JPH0436255B2 - - Google Patents
Info
- Publication number
- JPH0436255B2 JPH0436255B2 JP3019686A JP3019686A JPH0436255B2 JP H0436255 B2 JPH0436255 B2 JP H0436255B2 JP 3019686 A JP3019686 A JP 3019686A JP 3019686 A JP3019686 A JP 3019686A JP H0436255 B2 JPH0436255 B2 JP H0436255B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- injection amount
- calculation means
- target air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 178
- 238000002347 injection Methods 0.000 claims description 83
- 239000007924 injection Substances 0.000 claims description 83
- 238000001514 detection method Methods 0.000 claims description 16
- 238000012937 correction Methods 0.000 description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、エンジンの運転状態に応じて燃料噴
射量を求め、空燃比センサによる検出空燃比と目
標空燃比との偏差に応じて、上記燃料噴射量をフ
イードバツク補正するようにしたエンジンの空燃
比制御装置に関するものである。Detailed Description of the Invention (Industrial Field of Application) The present invention determines the fuel injection amount according to the operating state of the engine, and calculates the amount of fuel to be injected according to the deviation between the air-fuel ratio detected by the air-fuel ratio sensor and the target air-fuel ratio. The present invention relates to an air-fuel ratio control device for an engine that performs feedback correction on fuel injection amount.
(従来技術)
従来より、エンジンの空燃比制御において、供
給空燃比の制御精度を向上するために、空燃比セ
ンサによつて供給空燃比を検出し、この検出空燃
比を目標空燃比と比較し、その偏差に応じて供給
空燃比が目標空燃比となるように燃料噴射量をフ
イードバツク補正する技術が知られている。特
に、上記空燃比センサとして排気ガス酸素濃度に
略比例した出力信号を発生するリーンセンサを使
用し、このリーンセンサの出力に応じて、空燃比
が理論空燃比よりリーン側の領域にある場合にお
いてもフイードバツク制御するようにして、燃費
性能を向上するようにした技術が公知である(例
えば、特開昭59−208141号公報参照)。(Prior art) Conventionally, in engine air-fuel ratio control, in order to improve the control accuracy of the supplied air-fuel ratio, an air-fuel ratio sensor detects the supplied air-fuel ratio, and this detected air-fuel ratio is compared with a target air-fuel ratio. A technique is known in which the fuel injection amount is feedback-corrected in accordance with the deviation so that the supplied air-fuel ratio becomes the target air-fuel ratio. In particular, when a lean sensor that generates an output signal approximately proportional to the exhaust gas oxygen concentration is used as the air-fuel ratio sensor, and the air-fuel ratio is in a region leaner than the stoichiometric air-fuel ratio according to the output of the lean sensor. A technique is known in which the fuel efficiency is improved through feedback control (for example, see Japanese Unexamined Patent Publication No. 59-208141).
上記のような空燃比制御においては、エンジン
回転数およびエンジン負荷に応じて燃料噴射量も
しくは燃料噴射パルス幅を設定したマツプを使用
し、エンジンの運転状態における基本燃料噴射量
を求めて、この値に各種補正を施して実際の燃料
噴射量を決定するものである。また、空燃比セン
サ出力を目標値と比較してフイードバツク信号を
得るために、運転状態に応じた目標空燃比に対応
する基準値を同様に設定したマツプを使用し、こ
の基準値と空燃比センサの検出値とを比較し、そ
の偏差に基づいて前記燃料噴射量を補正制御して
いる。このように各種の制御マツプを必要とし、
それを記憶するための大きなメモリ容量が必要と
されている。 In the air-fuel ratio control described above, a map is used that sets the fuel injection amount or fuel injection pulse width according to the engine speed and engine load, and the basic fuel injection amount under the engine operating condition is determined and this value is determined. The actual fuel injection amount is determined by applying various corrections to the fuel injection amount. In addition, in order to obtain a feedback signal by comparing the air-fuel ratio sensor output with the target value, a map in which a reference value corresponding to the target air-fuel ratio corresponding to the operating condition is similarly set is used, and this reference value and the air-fuel ratio sensor are compared. The detected value is compared with the detected value, and the fuel injection amount is corrected and controlled based on the deviation. In this way, various control maps are required,
A large memory capacity is required to store it.
さらに、上記のような各種マツプを作成する場
合に、新規エンジンの開発、エンジンの性能変
更、制御特性の変更、インジエクタの変更等があ
つた時には、これらに応じて新たにマツプを作成
しなければならないものである。この場合、燃料
噴射量を演算するためのマツプとして燃料噴射パ
ルス幅の値を登録しているマツプでは、運転状態
に対応する最適噴射パルス幅の測定設定をし直さ
なければならず、開発工数が多大なものとなる。
特に、エンジンの運転状態に応じた目標空燃比等
は、エンジン変更もしくはインジエクタ変更等に
よつては殆ど影響されないものであり、これらの
要素を加味して燃料噴射パルスをマツプするため
には、長期にわたる多くの実験を行わなければな
らないものである。 Furthermore, when creating the various maps mentioned above, when a new engine is developed, engine performance is changed, control characteristics are changed, injector is changed, etc., new maps must be created accordingly. It is something that cannot happen. In this case, in a map that registers the value of fuel injection pulse width as a map for calculating the fuel injection amount, it is necessary to reset the measurement settings of the optimal injection pulse width corresponding to the operating condition, which increases development man-hours. It will be huge.
In particular, the target air-fuel ratio, which depends on the engine operating condition, is almost unaffected by engine changes or injector changes. This requires many experiments over a period of time.
(発明の目的)
本発明は上記事情に鑑み、エンジンの運転状態
に応じた燃料噴射量に基づく供給空燃比が目標空
燃比になるように制御するについて、制御系統の
簡素化および開発工数の低減を図るようにしたエ
ンジンの空燃比制御装置を提供することを目的と
するものである。(Object of the Invention) In view of the above circumstances, the present invention simplifies the control system and reduces development man-hours in controlling the supply air-fuel ratio to the target air-fuel ratio based on the fuel injection amount depending on the operating state of the engine. It is an object of the present invention to provide an air-fuel ratio control device for an engine.
