JPH04361126A - Method for measuring internal distortion of fiber-reinforced compound material lamination plate - Google Patents

Method for measuring internal distortion of fiber-reinforced compound material lamination plate

Info

Publication number
JPH04361126A
JPH04361126A JP16244391A JP16244391A JPH04361126A JP H04361126 A JPH04361126 A JP H04361126A JP 16244391 A JP16244391 A JP 16244391A JP 16244391 A JP16244391 A JP 16244391A JP H04361126 A JPH04361126 A JP H04361126A
Authority
JP
Japan
Prior art keywords
fiber
light
lamination plate
reinforced composite
compound material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16244391A
Other languages
Japanese (ja)
Inventor
Shintaro Kitade
北出 真太郎
Taketo Fukuda
武人 福田
Katsuhiko Aisaka
勝彦 逢坂
Junichi Ikeuchi
淳一 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP16244391A priority Critical patent/JPH04361126A/en
Publication of JPH04361126A publication Critical patent/JPH04361126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable an internal distortion of a fiber-reinforced compound material lamination plate to be measured by burying a sensor portion of an optical fiber interferene meter into an interlayer of the fiber-reinforced compound material lamination plate and then measuring change in intensity of interference light. CONSTITUTION:Light from a laser light-emitting equipment 4 enters a single-mode optical fiber 6 through an objective lens 5. Then, light which is branched into 1:1 by a photo coupler 7 is reflected by an end face at a tip portion of two optical fibers 2a and 2b with a different length at a sensor portion 2. Then, it returns to the coupler 7 again and generates interference, the intensity is detected by a light-reception element 8, and then it is recorded by an XY recorder. By burying the sensor portion 2 into the fiber-reinforced compound material lamination plate 3, internal distortion which is generated at the interlayer of the lamination plate 3 is measured at high speed and with high sensitivity according to change in two gauge points at the sensor portion 2. Measurement of distortion is based on light which is transmitted through the fibers 2a and 2b and is not affected easily by electrical noise or interlayer residual stress etc.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は繊維強化複合材積層板の
内部歪測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring internal strain in fiber-reinforced composite laminates.

【0002】0002

【従来の技術】FRPやGFRP、CFRP等を含む繊
維強化複合材積層板は、軽量で且つ丈夫であり、しかも
温度の高低差が大きい場合にも耐えられることから、航
空機や船舶、自動車、土木、建築等の構造材料や防蝕被
覆材料として広く用いられているが、応用が拡大するに
つれて、層間剥離やクラック等の複合材独特な欠陥の検
出が重要な課題となっている。すなわち、繊維強化複合
材積層板は、繊維に樹脂を含浸した成形材料を、繊維の
方向が交互に異なるように積層して溶融硬化させて成品
とするものであるが、外部から加える衝撃で層間剥離や
クラックが生じることが確認されている。したがって、
繊維強化複合材積層板にどの程度の衝撃が加わったとき
に、層間剥離やクラック等が発生するかの衝撃特性等を
把握することは成品品質上重要であり、特に、外部から
目視による確認を行うことができない層間剥離について
の検出方法の確立は、極めて重要な課題である。
[Prior Art] Fiber-reinforced composite laminates containing FRP, GFRP, CFRP, etc. are lightweight and durable, and can withstand large temperature differences, so they can be used in aircraft, ships, automobiles, civil engineering, etc. It is widely used as a structural material for buildings and as a corrosion-resistant coating material, but as its applications expand, detection of defects unique to composite materials, such as delamination and cracks, has become an important issue. In other words, fiber-reinforced composite laminates are made by laminating molding materials in which fibers are impregnated with resin in alternating directions so that the fibers are oriented in different directions and then melted and hardened. It has been confirmed that peeling and cracking occur. therefore,
It is important to understand the impact characteristics of fiber-reinforced composite laminates, such as the degree of impact that will cause delamination or cracks to occur, in terms of product quality. Establishing a detection method for delamination that cannot be performed is an extremely important issue.

【0003】繊維強化複合材積層板の層間剥離を検出す
る方法の一例として、従来では、繊維強化複合材積層板
の内部歪を抵抗線式歪ゲージにより電気的に測定する方
法が提案されている。
As an example of a method for detecting delamination in a fiber-reinforced composite laminate, a method has been proposed in which the internal strain of the fiber-reinforced composite laminate is electrically measured using a resistance wire strain gauge. .

