
水素、一酸化炭素の何れかを用いるようにした請求項5
に記載の窒素酸化物の低減方法。
[Claim 6] Claim 5, wherein any one of ammonia, urea, hydrocarbon, and carbon monoxide is used as the reducing agent.
The method for reducing nitrogen oxides described in .
【請求項7】  請求項5のシェブレル相化合物に於い
て、xを1〜5、8−yを7.4〜8.5、zを2〜8
とするようにした窒素酸化物の低減方法。
7. In the Chevrel phase compound of claim 5, x is 1 to 5, 8-y is 7.4 to 8.5, and z is 2 to 8.
A method for reducing nitrogen oxides.
【請求項8】  請求項5のシェブレル相化合物に於い
て、カルコゲンSを硫黄とすると共に、金属Mを銅、ニ
ッケル、コバルト、クロム、鉄、マンガン、マグネシウ
ム、亜鉛の何れかとした窒素酸化物の低減方法。
8. In the Chevrel phase compound of claim 5, a nitrogen oxide in which chalcogen S is sulfur and metal M is copper, nickel, cobalt, chromium, iron, manganese, magnesium, or zinc. Reduction method.
【請求項9】  セラミック等に担持したシェブレル相
化合物を100〜350℃の温度に加熱し、その外表面
へ還元剤を混合した排ガスを接触流通させるようにした
請求項5に記載の窒素酸化物の低減方法。
9. The nitrogen oxide according to claim 5, wherein the Chevrel phase compound supported on a ceramic or the like is heated to a temperature of 100 to 350° C., and exhaust gas mixed with a reducing agent is caused to flow in contact with the outer surface of the Chevrel phase compound. How to reduce
JP3183368A 1990-08-07 1991-06-27 Method for reducing nitrogen oxide Pending JPH04363117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183368A JPH04363117A (en) 1990-08-07 1991-06-27 Method for reducing nitrogen oxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20962690 1990-08-07
JP2-209626 1990-08-07
JP3183368A JPH04363117A (en) 1990-08-07 1991-06-27 Method for reducing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH04363117A true JPH04363117A (en) 1992-12-16

Family

ID=26501839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183368A Pending JPH04363117A (en) 1990-08-07 1991-06-27 Method for reducing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH04363117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846033B2 (en) 2021-05-18 2023-12-19 Board Of Trustees Of Northern Illinois University Electrochemical production of ammonia and catalyst therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846033B2 (en) 2021-05-18 2023-12-19 Board Of Trustees Of Northern Illinois University Electrochemical production of ammonia and catalyst therefor

Similar Documents

Publication Publication Date Title
Yang et al. Generation of abundant oxygen vacancies in Fe doped δ-MnO2 by a facile interfacial synthesis strategy for highly efficient catalysis of VOCs oxidation
US4001371A (en) Catalytic process
CN109821564B (en) Preparation method of coated catalyst and catalyst
Zhang et al. In-situ synthesis of monodispersed CuxO heterostructure on porous carbon monolith for exceptional removal of gaseous Hg0
WO2017049804A1 (en) Catalyst capable of catalytically removing environmental pollutants at low temperature and preparation method thereof
Li et al. Revealing the promotional effect of Ce doping on the low-temperature activity and SO2 tolerance of Ce/FeVO4 catalysts in NH3-SCR
CN113385185A (en) High-activity and selective perovskite type photo-thermal catalyst and preparation method and application thereof
CN107376893B (en) A kind of composite catalyst and preparation method thereof handling the exhaust gas containing NO
Hao et al. Synthesis of Cu-Ce-BTC catalyst and its catalytic performance for denitration and synergistic mercury removal
Ren et al. Enhancement effect of RuO2 doping on the reduction process of NOx by NH3 via V2O5-WO3/TiO2 particle catalyst under low-temperature: Structure-activity relationship and reaction mechanism
Feng et al. Niobium oxide promoted with alkali metal nitrates for soot particulate combustion: elucidating the vital role of active surface nitrate groups
US6297189B1 (en) Sulfide catalysts for reducing SO2 to elemental sulfur
Liu et al. Getting insight into the CO tolerance over Co-modified MnSm/Ti catalyst for NH3-SCR of NOx at low temperature: Experiments and DFT studies
CN113441177A (en) Metal-doped recessive manganese-potassium ore molecular sieve catalyst and preparation method and application thereof
CN115400772B (en) Improved perovskite nanocrystalline heterojunction composite material photocatalyst and preparation method thereof
JPH04363117A (en) Method for reducing nitrogen oxide
CN104707624B (en) Ni-Fe-Pt doped catalyst and preparation method and application thereof in room temperature H2-SCR denitration method
Hibbert et al. The reduction of sulphur dioxide by carbon monoxide on a La0. 5Sr0. 5CoO3 catalyst
Ao et al. 4Cu-ZSM-5 catalyst for the selective catalytic reduction of NO with NH3 and oxidation of elemental mercury
Li et al. Mn‐Based Mullites for Environmental and Energy Applications
CN113694920A (en) Cordierite-based SCR catalyst, and preparation method and application thereof
EP0470728A1 (en) Methods for lowering the nitrogen oxides content of exhaust gases
Egorova et al. Synthesis of materials of composition CoM2O4 (M= Al, Fe) for purification of aqueous solutions
Chu et al. Performance of Titanium-Based Catalysts Loaded with Transition Metals (Cu, Mn and Fe) for Simultaneous Elimination of NO and Typical VOCs
Ran et al. Unraveling the Mechanistic Origin of High N2 Selectivity in Ammonia Selective Catalytic Oxidation on CuO-Based Catalyst