(発明の構成)
本発明の空燃比制御装置は、吸入空気量に応じ
て理論空燃比に対応する基本噴射量関を数式に基
づいて求める基本噴射量演算手段と、運転状態に
応じて予め定められた目標空燃比を記憶したマツ
プから運転状態に対応する目標空燃比を求める目
標空燃比演算手段と、上記目標空燃比を用いて空
燃比センサの検出信号の比較基準値を求める基準
値演算手段と、空燃比センサの検出信号と上記比
較基準値とを比較して両者の偏差に応じたフイー
ドバツク係数を求めるフイードバツク係数演算手
段と、理論空燃比と前記目標空燃演算手段で求め
た目標空燃比の比と上記フイードバツク係数とを
用いて前記基本噴射量を補正して最終噴射量を求
める最終噴射量演算手段とを備えたことを特徴と
するものである。(Structure of the Invention) The air-fuel ratio control device of the present invention includes a basic injection amount calculation means that calculates a basic injection amount function corresponding to the stoichiometric air-fuel ratio according to the intake air amount based on a mathematical formula, and a basic injection amount calculation means that is determined in advance according to the operating state. a target air-fuel ratio calculation means for calculating a target air-fuel ratio corresponding to the operating state from a map storing the target air-fuel ratio determined by the target air-fuel ratio; and a reference value calculation means for calculating a reference value for comparison of the detection signal of the air-fuel ratio sensor using the target air-fuel ratio. and a feedback coefficient calculation means for comparing the detection signal of the air-fuel ratio sensor with the comparison reference value to obtain a feedback coefficient according to the deviation between the two, and a target air-fuel ratio calculated by the theoretical air-fuel ratio and the target air-fuel ratio calculation means. The present invention is characterized by comprising a final injection amount calculation means for correcting the basic injection amount using the ratio of 1 and the feedback coefficient to obtain a final injection amount.
第1図は本発明の構成を明示するための全体構
成図である。エンジン1の吸気通路2に配設した
インジエクタ3から所定の燃料を噴射供給して供
給空燃比を調整する空燃比調整手段4を設け、こ
の空燃比調整手段4は最終噴射量演算手段5の信
号を受けて所定の時期に所定のパルス幅を有する
燃料噴射パルスをインジエクタ3に出力するもの
である。この最終噴射量演算手段5は、基本噴射
量演算手段6、目標空燃比演算手段7、フイード
バツク係数演算手段8の信号をそれぞれ受けて最
終噴射量を演算するものである。 FIG. 1 is an overall configuration diagram for clearly showing the configuration of the present invention. An air-fuel ratio adjusting means 4 is provided which injects and supplies a predetermined fuel from an injector 3 disposed in the intake passage 2 of the engine 1 to adjust the supplied air-fuel ratio. In response to this, a fuel injection pulse having a predetermined pulse width is output to the injector 3 at a predetermined timing. The final injection amount calculation means 5 receives signals from the basic injection amount calculation means 6, the target air-fuel ratio calculation means 7, and the feedback coefficient calculation means 8, respectively, and calculates the final injection amount.
基本噴射量演算手段6は、吸入空気量を検出す
る吸気量検出手段9の信号を受け、吸入空気量に
応じて理論空燃比に対する基本噴射量を関数式に
基づいて演算する。この関数式はエンジン仕様の
変更等に対応して、吸気量検出手段9の検出特性
とインジエクタ3の噴射特性とをマツチングす
る。また、目標空燃比演算手段7は、運転状態に
応じて予め定められた目標空燃比を記憶したマツ
プを備え、エンジンの運転状態を検出する運算状
態検出手段10の信号を受け、運転状態に応じて
上記マツプから目標空燃比を求める。このマツプ
には各運転状態で目標となる最適な空燃比が記憶
されている。フイードバツク係数演算手段8は、
上記目標空燃比演算手段7による目標空燃比を用
いて比較基準値を求める基準値演算手段11の信
号Vrと、エンジン1の排気通路12に介装した
空燃比センサ13(リーンセンサ)の検出信号
Vsとを受け、空燃比センサ13の検出信号Vsと
基準信号Vrを比較して両者の偏差に応じたフイ
ードバツク係数を演算するものである。 The basic injection amount calculation means 6 receives a signal from the intake air amount detection means 9 that detects the intake air amount, and calculates the basic injection amount for the stoichiometric air-fuel ratio according to the intake air amount based on a functional formula. This functional expression matches the detection characteristics of the intake air amount detection means 9 and the injection characteristics of the injector 3 in response to changes in engine specifications. Further, the target air-fuel ratio calculating means 7 is provided with a map storing a target air-fuel ratio determined in advance according to the operating state, receives a signal from the operating state detecting means 10 for detecting the operating state of the engine, and responds according to the operating state. The target air-fuel ratio is determined from the above map. This map stores the target optimum air-fuel ratio for each operating state. The feedback coefficient calculating means 8 is
The signal Vr of the reference value calculation means 11 which calculates the comparison reference value using the target air-fuel ratio by the target air-fuel ratio calculation means 7, and the detection signal of the air-fuel ratio sensor 13 (lean sensor) installed in the exhaust passage 12 of the engine 1.
Vs, the detection signal Vs of the air-fuel ratio sensor 13 is compared with the reference signal Vr, and a feedback coefficient corresponding to the deviation between the two is calculated.