【0004】0004

【発明が解決しようとする課題】ところが、上記従来の
電気的な歪ゲージを用いて繊維強化複合材積層板の内部
歪を測定する場合、繊維強化複合材積層板は積層角の異
なる層間に残留応力が存在することから、層間に上記歪
ゲージを埋め込むと、歪ゲージに反りが発生する虞があ
り、又、繊維強化複合材積層板として、CFRPの内部
歪を測定しようとする場合、CFRPは電気を通すため
、測定が不安定になる、という欠点がある。
[Problems to be Solved by the Invention] However, when measuring the internal strain of a fiber-reinforced composite laminate using the above-mentioned conventional electrical strain gauge, the fiber-reinforced composite laminate suffers from residual strain between layers with different lamination angles. Because of the presence of stress, there is a risk that the strain gauge will warp if it is embedded between layers.Also, when trying to measure the internal strain of CFRP as a fiber reinforced composite laminate, CFRP The drawback is that the measurement becomes unstable because it conducts electricity.

【0005】そこで、本発明は、FRP、GFRPであ
ってもCFRPであっても繊維強化複合材積層板の内部
歪の測定を安定して行うことができるような繊維強化複
合材積層板の内部歪測定方法を提供しようとするもので
ある。
[0005] Therefore, the present invention provides a method for stably measuring the internal strain of a fiber-reinforced composite laminate, whether it is FRP, GFRP or CFRP. This paper attempts to provide a strain measurement method.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、マイケルソン型光ファイバ干渉計を用い
、該光ファイバ干渉計のセンサ部を、繊維強化複合材積
層板の層間に埋め込み、上記センサ部による干渉光の強
度変化を測定することにより上記繊維強化複合材積層板
の内部歪を測定することを特徴とする繊維強化複合材積
層板の内部歪測定方法とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention uses a Michelson type optical fiber interferometer, and a sensor section of the optical fiber interferometer is placed between the layers of a fiber-reinforced composite laminate. A method for measuring internal strain in a fiber-reinforced composite laminate, characterized in that the internal strain of the fiber-reinforced composite laminate is measured by measuring the intensity change of interference light caused by the embedded sensor section.

【0007】[0007]

【作用】光ファイバ干渉計のセンサ部を繊維強化複合材
積層板の層間に埋め込んでおくと、センサ部による干渉
光の強度変化が測定されるため、繊維強化複合材積層板
の内部歪が測定される。
[Operation] When the sensor part of the optical fiber interferometer is embedded between the layers of the fiber-reinforced composite laminate, the change in the intensity of the interference light due to the sensor part is measured, so the internal strain of the fiber-reinforced composite laminate is measured. be done.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0009】本発明の繊維強化複合材積層板の内部歪測
定方法は、図1及び図2に示す如く、マイケルソン型光
ファイバ干渉計1を用い、該光ファイバ干渉計1におけ
る2本の光ファイバ2a,2bの先端の長さ(ゲージ点
の位置)を異にしてあるセンサ部2を、コアの部分を剥
き出しにした状態で繊維強化複合材積層板3の層間に、
該積層板3の成形過程で埋め込んでおき、成形後に、上
記センサ部2による干渉光の強度変化を測定することに
より上記積層板3の内部歪を測定するものである。
The method for measuring internal strain of a fiber-reinforced composite laminate according to the present invention uses a Michelson type optical fiber interferometer 1, as shown in FIGS. The sensor part 2, which has fibers 2a and 2b with different tip lengths (gauge point positions), is inserted between the layers of the fiber-reinforced composite material laminate 3 with the core part exposed.
It is embedded during the process of forming the laminate 3, and after the forming, the internal strain of the laminate 3 is measured by measuring the intensity change of the interference light by the sensor section 2.

【0010】上記光ファイバ干渉計1は、He−Neレ
ーザ発光器4からの光が対物レンズ5を介してシングル
モード光ファイバ6に入射し、光結合器7により1:1
に分岐され、分岐された光がセンサ部2を構成する長さ
の異なる2本の光ファイバ2a,2bの先端部の端面で
反射され、再び上記光結合器7に戻って干渉を生じ、受
光素子(フォトダイオード)8でその強度が検出されて
XYレコーダ9にて記録されるようにしてある。
In the optical fiber interferometer 1, light from a He-Ne laser emitter 4 is incident on a single mode optical fiber 6 via an objective lens 5, and an optical coupler 7 divides the light into a 1:1 ratio.
The branched light is reflected by the end faces of the tips of the two optical fibers 2a and 2b of different lengths constituting the sensor section 2, and returns to the optical coupler 7 again, causing interference and receiving light. The intensity is detected by an element (photodiode) 8 and recorded by an XY recorder 9.