上記各手段6〜8からの信号を受けた前記最終
噴射量演算手段5は、基本噴射量演算手段6から
の理論空燃比に対応する基本噴射量を、理論空燃
比と目標空燃比演算手段7からの運転状態に応じ
た目標空燃比との比によつて補正して、目標空燃
比に対応した燃料噴射量を求めるとともに、さら
にフイードバツク係数演算手段8からのフイード
バツク係数で補正して、供給空燃比に相当する空
燃比センサ13の検出信号と目標空燃比に対応す
る基準値とが一致する方向に修正した最終噴射量
を求めるものである。 The final injection amount calculation means 5 receives the signals from the respective means 6 to 8, and calculates the basic injection amount corresponding to the stoichiometric air-fuel ratio from the basic injection amount calculation means 6, and calculates the basic injection amount corresponding to the stoichiometric air-fuel ratio and the target air-fuel ratio calculation means 7. The fuel injection amount corresponding to the target air-fuel ratio is determined by correcting the fuel injection amount by the ratio between the target air-fuel ratio and the target air-fuel ratio according to the operating condition from The final injection amount is determined so that the detection signal of the air-fuel ratio sensor 13 corresponding to the fuel ratio matches the reference value corresponding to the target air-fuel ratio.
(発明の効果)
本発明によれば、燃料噴射量の演算において、
目標空燃比演算手段で運転状態に応じて空燃比マ
ツプから求めた目標空燃比は、最終噴射量演算手
段およびフイードバツク係数演算手段に対する基
準値演算手段の両演算手段で使用し、マツプの共
通化を行い、制御系統の簡素化および記憶容量の
有効利用を図つている。また、エンジンの仕様変
更等により制御特性を設定する場合にも、運転状
態に応じた目標空燃比を記憶したマツプおよびそ
の演算処理の変更は殆どなく、基本噴射量を演算
する関数式を変更し、最終噴射量演算手段におけ
るエンジンとのマツチングを求めればよいので、
その開発工数の低減を図ることができる。(Effects of the Invention) According to the present invention, in calculating the fuel injection amount,
The target air-fuel ratio calculated from the air-fuel ratio map according to the operating state by the target air-fuel ratio calculation means is used by both the final injection amount calculation means and the reference value calculation means for the feedback coefficient calculation means, so that the maps can be shared. The aim is to simplify the control system and make effective use of storage capacity. Furthermore, when setting control characteristics due to changes in engine specifications, etc., there is almost no change in the map that stores the target air-fuel ratio according to the operating condition and its calculation process, and the function formula for calculating the basic injection amount is changed. , it is sufficient to find the matching with the engine in the final injection amount calculation means, so
The number of development steps can be reduced.
特に、基本噴射量の演算は吸入空気量に対し理
論空燃比となるように、エンジン仕様等に応じて
異なる関数式によつて演算する一方、目標空燃比
の演算は運転状態に対応したマツプから求めるも
ので、各運転領域での要求空燃比が異なるのに応
じて最適な目標空燃比を求め、そして、前記理論
空燃比に基づく基本噴射量を目標空燃比に対応し
た噴射量となるように両者の比で補正すること
で、エンジン仕様などの変更に対しては主に基本
噴射量を求める関数式の変更で対応できる一方、
各運転状態でのエンジン性能の変更時には目標空
燃比のマツプ修正で対応することができ、基本噴
射量を目標空燃比に対応して設定するものに比べ
て、運転時におけるコントローラ内部での演算処
理が多少煩雑であつても、エンジン仕様等の変更
時の処理が容易となる。 In particular, the basic injection amount is calculated using different functional formulas depending on the engine specifications, etc., so that the stoichiometric air-fuel ratio is achieved with respect to the intake air amount, while the target air-fuel ratio is calculated from a map corresponding to the operating condition. The optimum target air-fuel ratio is determined according to the different required air-fuel ratios in each operating region, and the basic injection amount based on the stoichiometric air-fuel ratio is adjusted to the injection amount corresponding to the target air-fuel ratio. By correcting based on the ratio of the two, changes in engine specifications etc. can be dealt with mainly by changing the function formula for determining the basic injection amount.
Changes in engine performance in each operating state can be handled by modifying the map of the target air-fuel ratio, and compared to setting the basic injection amount according to the target air-fuel ratio, calculation processing inside the controller during operation is more efficient. Even if the process is somewhat complicated, it will be easier to process when changing engine specifications, etc.
すなわち、運転状態に応じた目標空燃比に対応
する燃料噴射量が直接登録されたマツプを設定す
るようにした場合には、このマツプに集約されて
いる情報が多いことから、その修正には多大の実
験測定を必要とするものである。また、フイード
バツク係数演算手段に対する基準信号も、運転状
態に応じた目標空燃比に対応して設定するために
同様の処理を必要とすることになり、これらの簡
素化が図れる。 In other words, if you set a map in which the fuel injection amount corresponding to the target air-fuel ratio according to the operating condition is directly registered, it will take a lot of effort to modify it because there is a lot of information gathered in this map. This requires experimental measurements. Further, the reference signal for the feedback coefficient calculation means also requires similar processing in order to be set in accordance with the target air-fuel ratio depending on the operating state, and this can be simplified.
(実施例)
以下、図面に沿つて本発明の実施例を説明す
る。第2図は空燃比制御装置を備えたエンジンの
全体構成図である。(Example) Examples of the present invention will be described below with reference to the drawings. FIG. 2 is an overall configuration diagram of an engine equipped with an air-fuel ratio control device.
エンジン1の燃焼室15に吸気を供給する吸気
通路2には、インジエクタ3が配設されて燃料が
供給される。この吸気通路2には、上流側からエ
アクリーナ16、吸気量を計測する吸気量センサ
17、吸気量を制御するスロツトルバルブ18が
順に配設されている。一方、燃焼室15からの排
気ガスを排出する排気通路12には触媒装置19
が介装され、NOxを含む排気ガスの有害成分の
浄化を行うものである。この触媒装置19より上
流側の排気通路12に空燃比センサ13(リーン
センサ)が配設されている。 An injector 3 is disposed in an intake passage 2 that supplies intake air to a combustion chamber 15 of the engine 1, and fuel is supplied thereto. In this intake passage 2, an air cleaner 16, an intake air amount sensor 17 that measures the amount of intake air, and a throttle valve 18 that controls the amount of intake air are arranged in this order from the upstream side. On the other hand, a catalyst device 19 is provided in the exhaust passage 12 that discharges exhaust gas from the combustion chamber 15.
is installed to purify harmful components of exhaust gas including NOx. An air-fuel ratio sensor 13 (lean sensor) is disposed in the exhaust passage 12 upstream of the catalyst device 19.
前記インジエクタ3からの燃料噴射量によつて
エンジン1の燃焼室15に供給する空燃比を調整
するものであり、このインジエクタ3による燃料
噴射はコントローラ20から出力される制御信号
によつて制御される。上記コントローラ20には
エンジン1の運転状態を検出するために、前記吸
気量センサ17からの吸気量信号、スロツトルバ
ルブ18の開度を検出するスロツトルセンサ21
からの検出信号、デイストリビユータ22とイグ
ナイタ23による点火信号に基づくエンジン回転
信号(クランク角信号)、エアクリーナ16に配
設した吸気温センサ24からの吸気温度信号、冷
却水温度を検出する水温センサ25からの水温信
号、さらに、前記空燃比センサ13からの空燃比
信号がそれぞれ入力され、エンジンの運転状態に
応じて、燃料噴射量および噴射タイミングを制御
するものである。なお、26はバツテリである。 The air-fuel ratio supplied to the combustion chamber 15 of the engine 1 is adjusted by the amount of fuel injected from the injector 3, and the fuel injection by the injector 3 is controlled by a control signal output from the controller 20. . The controller 20 includes a throttle sensor 21 that detects the intake air amount signal from the intake air amount sensor 17 and the opening degree of the throttle valve 18 in order to detect the operating state of the engine 1.
A detection signal from the engine rotation signal (crank angle signal) based on the ignition signal from the distributor 22 and the igniter 23, an intake air temperature signal from the intake air temperature sensor 24 disposed in the air cleaner 16, and a water temperature sensor that detects the cooling water temperature. The water temperature signal from 25 and the air-fuel ratio signal from the air-fuel ratio sensor 13 are respectively input, and the fuel injection amount and injection timing are controlled according to the operating state of the engine. Note that 26 is a battery.
そして、上記コントローラ20は、前記第1図
の各手段の機能を有し、吸入空気量に基づいて理
論空燃比に対応する基本噴射量(噴射時間)を求
めるとともに、運転状態に応じて目標空燃比を求
め、リーン領域にあるフイードバツク条件の場合
には目標空燃比に対応した基準値と空燃比センサ
出力とからフイードバツク係数を求め、また、他
の各種補正係数を求めて最終噴射パルス幅を演算
するものである。 The controller 20 has the functions of each of the means shown in FIG. Determine the fuel ratio, and in the case of feedback conditions in the lean region, determine the feedback coefficient from the reference value corresponding to the target air-fuel ratio and the air-fuel ratio sensor output, and calculate the final injection pulse width by determining other various correction coefficients. It is something to do.
第3図はコントローラ20の制御ブロツク図で
ある。吸気量センサ17による吸気量信号Tpは、
吸気温センサ24に基づく吸気温補正係数Cairに
よつて吸気温補正を行つた後、基本噴射パルス
Tp×Ckの演算に使用するとともに、クランク角
によるエンジン回転数Neと吸気量信号Tpに応じ
て予め設定されている第1マツプM1から第1空
燃比AF1を読み出す。一方、スロツトルセンサ
21によるスロツトル開度Taとエンジン回転数
Neに応じて予め設定されている第2マツプM2か
ら第2空燃比AF2を読み出し、前記第1空燃比
AF1とによつて目標空燃比AFを演算する。 FIG. 3 is a control block diagram of the controller 20. The intake air amount signal Tp from the intake air amount sensor 17 is
After the intake temperature is corrected by the intake temperature correction coefficient Cair based on the intake air temperature sensor 24, the basic injection pulse
In addition to being used to calculate Tp×Ck, the first air-fuel ratio AF1 is read from a first map M1 that is preset according to the engine rotational speed Ne based on the crank angle and the intake air amount signal Tp. On the other hand, the throttle opening degree Ta and engine speed detected by the throttle sensor 21
A second air-fuel ratio AF2 is read from a second map M2 preset according to Ne, and the first air-fuel ratio
A target air-fuel ratio AF is calculated based on AF1.
この目標空燃比AFは、水温センサ25に基づ
く暖機増量のための水温補正係数Cwによつて水
温補正が行われた後、前記基本噴射パルスの補正
および基準信号Vrの演算に使用される。 This target air-fuel ratio AF is used to correct the basic injection pulse and calculate the reference signal Vr after water temperature correction is performed using the water temperature correction coefficient Cw for warm-up increase based on the water temperature sensor 25.
空燃比センサ13の信号は増幅され、比較器で
前記基準値Vrと比較した出力信号によりP.I制御
に基づくフイードバツク補正係数Cfbを求める。
また、上記P.I制御における信号反転時のピーク
値の平均処理により学習補正係数Cstdyを求め
る。さらに、前記吸気量信号Tbの変化速度もし
くはスロツトル開度Taのスロツトル速度から加
速状態および減速状態を検出して、加速増量補正
係数Caccおよび減速増量補正係数Cdecを求める。
一方、前記クランク角信号からの始動状態の検出
に基づき始動後増量補正係数Csを水温信号とに
よつて求める。また、復帰減量補正信号Crecを
求めて、上記各種補正信号によつて前記基本噴射
パルスを補正するとともに、バツテリ電圧に基づ
く無効噴射時間Tvを演算し、同様に噴射パルス
を補正して最終燃料噴射パルスを演算し、これを
インジエクタ3に出力するものである。なお、噴
射タイミングについては、別途の制御系統によつ
て設定される。 The signal from the air-fuel ratio sensor 13 is amplified, and the output signal is compared with the reference value Vr by a comparator to determine a feedback correction coefficient Cfb based on PI control.