【0011】本発明においては、上述した如く、先端の
長さを異にした2本の光ファイバ2a,2bと、これら
を継ぐ光結合器7等により構成される光ファイバ干渉計
1を用いるので、センサ部2を繊維強化複合材積層板3
の内部に埋め込んでおくことにより、積層板3の層間に
生じる内部歪がセンサ部2の2つのゲージ点の変化によ
り高速且つ高感度で測定することができ、このセンサ部
2により繊維強化複合材積層板3の内部歪を測定するこ
とができる。これにより、繊維強化複合材積層板3の層
間剥離を検出することができる。この際、歪の測定は光
ファイバ2a,2b内を通る光に基づくものであるため
、電気的ノイズや層間の残留応力等による影響を受けに
くい。したがって、CFRPにも適用することができる
。上記において、センサ部2の出力は、周期的な干渉光
強度の変化として得られ、その歪感度は石英ファイバの
光弾性定数から、 Δφ/Lez =2.32×107 (rad / m
)として理論値が求められる。ここで、Δφは干渉光の
強度変化として観察される2本の光ファイバ2a,2b
の位相差(rad )、ez は光ファイバの軸方向歪
、Lは図2に示す如く2本の光ファイバ2a,2bの先
端の長さの差(m )で抵抗線式歪ゲージのゲージ長に
相当する。
In the present invention, as described above, an optical fiber interferometer 1 is used, which is composed of two optical fibers 2a and 2b having different tip lengths, an optical coupler 7 connecting them, etc. , the sensor section 2 is connected to a fiber-reinforced composite material laminate 3
By embedding it inside the fiber-reinforced composite material, the internal strain occurring between the layers of the laminate 3 can be measured at high speed and with high sensitivity by changes in the two gauge points of the sensor section 2. The internal strain of the laminate 3 can be measured. Thereby, delamination of the fiber-reinforced composite material laminate 3 can be detected. At this time, since the strain measurement is based on light passing through the optical fibers 2a and 2b, it is not easily affected by electrical noise, residual stress between layers, and the like. Therefore, it can also be applied to CFRP. In the above, the output of the sensor unit 2 is obtained as a periodic change in interference light intensity, and its strain sensitivity is calculated from the photoelastic constant of the quartz fiber as follows: Δφ/Lez = 2.32×107 (rad/m
) can be calculated as the theoretical value. Here, Δφ is the intensity change of the two optical fibers 2a and 2b observed as the intensity change of the interference light.
The phase difference (rad), ez is the axial strain of the optical fiber, and L is the difference in length (m) between the tips of the two optical fibers 2a and 2b as shown in Figure 2, which is the gauge length of the resistance wire strain gauge. corresponds to

【0012】次に、上記光ファイバ干渉計1を用いて行
った実験(引張り試験)結果について示す。なお、各光
ファイバには、外径が250μm でコア径が3.6μ
m のものを用いた。又、センサ部2の光ファイバ2a
,2bの端面には、鏡面の代わりに塗料を塗布した。繊
維強化複合材積層板3の試験片としては、GFRP積層
板([±45]s 250L ×30W ×0.8t 
)を用いた。センサ部2は試験片の中央の層間(第2層
と第3層の間)に、ゲージ長Lを12mmとして埋め込
んだ。
Next, the results of an experiment (tensile test) conducted using the optical fiber interferometer 1 will be described. Each optical fiber has an outer diameter of 250 μm and a core diameter of 3.6 μm.
m was used. Moreover, the optical fiber 2a of the sensor section 2
, 2b was coated with paint instead of a mirror surface. The test piece of the fiber-reinforced composite laminate 3 was a GFRP laminate ([±45]s 250L x 30W x 0.8t
) was used. The sensor part 2 was embedded in the center of the test piece between the layers (between the second layer and the third layer) with a gauge length L of 12 mm.