Furthermore, the learning correction coefficient Cstdy is determined by averaging the peak values at the time of signal inversion in the PI control. Further, the acceleration state and deceleration state are detected from the rate of change of the intake air amount signal Tb or the throttle speed of the throttle opening Ta, and an acceleration increase correction coefficient Cacc and a deceleration increase correction coefficient Cdec are determined.
On the other hand, based on the detection of the starting condition from the crank angle signal, a post-starting increase correction coefficient Cs is determined based on the water temperature signal. In addition, the return reduction correction signal Crec is obtained, and the basic injection pulse is corrected using the various correction signals described above, and an invalid injection time Tv based on the battery voltage is calculated, and the injection pulse is similarly corrected to perform the final fuel injection. It calculates pulses and outputs them to the injector 3. Note that the injection timing is set by a separate control system.
上記コントローラ20の作動を、第4図のフロ
ーチヤートに基づいて説明する。このフローチヤ
ートは、燃料噴射パルスを演算するルーチンの要
部についてのみ示している。 The operation of the controller 20 will be explained based on the flowchart of FIG. 4. This flowchart shows only the main part of the routine for calculating the fuel injection pulse.
スタート後、コントローラ20はステツプS1
でシステムの初期化を行い、ステツプS2でエン
ジン1の運転状態を検出するために前記各種セン
サの出力信号をそれぞれ読み込む。そして、ステ
ツプS3で、吸気量信号Tpに基づいて基本噴射
時間T0=Tp×Ckの算出を行う。この基本噴射時
間T0は、理論空燃比(A/F=14.7)で制御する
場合の噴射量を求めるものであり、係数Ckは吸
気量センサ17とインジエクタ3とのマツチング
係数である。また、吸気量信号Tpは、吸気温セ
ンサ24による吸気温度補正が施された値を使用
するものである。 After the start, the controller 20 moves to step S1.
The system is initialized in step S2, and the output signals of the various sensors are read in order to detect the operating state of the engine 1 in step S2. Then, in step S3, the basic injection time T 0 =Tp×Ck is calculated based on the intake air amount signal Tp. This basic injection time T 0 is used to determine the injection amount when controlling at the stoichiometric air-fuel ratio (A/F=14.7), and the coefficient Ck is a matching coefficient between the intake air amount sensor 17 and the injector 3. Further, the intake air amount signal Tp uses a value subjected to intake air temperature correction by the intake air temperature sensor 24.
次に、ステツプS4で運転状態に応じて基本目
標空燃比AFを求める。この基本目標空燃比AFは
基本的特性としては、第5図に示すように、エン
ジン回転数Neと負荷(吸気圧力Pb)との関係に
おいて、高負荷領域がリツチ領域であり、低中負
荷領域がリーン領域に設定されるものである。上
記リツチ領域とリーン領域との境界ラインa近傍
においては、わずかの負荷の変化によつて急激な
空燃比の変更を行うものであるが、両領域の移行
をシヨツクがなくかつ正確に移行するべく、運転
状態の変化に対して空燃比を緻密に制御するため
に、第1マツプM1と第2マツプM2とによつて基
本目標空燃比AFを求めるものである。 Next, in step S4, a basic target air-fuel ratio AF is determined according to the operating condition. The basic characteristics of this basic target air-fuel ratio AF are that, as shown in Figure 5, in the relationship between engine speed Ne and load (intake pressure Pb), the high load region is the rich region, and the low and medium load region is the rich region. is set in the lean region. Near the boundary line a between the rich region and the lean region, the air-fuel ratio changes rapidly due to a slight change in load, but in order to transition between the two regions accurately and without shock, it is necessary to In order to precisely control the air-fuel ratio in response to changes in operating conditions, a basic target air-fuel ratio AF is determined using the first map M1 and the second map M2 .
上記第1マツプM1の一例は第6図に示すよう
に、エンジン回転数Neと吸気量信号Tpとに応じ
て第1の空燃比AF1が設定され、各エリア内の
数字は空燃比の値を示している。一方、第2マツ
プM2は第7図に示すように、エンジン回転数Ne
とスロツトル開度Taとに応じて第2の空燃比AF
2が設定され、各エリア内の数字は補正空燃比の
値を示している。そして、目標空燃比AFは、運
転状態に応じて求めた第1マツプM1による第1
の空燃比AF1の値から第2マツプM2による第2
の空燃比AF2の値を減算して、すなわち、AF=
AF1−AF2によつて求めるものである。 An example of the first map M1 is shown in FIG. 6, where the first air-fuel ratio AF1 is set according to the engine speed Ne and the intake air amount signal Tp, and the numbers in each area are the values of the air-fuel ratio. It shows. On the other hand, as shown in Fig. 7, the second map M2 is based on the engine speed Ne.
The second air-fuel ratio AF is set according to the throttle opening Ta and
2 is set, and the numbers in each area indicate the value of the corrected air-fuel ratio. Then, the target air-fuel ratio AF is determined by the first map M1 determined according to the operating condition.
The second map M2 is calculated from the value of the air-fuel ratio AF1.
By subtracting the value of air-fuel ratio AF2, i.e., AF=
It is determined by AF1−AF2.
例えば、エンジンの運転状態がエンジン回転数
Neと吸気量信号Tpとの関係でb点にあつて第1
の空燃比AF1の値が22の場合に、エンジン回転
数Neとスロツトル開度Taが60%の時には第2の
空燃比AF2は8であり、基本目標空燃比AFは、
AF=22−8=14となる。そして、スロツトル開
度Taが40〜20%の範囲においては第2の空燃比
AF2は8〜2と細かく設定され、目標空燃比AF
が徐々に大きくなつてリーン領域への移行につい
ての目標空燃比が得られるものである。 For example, if the engine operating status is the engine speed
In the relationship between Ne and the intake air amount signal Tp, the first
When the value of the air-fuel ratio AF1 is 22, when the engine speed Ne and the throttle opening Ta are 60%, the second air-fuel ratio AF2 is 8, and the basic target air-fuel ratio AF is:
AF=22-8=14. Then, when the throttle opening degree Ta is in the range of 40 to 20%, the second air-fuel ratio
AF2 is finely set from 8 to 2, and the target air-fuel ratio AF
gradually increases to obtain the target air-fuel ratio for transition to the lean region.
次にステツプS5は、水温センサ25の検出信
号に基づいて水温補正係数Cwを演算するもので
あり、ステツプS6でこの水温補正係数Cwによ
つて前記ステツプS4で求めた基本目標空燃比
AFを補正し、修正目標空燃比AFDを演算する。
上記水温補正係数Cwは1以下の値であり、第8
図の特性に示すように、水温が低下するほど小さ
な値となるように設定され、リツチな修正目標空
燃比AFDに補正するものである。水温が上昇し
て45℃程度以上となると、補正係数Cwが略1と
なつて略基本目標空燃比AFの値となるものであ
る。 Next, in step S5, a water temperature correction coefficient Cw is calculated based on the detection signal of the water temperature sensor 25, and in step S6, the basic target air-fuel ratio obtained in step S4 is calculated using this water temperature correction coefficient Cw.
Correct AF and calculate corrected target air-fuel ratio AFD.
The above water temperature correction coefficient Cw is a value of 1 or less, and the 8th
As shown in the characteristics in the figure, the value is set to be smaller as the water temperature decreases, and the correction target air-fuel ratio AFD is corrected to be richer. When the water temperature rises to about 45° C. or higher, the correction coefficient Cw becomes approximately 1 and becomes approximately the value of the basic target air-fuel ratio AF.
続いて、ステツプS7で運転状態がフイードバ
ツク条件か否か判定する。このフイードバツク条
件の判定は、修正目標空燃比AFDが14.7以上か
否かで判定し、空燃比がリーン領域にあるYES
時にフイードバツク制御を行い、リツチ領域にあ
るNO時にはオープン制御を行うものである。 Subsequently, in step S7, it is determined whether the operating state satisfies the feedback condition. This feedback condition is determined based on whether the corrected target air-fuel ratio AFD is 14.7 or higher.
At times, feedback control is performed, and when NO is in the rich region, open control is performed.
フイードバツク制御を行う場合には、ステツプ
S8で空燃比センサ13の出力信号Vsと修正目
標空燃比AFDとの比較用の基準値Vrすなわちス
ライスレベルを求める。この基準値Vrは第9図
に示すように、前記修正目標空燃比AFDに対応
する電圧値を、目標空燃比AFDが大きいほど大
きな基準電圧値Vrとなるような特性で求めるも
のである。上記基準値Vrと空燃比センサ13の
出力信号Vsとを比較して、ステツプS9でフイ
ードバツク補正係数Cfbを演算するとともに、ス
テツプS10で学習補正係数Cstdyを演算する。 When performing feedback control, a reference value Vr, that is, a slice level, for comparison between the output signal Vs of the air-fuel ratio sensor 13 and the corrected target air-fuel ratio AFD is determined in step S8. As shown in FIG. 9, this reference value Vr is determined by determining the voltage value corresponding to the corrected target air-fuel ratio AFD based on a characteristic such that the larger the target air-fuel ratio AFD, the larger the reference voltage value Vr. The reference value Vr and the output signal Vs of the air-fuel ratio sensor 13 are compared, and a feedback correction coefficient Cfb is calculated in step S9, and a learning correction coefficient Cstdy is calculated in step S10.
フイードバツク補正係数Cfbは、P.I制御を行う
べく、Cfb=P+∫△Idθにより求める。この制
御は、空燃比センサ出力Vsと基準値Vrとを比較
し、センサ出力Vsが大きい値であれば検出空燃
比が目標空燃比AFDよりリーンであることから
供給空燃比をリツチ側に移行するものであり、逆
にセンサ出力Vsが小さい値であれば検出空燃比
が目標空燃比AFDよりリツチであることから供
給空燃比をリーン側に移行するようにフイードバ
ツク補正係数Cfbを演算するものである。前記P
値は空燃比センサ13の出力Vsと基準値Vrとの
大小関係が反転した場合に一律に加算もしくは減
算する値であり、△I値は所定クランク角毎に加
算もしくは減算する値である。上記P値および△
I値は、アイドル状態においてはフイードバツク
補正係数Cfbすなわち供給空燃比がゆつくり変化
するように、スロツトル開度に対して次のように
設定する。なお、△I値はクランク角360゜当りの
値である。 The feedback correction coefficient Cfb is determined by Cfb=P+∫△Idθ in order to perform PI control. This control compares the air-fuel ratio sensor output Vs with the reference value Vr, and if the sensor output Vs is a large value, the detected air-fuel ratio is leaner than the target air-fuel ratio AFD, so the supplied air-fuel ratio is shifted to the rich side. Conversely, if the sensor output Vs is a small value, the detected air-fuel ratio is richer than the target air-fuel ratio AFD, so the feedback correction coefficient Cfb is calculated to shift the supplied air-fuel ratio to the lean side. . Said P
The value is a value that is uniformly added or subtracted when the magnitude relationship between the output Vs of the air-fuel ratio sensor 13 and the reference value Vr is reversed, and the ΔI value is a value that is added or subtracted at every predetermined crank angle. Above P value and △
The I value is set as follows with respect to the throttle opening so that the feedback correction coefficient Cfb, that is, the supplied air-fuel ratio changes slowly in the idle state. Note that the ΔI value is a value per 360° crank angle.