【0013】引張り試験の結果は、横軸に抵抗線式歪ゲ
ージ出力(センサ部出力)を、縦軸に干渉光強度をとっ
た図3に示す如く得られた。干渉光は、試験片の歪の増
加と共に周期的に強弱を繰り返し、その周期から、図4
に示す如き干渉光強度の位相と歪ゲージ出力の関係が求
められる。図4によると、干渉光の強度変化の位相は歪
ゲージの出力と比例しており、干渉光の強度から歪量が
高感度に測定できることがわかる。図4の直線の傾きか
ら歪感度は、 Δφ/Lez =2.14×107 (rad / m
)異なるゲージ長(L=25mm)についても同様な試
験から、 Δφ/Lez =2.09×107 (rad / m
)と求められた。
The results of the tensile test were obtained as shown in FIG. 3, in which the horizontal axis represents the resistance wire type strain gauge output (sensor section output) and the vertical axis represents the interference light intensity. The interference light periodically repeats its strength and weakness as the strain of the test piece increases, and from this period, Figure 4
The relationship between the phase of the interference light intensity and the strain gauge output as shown in is obtained. According to FIG. 4, the phase of the change in the intensity of the interference light is proportional to the output of the strain gauge, and it can be seen that the amount of strain can be measured with high sensitivity from the intensity of the interference light. From the slope of the straight line in Figure 4, the strain sensitivity is Δφ/Lez = 2.14×107 (rad/m
) From similar tests for different gauge lengths (L = 25 mm), Δφ/Lez = 2.09 × 107 (rad / m
) was requested.

【0014】これらのことから、繊維強化複合材積層板
の内部歪を高感度に測定できることが確認された。
[0014] From these results, it was confirmed that the internal strain of a fiber-reinforced composite laminate can be measured with high sensitivity.

【0015】なお、本発明は上記実施例のみに限定され
るものではなく、本発明の要旨を逸脱しない範囲内にお
いて種々変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

【0016】[0016]

【発明の効果】以上述べた如く、本発明の繊維強化複合
材積層板の内部歪測定方法によれば、マイケルソン型光
ファイバ干渉計のセンサ部を繊維強化複合材積層板の層
間に埋め込み、上記センサ部の歪を測定することにより
繊維強化複合材積層板の内部歪を測定するようにしたの
で、繊維強化複合材積層板がFRPやGFRPであって
もCFRPであっても、電気的ノイズや層間の残留応力
の影響を受けることなく、層間剥離を安定した状態で正
確に検出することができ、したがって、繊維強化複合材
積層板の衝撃特性等の解明に寄与する有力な手法として
用いることができ、更に大型構造物や長期間に亘る歪測
定にも応用することができる、等の優れた効果を発揮す
る。
As described above, according to the method for measuring internal strain of a fiber-reinforced composite laminate of the present invention, the sensor portion of the Michelson type optical fiber interferometer is embedded between the layers of the fiber-reinforced composite laminate, and By measuring the strain in the sensor section, the internal strain of the fiber-reinforced composite laminate is measured, so whether the fiber-reinforced composite laminate is FRP, GFRP, or CFRP, electrical noise It is possible to accurately detect delamination in a stable state without being affected by residual stress between the layers, and therefore it can be used as a powerful method that contributes to elucidating the impact characteristics of fiber-reinforced composite laminates. It also exhibits excellent effects such as being able to be applied to large structures and strain measurements over long periods of time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の繊維強化複合材積層板の内部歪測定方
法の実施に用いる光ファイバ干渉計の概要図である。
FIG. 1 is a schematic diagram of an optical fiber interferometer used to carry out the method for measuring internal strain of a fiber-reinforced composite laminate according to the present invention.

【図2】センサ部の拡大図である。FIG. 2 is an enlarged view of a sensor section.

【図3】引張り試験の結果を示す干渉光強度と歪ゲージ
出力との関係を表す図である。
FIG. 3 is a diagram showing the relationship between interference light intensity and strain gauge output showing the results of a tensile test.

【図4】歪ゲージ出力と干渉光の位相との関係を示す図
である。
FIG. 4 is a diagram showing the relationship between strain gauge output and the phase of interference light.