スロツトル 全開 全閉以外
P値 0.025 0.047
△I値 0.0021 0.0041
また、学習補正係数Cstdyの演算は、空燃比セ
ンサ出力Vsと基準値Vrとの比較によるP.I制御に
基づく前記フイードバツク補正係数Cfbについ
て、このフイードバツク補正係数Cfbの増減状態
が反転した時における各フイードバツク補正係数
Cfbを積算し、所定積算回数に達したときにその
平均値を演算することによつて求めるものであ
る。しかし、この演算した最新の学習補正係数
Cstdy′をそのまま使用して基本噴射時間T0を補
正すると、誤学習した時に大きな空燃比変化を生
起することから、実際に学習補正係数Cstdyとし
て使用する値は、前回の学習補正係数Cstdyに最
新の学習補正係数Cstdy′の1/4の値を加算して更
新して求めるものである。Throttle Fully open Other than fully closed P value 0.025 0.047 △I value 0.0021 0.0041 In addition, the calculation of the learning correction coefficient Cstdy is based on the feedback correction coefficient Cfb based on the PI control based on the comparison between the air-fuel ratio sensor output Vs and the reference value Vr. Each feedback correction coefficient when the increase/decrease state of correction coefficient Cfb is reversed
It is obtained by integrating Cfb and calculating the average value when a predetermined number of integrations is reached. However, this calculated latest learning correction coefficient
If Cstdy′ is used as is to correct the basic injection time T 0 , a large change in the air-fuel ratio will occur if erroneous learning occurs. Therefore, the value actually used as the learning correction coefficient It is calculated by adding and updating the value of 1/4 of the learning correction coefficient Cstdy'.
ステツプS11は、上記フイードバツク補正係
数Cfb、学習補正係数Cstdyのほかに、各種の補
正係数、例えば、加速補正係数Cacc、減速補正
係数Cdec、始動後補正係数Cs、復帰補正係数
Crecおよびバツテリ電圧に基づく無効噴射時間
Tvをそれぞれ演算するものである。 In step S11, in addition to the feedback correction coefficient Cfb and learning correction coefficient Cstdy, various correction coefficients such as acceleration correction coefficient Cacc, deceleration correction coefficient Cdec, post-start correction coefficient Cs, and return correction coefficient are used.
Ineffective injection time based on Crec and battery voltage
This is to calculate Tv respectively.
上記各種補正係数に基づいて、ステツプS12
で最終噴射パルス幅Tiを求めるものであつて、
この最終噴射パルス幅Tiにより所定の噴射タイ
ミングに設定された噴射時期になると、ステツプ
S13のYES判定によつて噴射パルス幅Tiの時
間だけ燃料噴射を行うものである。 Based on the above various correction coefficients, step S12
The final injection pulse width Ti is determined by
When the injection timing is set to a predetermined injection timing based on the final injection pulse width Ti, fuel injection is performed for a period of time equal to the injection pulse width Ti based on the YES determination in step S13.
上記ステツプS12における最終噴射パルス幅
Tiの演算は、ステツプS3で求めた基本噴射時
間T0に対し、理論空燃比(14.7)と前記ステツプ
S6で求めた修正目標空燃比AFDとの比を掛け
て、修正目標空燃比AFDに対応する噴射時間を
求め、さらに、1にフイードバツク補正係数Cfb
および学習補正係数Cstdy等の各種補正係数を加
減算して上記噴射時間に掛けて補正噴射時間を求
め、これに無効噴射時間Tvを加えて最終噴射時
間すなわちパルス幅Tiを求めるものである。 Final injection pulse width in step S12 above
Ti is calculated by multiplying the basic injection time T 0 obtained in step S3 by the ratio of the stoichiometric air-fuel ratio (14.7) and the corrected target air-fuel ratio AFD obtained in step S6 to correspond to the corrected target air-fuel ratio AFD. Find the injection time, and then set the feedback correction coefficient Cfb to 1.
The corrected injection time is obtained by adding and subtracting various correction coefficients such as the learning correction coefficient Cstdy and the like and multiplied by the injection time, and the invalid injection time Tv is added to this to obtain the final injection time, that is, the pulse width Ti.
上記実施例によれば、空燃比を理論空燃比より
リーンな領域で失火をともなうことなく正確にフ
イードバツク制御することができ、良好な運転性
を得て燃費性能の向上が図れるものである。 According to the above embodiment, the air-fuel ratio can be accurately feedback-controlled in a region leaner than the stoichiometric air-fuel ratio without causing misfire, and good drivability can be obtained and fuel efficiency can be improved.
なお、上記実施例においては、最終噴射パルス
の演算およびそれ以前に、フイードバツク補正の
他に各種補正を行うようにしているが、これらの
補正の採否は必要に応じて適宜実施可能である。 In the above embodiment, various corrections are made in addition to feedback correction before and after calculating the final injection pulse, but it is possible to adopt or reject these corrections as appropriate.
第1図は本発明の構成を明示するための構成
図、第2図は空燃比制御装置を備えたエンジンの
全体構成図、第3図はコントローラの制御ブロツ
ク図、第4図はコントローラの作動を説明するた
めのフローチヤート図、第5図は運転状態に応じ
たリーン領域とリツチ領域の設定例を示す特性
図、第6図は運転状態に応じて目標空燃比を求め
る第1のマツプの設定例を示すマツプ図、第7図
は運転状態に応じて目標空燃比を求める第2のマ
ツプの設定例を示すマツプ図、第8図は水温に対
する水温補正係数の特性例を示す特性図、第9図
は目標空燃比に対する比較基準値の特性例を示す
特性図である。
1…エンジン、2…吸気通路、3…インジエク
タ、4…空燃比調整手段、5…最終噴射量演算手
段、6…基本噴射量演算手段、7…目標空燃比演
算手段、8…フイードバツク係数演算手段、9…
吸入空気量検出手段、10…運転状態検出手段、
11…基準値演算手段、13…空燃比センサ、1
7…吸気量センサ、20…コントローラ。
Fig. 1 is a block diagram to clarify the structure of the present invention, Fig. 2 is an overall block diagram of an engine equipped with an air-fuel ratio control device, Fig. 3 is a control block diagram of the controller, and Fig. 4 is the operation of the controller. Fig. 5 is a characteristic diagram showing an example of setting the lean region and rich region according to the operating state, and Fig. 6 is a flowchart diagram for explaining the target air-fuel ratio according to the operating state. A map diagram showing a setting example, FIG. 7 is a map diagram showing a setting example of the second map for determining the target air-fuel ratio according to the operating state, and FIG. 8 is a characteristic diagram showing an example of the characteristics of the water temperature correction coefficient with respect to water temperature. FIG. 9 is a characteristic diagram showing an example of the characteristics of the comparison reference value with respect to the target air-fuel ratio. DESCRIPTION OF SYMBOLS 1...Engine, 2...Intake passage, 3...Injector, 4...Air-fuel ratio adjustment means, 5...Final injection amount calculation means, 6...Basic injection amount calculation means, 7...Target air-fuel ratio calculation means, 8...Feedback coefficient calculation means ,9...