【符号の説明】[Explanation of symbols]

1  マイケルソン型光ファイバ干渉計2  センサ部 3  繊維強化複合材積層板 1 Michelson type optical fiber interferometer 2 Sensor part 3 Fiber-reinforced composite laminate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  マイケルソン型光ファイバ干渉計を用
い、該光ファイバ干渉計のセンサ部を、繊維強化複合材
積層板の層間に埋め込み、上記センサ部による干渉光の
強度変化を測定することにより上記繊維強化複合材積層
板の内部歪を測定することを特徴とする繊維強化複合材
積層板の内部歪測定方法。
[Claim 1] By using a Michelson type optical fiber interferometer, embedding a sensor section of the optical fiber interferometer between the layers of a fiber-reinforced composite laminate, and measuring changes in the intensity of interference light due to the sensor section. A method for measuring internal strain in a fiber-reinforced composite laminate, the method comprising measuring the internal strain of the fiber-reinforced composite laminate.
JP16244391A 1991-06-07 1991-06-07 Method for measuring internal distortion of fiber-reinforced compound material lamination plate Pending JPH04361126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16244391A JPH04361126A (en) 1991-06-07 1991-06-07 Method for measuring internal distortion of fiber-reinforced compound material lamination plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16244391A JPH04361126A (en) 1991-06-07 1991-06-07 Method for measuring internal distortion of fiber-reinforced compound material lamination plate

Publications (1)

Publication Number Publication Date
JPH04361126A true JPH04361126A (en) 1992-12-14

Family

ID=15754715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16244391A Pending JPH04361126A (en) 1991-06-07 1991-06-07 Method for measuring internal distortion of fiber-reinforced compound material lamination plate

Country Status (1)

Country Link
JP (1) JPH04361126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977417B2 (en) 2006-09-11 2011-07-12 Shin-Etsu Chemical Co., Ltd. Silicone rubber composition for extrusion molding
WO2019172178A1 (en) * 2018-03-08 2019-09-12 三菱重工業株式会社 Evaluating method and evaluation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977417B2 (en) 2006-09-11 2011-07-12 Shin-Etsu Chemical Co., Ltd. Silicone rubber composition for extrusion molding
WO2019172178A1 (en) * 2018-03-08 2019-09-12 三菱重工業株式会社 Evaluating method and evaluation system
JP2019158403A (en) * 2018-03-08 2019-09-19 三菱重工業株式会社 Evaluation method and evaluation system

Similar Documents

Publication Publication Date Title
Lee et al. Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors
Blanchard et al. Two-dimensional bend sensing with a single, multi-core optical fibre
Okabe et al. Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors
US5367583A (en) Fiber optic stress-corrosion sensor and system
Dewynter-Marty et al. Embedded fiber Bragg grating sensors for industrial composite cure monitoring
US6647800B2 (en) Temperature insensitive fiber-optic torque and strain sensor
Kageyama et al. Acoustic emission monitoring of a reinforced concrete structure by applying new fiber-optic sensors
Liu et al. A multi-mode extrinsic Fabry-Perot interferometric strain sensor
CN109655176A (en) A kind of high-precision temperature probe based on cavity filled-type microstructured optical fibers interferometer
US11209596B2 (en) Tapered side-polished fiber-optic biosensor and method for preparing tapered side-polished fiber
JPH04361126A (en) Method for measuring internal distortion of fiber-reinforced compound material lamination plate
Liu et al. Design, fabrication, and evaluation of an optical fiber sensor for tensile and compressive strain measurements via the use of white light interferometry
Bhatia et al. Optical fiber sensing technique for edge-induced and internal delamination detection in composites
Kwon et al. A digital signal processing algorithm for structural strain measurement by a 3× 3 passive demodulated fiber optic interferometric sensor
JPH04204114A (en) Distribution-type optical fiber sensor
CN105403518B (en) The monitoring system and monitoring method of C/SiC composite material etch states
Measures Smart composite structures with embedded sensors
Seo et al. Monitoring of fatigue crack growth of cracked thick aluminum plate repaired with a bonded composite patch using transmission-type extrinsic Fabry–Perot interferometric optical fiber sensors
US11965732B2 (en) Methods and sensor for measuring strain
JPH10319241A (en) Interference type optical fiber sensor
Kim et al. Simultaneous monitoring of crack signals and strain of composites using a stabilized EFPI sensor system
Tatti et al. Production and use of an interferometric optical strain gauge with comparison to conventional techniques
Corby Jr et al. Residual strain measurement using photoelastic coatings
Liu et al. In-situ strain measurements in composites during fatigue testing using optical fiber Bragg gratings and a portable CCD detection system
Jain et al. Experimental feasibility study of fibre optic Extrinsic Fabry-Perot Interferometric sensor for civil structures and other applications