Intake air amount detection means, 10...operating state detection means,
11...Reference value calculation means, 13...Air-fuel ratio sensor, 1
7...Intake air amount sensor, 20...Controller.
Claims (1)
め、空燃比センサの検出信号に応じて上記燃料噴
射量を補正するようにしたエンジンの空燃比制御
装置であつて、吸入空気量に応じて理論空燃比に
対応する基本噴射量を関数式に基づいて求める基
本噴射量演算手段と、運転状態に応じて予め定め
られた目標空燃比を記憶したマツプから運転状態
に対応する目標空燃比を求める目標空燃比演算手
段と、上記目標空燃比を用いて空燃比センサの検
出信号の比較基準値を求める基準値演算手段と、
空燃比センサの検出信号と上記比較基準値とを比
較して両者の偏差に応じたフイードバツク係数を
求めるフイードバツク係数演算手段と、理論空燃
比と前記目標空燃比演算手段で求めた目標空燃比
の比と上記フイードバツク係数とを用いて前記基
本噴射量を補正して最終噴射量を求める最終噴射
量演算手段とを備えたことを特徴とするエンジン
の空燃比制御装置。1 An air-fuel ratio control device for an engine that calculates a fuel injection amount according to the operating state of the engine and corrects the fuel injection amount according to a detection signal of an air-fuel ratio sensor, which A basic injection amount calculation means that calculates the basic injection amount corresponding to the air-fuel ratio based on a functional formula, and a target that calculates the target air-fuel ratio corresponding to the operating condition from a map storing a target air-fuel ratio determined in advance according to the operating condition. an air-fuel ratio calculation means; a reference value calculation means for calculating a reference value for comparison of the detection signal of the air-fuel ratio sensor using the target air-fuel ratio;
a feedback coefficient calculation means for comparing the detection signal of the air-fuel ratio sensor with the comparison reference value and calculating a feedback coefficient according to the deviation between the two; and a ratio of the theoretical air-fuel ratio to the target air-fuel ratio calculated by the target air-fuel ratio calculation means. and final injection amount calculation means for correcting the basic injection amount using the feedback coefficient and the feedback coefficient to obtain a final injection amount.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3019686A JPS62189341A (en) | 1986-02-14 | 1986-02-14 | Air-fuel ratio control device for engine |
US07/014,266 US4763629A (en) | 1986-02-14 | 1987-02-12 | Air-fuel ratio control system for engine |
DE19873704691 DE3704691A1 (en) | 1986-02-14 | 1987-02-14 | DEVICE FOR REGULATING THE FUEL / AIR RATIO OF AN INTERNAL COMBUSTION ENGINE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3019686A JPS62189341A (en) | 1986-02-14 | 1986-02-14 | Air-fuel ratio control device for engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62189341A JPS62189341A (en) | 1987-08-19 |
JPH0436255B2 true JPH0436255B2 (en) | 1992-06-15 |
Family
ID=12296994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3019686A Granted JPS62189341A (en) | 1986-02-14 | 1986-02-14 | Air-fuel ratio control device for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62189341A (en) |
-
1986
- 1986-02-14 JP JP3019686A patent/JPS62189341A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62189341A (en) | 1987-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4763629A (en) | Air-fuel ratio control system for engine | |
JPS63179155A (en) | Air-fuel ratio learning control device for internal combustion engine | |
JP6844576B2 (en) | Air-fuel ratio controller | |
JPH03179147A (en) | Air-fuel learning controller for internal combustion engine | |
JPH0689690B2 (en) | Air-fuel ratio learning controller for internal combustion engine | |
JPS62253932A (en) | Air-fuel ratio control device for engine | |
JP2884469B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0436255B2 (en) | ||
JPH07310570A (en) | Lean burn controller for internal combustion engine | |
JP2715208B2 (en) | Air-fuel ratio learning control device for internal combustion engine | |
JPS62195439A (en) | Control device for engine | |
JP2582571B2 (en) | Learning control device for air-fuel ratio of internal combustion engine | |
JPH0968094A (en) | Air-fuel ratio control device of internal combustion engine | |
JPH066213Y2 (en) | Air-fuel ratio learning controller for internal combustion engine | |
JP3718857B2 (en) | Control device for internal combustion engine | |
JP2750777B2 (en) | Electronic control fuel supply device for internal combustion engine | |
JPH0515552Y2 (en) | ||
JPH0450449Y2 (en) | ||
JPH0455236Y2 (en) | ||
JP3376201B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH04237847A (en) | Air-fuel ratio learning controller for internal combustion engine | |
JPS63297752A (en) | Learning controller for air-fuel ratio for internal combustion engine | |
JPH04241756A (en) | Air-fuel ratio study control device for internal combustion engine | |
JPH04318246A (en) | Air-fuel ratio study control device for internal combustion engine | |
JPH04321741A (en) | Air-fuel ratio learning control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |