JPH04360039A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH04360039A
JPH04360039A JP3135019A JP13501991A JPH04360039A JP H04360039 A JPH04360039 A JP H04360039A JP 3135019 A JP3135019 A JP 3135019A JP 13501991 A JP13501991 A JP 13501991A JP H04360039 A JPH04360039 A JP H04360039A
Authority
JP
Japan
Prior art keywords
layer
recording
reflective layer
recording medium
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3135019A
Other languages
Japanese (ja)
Inventor
Kusato Hirota
草人 廣田
Gentaro Obayashi
大林 元太郎
Hisaya Seo
瀬尾 尚也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3135019A priority Critical patent/JPH04360039A/en
Publication of JPH04360039A publication Critical patent/JPH04360039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a high recording speed, a high erasing rate and C/N, the maintenance of stable operations in spite of repetition of many times of recording and erasing, excellent wet heat resistance and oxidation resistance, and a long life by forming reflection layers in two-layered constitution of different thermal conductivities. CONSTITUTION:The reflection layers of the optical recording medium are constituted of two layers; the 1st reflection layer 5 and the 2nd reflection layer 6. The thermal conductivity of the 1st reflection layer 5 is set higher than the thermal conductivity of the 2nd reflection layer 6. The material of the 1st reflection layer 5 is formed by using metals, such as Al and Au, and the alloys essentially unsisting thereof, the Al added with Si, Mg, Cu, etc., or the Au added with Cr, Ag, Cu, etc., and the thickness thereof is specified to >=10nm and <=100nm. The material of the 2nd reflection layer 6 is formed by using metals, such as Ti, Zr, Hf, Cr, Mo, etc., and the thickness thereof is specified to >=20nm and <=200nm.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光の照射により、情報
の記録、消去、及び再生が可能である光情報記録媒体に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium on which information can be recorded, erased, and reproduced by irradiation with light.

【0002】特に、本発明は、記録情報の消去、書換機
能を有し、情報信号を高速かつ、高密度に記録可能な光
ディスク、光カード、光テープなどの書換可能相変化型
光記録媒体に関するものである。
In particular, the present invention relates to a rewritable phase-change optical recording medium such as an optical disk, an optical card, or an optical tape, which has functions for erasing and rewriting recorded information and is capable of recording information signals at high speed and high density. It is something.

【0003】0003

【従来の技術】従来の書換可能相変化型光記録媒体の技
術は、以下のごときものである。
2. Description of the Related Art Conventional technologies for rewritable phase-change optical recording media are as follows.

【0004】これらの光記録媒体は、テルルを主成分と
する記録層を有し、記録時は、結晶状態の記録層に集束
したレーザー光パルスを短時間照射し、記録層を部分的
に溶融する。溶融した部分は熱拡散により急冷され、固
化し、アモルファス状態の記録マークが形成される。こ
の記録マークの光線反射率は、結晶状態より低く、光学
的に記録信号として再生可能である。
These optical recording media have a recording layer containing tellurium as a main component, and during recording, a laser beam pulse focused on the crystalline recording layer is irradiated for a short period of time to partially melt the recording layer. do. The melted portion is rapidly cooled by thermal diffusion and solidified, forming an amorphous recording mark. The light reflectance of this recording mark is lower than that of the crystalline state, and it can be optically reproduced as a recorded signal.

【0005】また、消去時には、記録マーク部分にレー
ザー光を照射し、記録層の融点以下、結晶化温度以上の
温度に加熱することによって、アモルファス状態の記録
マークを結晶化し、もとの未記録状態にもどす。
[0005] Furthermore, during erasing, a laser beam is irradiated onto the recording mark portion and heated to a temperature below the melting point of the recording layer and above the crystallization temperature, thereby crystallizing the amorphous recording mark and removing the original unrecorded mark. Return to state.

【0006】この光記録媒体では、通常、記録層の両面
に耐熱性と透光性を有する誘電体層を設け、記録時に記
録層に変形、開口が発生することを防いでいる。さらに
、光ビーム入射方向と反対側の誘電体層に、光反射性の
Alなどの金属反射層を設け、光学的な干渉効果により
、再生時の信号コントラストを改善すると共に、冷却効
果により、非晶状態の記録マークの形成を容易にし、か
つ消去特性、繰り返し特性を改善する技術が知られてい
る。特に、記録層と反射層の間の誘電体層を20nm程
度に薄く構成した「急冷構造」では、記録の書換の繰返
しによる劣化が少なく、また消去パワーのパワー・マー
ジンが広い点で優れている(T.Ohotaet al
,Japanese Jounal of Appli
ed Physics, Vol 28(1989) 
Suppl. 28−3 pp123− 128)。
[0006] In this optical recording medium, a heat-resistant and light-transmitting dielectric layer is usually provided on both sides of the recording layer to prevent the recording layer from deforming or opening during recording. Furthermore, a metal reflective layer such as light-reflective Al is provided on the dielectric layer on the side opposite to the light beam incident direction, and the optical interference effect improves the signal contrast during reproduction, and the cooling effect improves the Techniques are known that facilitate the formation of crystalline recording marks and improve erase characteristics and repeat characteristics. In particular, the "quenching structure" in which the dielectric layer between the recording layer and the reflective layer is made as thin as about 20 nm is superior in that there is little deterioration due to repeated rewriting of recording, and there is a wide power margin for erasing power. (T. Ohota et al.
, Japanese Journal of Appli
ed Physics, Vol 28 (1989)
Suppl. 28-3 pp123-128).

【0007】[0007]

【発明が解決しようとする課題】前述のような急冷構造
の書換可能相変化型光記録媒体における課題は、反射層
による冷却効果が大きいため記録感度が低いことである
。すなわち記録、消去に要する光の照射パワーが大きく
、光ヘッドの半導体レーザーに高出力のものが必要にな
り装置コストが高くなる、また、ディスクの場合、光の
照射パワーが不足し高速回転では記録が困難になるなど
の問題があった。
A problem with the rewritable phase change optical recording medium having the rapid cooling structure as described above is that the recording sensitivity is low because the cooling effect of the reflective layer is large. In other words, the light irradiation power required for recording and erasing is large, and the semiconductor laser of the optical head requires a high-power semiconductor laser, which increases the equipment cost.Furthermore, in the case of disks, the light irradiation power is insufficient and recording cannot be performed at high speed rotation. There were problems such as difficulty in

【0008】この従来の急冷構造において、記録感度を
向上させるための方法としては、 (イ)記録層と反射層の間の保護層をやや厚めにして、
熱拡散を少なくする (ロ)反射層の熱伝導率を低くして、熱拡散を少なくす
る (ハ)反射層の厚さを薄くして、熱拡散を少なくするな
どの方法が考えられる。
In this conventional quenching structure, methods for improving recording sensitivity include (a) making the protective layer between the recording layer and the reflective layer a little thicker;
Possible methods include (b) reducing the thermal conductivity of the reflective layer to reduce thermal diffusion; and (c) reducing the thickness of the reflective layer to reduce thermal diffusion.

【0009】しかし、(イ)、(ロ)では、良好な消去
率の得られる消去パワーのマージンがかなり狭くなり、
かつ消去率も低下する難点があり、(ハ)では、ある程
度反射層を薄くすると、反射層の反射率が低くなり、照
射光が反射層の背後に透過してしまうためかえって、光
エネルギーの損失が大きくなり記録層の光吸収量が減少
し、感度を向上出来なくなること、反射層の機械的強度
が低くなるため、書換を繰返した場合に、変形により記
録特性が低下することなどの難点があった。
However, in (a) and (b), the margin of erasing power for obtaining a good erasing rate is quite narrow;
In addition, there is a problem that the erasing rate also decreases, and in (c), if the reflective layer is made thinner to a certain extent, the reflectance of the reflective layer will decrease and the irradiated light will be transmitted behind the reflective layer, resulting in a loss of optical energy. This increases the amount of light absorbed by the recording layer, making it impossible to improve sensitivity, and the mechanical strength of the reflective layer decreases, resulting in deformation and deterioration of recording characteristics when rewriting is repeated. there were.

【0010】本発明の目的は、記録感度が高く、かつ多
数回の記録、消去あるいは書換動作を行っても、記録特
性の劣化が少なく、記録特性、消去特性にも優れた光記
録媒体を提供することである。
An object of the present invention is to provide an optical recording medium which has high recording sensitivity, shows little deterioration in recording characteristics even after a large number of recording, erasing, or rewriting operations, and has excellent recording and erasing characteristics. It is to be.

【0011】本発明の別の目的は、耐酸化性、耐湿熱性
に優れ長期の保存においても欠陥の生じない長寿命の光
記録媒体を提供することである。
Another object of the present invention is to provide a long-life optical recording medium that is excellent in oxidation resistance and heat-and-moisture resistance and is free from defects even during long-term storage.

【0012】0012

【課題を解決するための手段】本発明は基板上に形成さ
れた記録層に光を照射することによって、情報の記録、
消去、及び再生が可能であり、情報の記録及び消去が、
非晶相と結晶相の間の相変化により行われる光記録媒体
において、前記光記録媒体が少なくとも記録層と誘電体
層と反射層を有し、かつ反射層が熱伝導率の異なる2層
の反射層で構成されており、かつ記録層に近接する側の
反射層が他の1つの反射層より熱伝導率が高いことを特
徴とする光記録媒体に関する。
[Means for Solving the Problems] The present invention provides information recording and recording by irradiating a recording layer formed on a substrate with light.
Erasing and reproducing are possible, and information can be recorded and erased.
In an optical recording medium that undergoes a phase change between an amorphous phase and a crystalline phase, the optical recording medium has at least a recording layer, a dielectric layer, and a reflective layer, and the reflective layer has two layers having different thermal conductivities. The present invention relates to an optical recording medium that is composed of a reflective layer and characterized in that the reflective layer on the side closer to the recording layer has a higher thermal conductivity than the other reflective layer.

【0013】本発明の光記録媒体の典型的な層構成は、
基板側から光を入射する場合、図1に例示するように基
板1/第1誘電体層2/記録層3/第2誘電体層4/第
1反射層5/第2反射層6の積層体からなる(ここで光
の入射方向を矢印9で示した)がこの構造に限定されな
い。反射層上に本発明の効果を損なわない範囲で、紫外
線硬化樹脂などの樹脂層8や、他の基板と張り合わせる
ための接着剤層などの樹脂層、および各層間に接着性向
上、拡散防止などの目的で他の層を設けてもよい。
A typical layer structure of the optical recording medium of the present invention is as follows:
When light is incident from the substrate side, as illustrated in FIG. (Here, the direction of light incidence is shown by an arrow 9), but the structure is not limited to this. On the reflective layer, a resin layer 8 such as an ultraviolet curable resin, an adhesive layer for bonding to other substrates, and a resin layer 8 to improve adhesion and prevent diffusion between each layer, within a range that does not impair the effects of the present invention. Other layers may be provided for other purposes.

【0014】また、基板の反対側から光を入射する場合
の典型的な層構成は、基板/第2反射層/第1反射層/
第2誘電体層/記録層/第1誘電体層の積層体である。 但しこれに限定するものではなく、本発明の効果を損な
わない範囲で、基板と第2反射層の間に樹脂層などの断
熱層を設けたり、第1誘電体層に紫外線硬化樹脂などの
保護層を設けてもよい。
[0014] Furthermore, when light is incident from the opposite side of the substrate, a typical layer configuration is substrate/second reflective layer/first reflective layer/
This is a laminate of second dielectric layer/recording layer/first dielectric layer. However, the present invention is not limited to this, and a heat insulating layer such as a resin layer may be provided between the substrate and the second reflective layer, or a protective layer such as an ultraviolet curing resin may be provided on the first dielectric layer, as long as the effects of the present invention are not impaired. Layers may be provided.

【0015】基板側から光を入射する場合の層構成とす
ることが、塵の影響を受けにくいことから好ましく、特
に、基板/第1誘電体層/記録層/第2誘電体層/第1
反射層/第2反射層/紫外線硬化樹脂層の順の積層体を
部材として含む構成が、層構成が単純で製造が容易であ
ることから好ましい。
It is preferable to have a layer structure in which light is incident from the substrate side because it is less susceptible to the influence of dust.
A structure including a laminate in the order of reflective layer/second reflective layer/ultraviolet curing resin layer as a member is preferable because the layer structure is simple and manufacturing is easy.

【0016】本発明の第1反射層の材質は、光反射性を
有する金属である。
The material of the first reflective layer of the present invention is a metal having light reflective properties.

【0017】Al、Auなどの金属、及びこれらを主成
分とする合金は、光反射性が高く、かつ熱伝導率を高く
できることから好ましい。前述の合金の例として、Al
にSi、Mg、Cu,Pd、Ti、Cr,Hf,Ta,
Nb、Mn,Pdなどの少なくとも1種の元素を合計で
5原子%以下、1原子%以上加えたもの、あるいは、A
uにCr,Ag、Cu,Pd、Pt、Niなどの少なく
とも1種の元素を合計で20原子%以下1原子%以上加
えたものなどがある。
Metals such as Al and Au, and alloys containing these as main components are preferable because they have high light reflectivity and can have high thermal conductivity. As an example of the aforementioned alloy, Al
Si, Mg, Cu, Pd, Ti, Cr, Hf, Ta,
Addition of at least one element such as Nb, Mn, Pd, etc. in total of 5 atomic % or less, 1 atomic % or more, or A
There are materials in which at least one element such as Cr, Ag, Cu, Pd, Pt, and Ni is added to u in a total amount of 20 atomic % or less and 1 atomic % or more.

【0018】特に、材料の価格が安くできることから、
Alを主成分とする合金が好ましく、とりわけ、耐腐食
性が良好なことから、AlにTi、Cr,Taから選ば
れる少なくとも1種以上の金属を合計で5原子%以下0
.5原子%以上添加した合金あるいは、Alに合計で5
%以下のSiとMnを加えた合金が好ましい。
[0018] In particular, since the cost of materials can be reduced,
An alloy containing Al as a main component is preferable, and in particular, since it has good corrosion resistance, Al and at least one metal selected from Ti, Cr, and Ta are added in a total of 5 atomic % or less.
.. Alloys with 5 atomic % or more added or Al with a total of 5
% or less of Si and Mn is preferred.

【0019】第1反射層の厚さとしては、おおむね10
nm以上100nm以下である。記録感度が特に高くで
きることから10nm以上50nm以下が好ましい。
The thickness of the first reflective layer is approximately 10
It is not less than nm and not more than 100 nm. The thickness is preferably 10 nm or more and 50 nm or less since recording sensitivity can be particularly high.

【0020】本発明の第1反射層は、第2反射層より高
熱伝導の金属からなるものであり、記録層を冷却し、記
録時に溶融した部分の熱拡散を高め、アモルファス状態
の記録マークの形成を容易にする機能がある。本発明で
は、この第1反射層を比較的薄く形成することにより、
記録層からの熱拡散の量を制限し、記録時の記録層の昇
温が容易にして、記録感度を高めている。一方、この層
の熱伝導度は、誘電体層、記録層に比べかなり大きいた
め、消去動作時の記録層の面方向の熱分布を平坦化し、
トラック上の消去領域を大きくできるため良好な消去率
と広い消去パワー・マージンが得られる。
The first reflective layer of the present invention is made of a metal with higher thermal conductivity than the second reflective layer, cools the recording layer, increases heat diffusion in the melted portion during recording, and improves the recording marks in the amorphous state. It has a function that facilitates formation. In the present invention, by forming this first reflective layer relatively thinly,
This limits the amount of heat diffusion from the recording layer, making it easier to raise the temperature of the recording layer during recording, and increasing recording sensitivity. On the other hand, since the thermal conductivity of this layer is considerably higher than that of the dielectric layer and the recording layer, it flattens the heat distribution in the plane direction of the recording layer during erasing operation.
Since the erasing area on the track can be enlarged, a good erasing rate and a wide erasing power margin can be obtained.

【0021】図2に示す従来の光記録媒体の反射層7が
単層からなる構成では、このように反射層を薄くすると
、反射層の反射率が低くなり、照射光が反射層の背後に
透過してしまうためかえって、光エネルギーの損失が大
きくなり記録層の光吸収量が減少してしまうため感度は
向上しない。これに対して本発明では、第2反射層を設
けることにより、反射率を十分に大きくする事が可能で
あるため、このような損失が生じることなく、高感度化
が達成できる。ここで、第2反射層は、光反射の機能を
主に受け持ち、熱伝導率の小さい材質で構成しているの
で、熱拡散が少なく高感度化が実現できる。
In the configuration in which the reflective layer 7 of the conventional optical recording medium shown in FIG. 2 consists of a single layer, when the reflective layer is made thin in this way, the reflectance of the reflective layer decreases, and the irradiated light is reflected behind the reflective layer. Since the light passes through the light, the loss of light energy increases and the amount of light absorbed by the recording layer decreases, so the sensitivity does not improve. On the other hand, in the present invention, by providing the second reflective layer, it is possible to sufficiently increase the reflectance, so that high sensitivity can be achieved without such loss. Here, the second reflective layer mainly has the function of reflecting light and is made of a material with low thermal conductivity, so that less heat is diffused and high sensitivity can be achieved.

【0022】第2反射層の材質は、光反射性を有する金
属、あるいは金属化合物であり、かつ第1反射層よりも
熱伝導率が小さい材質である。
[0022] The material of the second reflective layer is a metal or a metal compound that has light reflectivity and has a lower thermal conductivity than that of the first reflective layer.

【0023】Ti、Zr,Hf、Pd、Cr、Moなど
の金属、あるいはAl、Auを主成分とし第1反射層と
同様の添加元素を第1反射層の場合より多く添加して、
低熱伝導化した合金、Ti,Zrなどの窒化物など光反
射性を有する金属化合物、低熱伝導のNi−Cr合金な
どが、光反射性があり、熱伝導率を著しく低くできるこ
とから好ましい。
[0023] The main component is a metal such as Ti, Zr, Hf, Pd, Cr, Mo, or Al or Au, and the same additive elements as the first reflective layer are added in a larger amount than in the first reflective layer,
Alloys with low thermal conductivity, metal compounds with light reflective properties such as nitrides such as Ti and Zr, and Ni-Cr alloys with low thermal conductivity are preferable because they have light reflective properties and can significantly lower thermal conductivity.

【0024】特に、第1反射層と同様の金属を主成分と
することが、耐腐食性の点で好ましく、とりわけ第1反
射層、第2反射層のいずれもAlを主成分とする合金で
構成することは、材料の価格が安いことから好ましい。
[0024] In particular, it is preferable from the viewpoint of corrosion resistance that the main component is the same metal as the first reflective layer. This is preferable because the cost of materials is low.

【0025】とりわけ、耐腐食性が良好でかつヒロック
などの発生が起こりにくいことから、第1反射層を添加
元素を合計で0.5原子%以上3原子%未満含む、Al
−Ti合金、Al−Cr合金、Al−Ta合金、Al−
Ti−Cr合金、Al−Si−Mn合金のいずれかのA
lを主成分とする合金で構成し、第2反射層を添加元素
を合計で3原子%以上50原子%以下含むAl−Ti合
金、Al−Cr合金、Al−Ta合金、Al−Ti−C
r合金、Al−Zr合金、Al−Si−Zr合金、Al
−Si−Mn−Zr合金のいずれかで構成することが好
ましい。
In particular, the first reflective layer is made of Al containing a total of 0.5 atomic % or more and less than 3 atomic % of additive elements because it has good corrosion resistance and is less likely to cause hillocks.
-Ti alloy, Al-Cr alloy, Al-Ta alloy, Al-
A of either Ti-Cr alloy or Al-Si-Mn alloy
Al-Ti alloy, Al-Cr alloy, Al-Ta alloy, Al-Ti-C, which is composed of an alloy whose main component is L, and the second reflective layer contains a total of 3 atomic % or more and 50 atomic % or less of additive elements.
r alloy, Al-Zr alloy, Al-Si-Zr alloy, Al
-Si-Mn-Zr alloy is preferred.

【0026】第2反射層の厚さとしては、おおむね20
nm以上200nm以下である。反射層の機械強度が高
く、書換を繰返しても記録特性の劣化が少なくできるこ
と、記録感度が特に高くできることから30nm以上2
00nm以下が好ましい。
The thickness of the second reflective layer is approximately 20
It is not less than nm and not more than 200 nm. 30 nm or more 2 because the mechanical strength of the reflective layer is high, the deterioration of recording characteristics can be minimized even after repeated rewriting, and the recording sensitivity can be particularly high.
00 nm or less is preferable.

【0027】また、本発明の第1反射層と第2反射層は
、これまで説明してきたように、これら2層を積層する
だけでなく、第1反射層から第2反射層へ徐々に低熱伝
導となるように、反射層の金属などの組成を変化させた
もので代用すること、また第1、第2反射層を各々複数
の層の積層体で構成することなどのバリエーションも本
願の発明の範囲であることは言うまでもない。
[0027] Furthermore, the first reflective layer and the second reflective layer of the present invention are not only formed by laminating these two layers, but also by gradually applying low heat from the first reflective layer to the second reflective layer. The invention of the present application also includes variations such as replacing the reflective layer with a material whose composition has been changed, such as a metal, to make it conductive, or configuring each of the first and second reflective layers as a laminate of a plurality of layers. Needless to say, it is within the range of

【0028】本発明の記録層としては、特に限定するも
のではないが、Pd−Ge−Sb−Te合金、Ni−G
e−Sb−Te合金、Ge−Sb−Te合金、Co−G
e−Sb−Te合金、In−Sb−Te合金、Ag−I
n−Sb−Te合金、In−Se合金などがある。
Although the recording layer of the present invention is not particularly limited, Pd-Ge-Sb-Te alloy, Ni-G
e-Sb-Te alloy, Ge-Sb-Te alloy, Co-G
e-Sb-Te alloy, In-Sb-Te alloy, Ag-I
Examples include n-Sb-Te alloy and In-Se alloy.

【0029】Pd−Ge−Sb−Te合金、Ge−Sb
−Te合金は、消去時間が短く、かつ多数回の記録、消
去の繰り返しが可能であることから好ましく、特にPd
−Ge−Sb−Te合金が、前述の特性に優れることか
ら好ましい。
[0029] Pd-Ge-Sb-Te alloy, Ge-Sb
-Te alloy is preferable because the erasing time is short and recording and erasing can be repeated many times, and in particular Pd
-Ge-Sb-Te alloy is preferred because it has excellent properties as described above.

【0030】本発明の記録層の厚さとしては、特に限定
するものではないが10〜100nmである。特に記録
、消去感度が高く、多数回の記録消去が可能であること
から10nm以上30nm以下とすることが好ましい。
The thickness of the recording layer of the present invention is not particularly limited, but is 10 to 100 nm. In particular, the thickness is preferably 10 nm or more and 30 nm or less because recording and erasing sensitivity is high and recording and erasing can be performed many times.

【0031】誘電体層は、記録時に基板、記録層などが
熱によって変形し記録特性が劣化することを防止するな
ど、基板、記録層の保護のためのものである。この誘電
体層としては、ZnS,SiO2 、窒化シリコン、酸
化アルミニウムなどの無機薄膜がある。特にZnSの薄
膜、Si,Ge,Al,Ti,Zr,Ta,などの金属
の酸化物の薄膜、Si、Alなどの窒化物の薄膜、Ti
、Zr、Hfなどの炭化物の薄膜及びこれらの化合物の
混合物の膜が、耐熱性が高いことから好ましい。また、
これらにMgF2 などのフッ化物を混合したものも、
膜の残留応力が小さいことから好ましい。特にZnSと
SiO2 の混合膜は、記録、消去の繰り返しによって
も、記録感度、C/N、消去率などの劣化が起きにくい
ことから好ましい。第1および第2誘電体層の厚さは、
およそ10〜500nmである。第1誘電体層は、基板
や記録層から剥離し難く、クラックなどの欠陥が生じ難
いことから、100〜400nmが好ましい。また第2
誘電体層は、C/N、消去率などの記録特性、安定に多
数回の書換が可能なことから10〜30nmが好ましい
。特に、記録感度が高く、高速でワンビーム・オーバー
ライトが可能であり、かつ消去率が大きく消去特性が良
好であることから、次のごとく、光記録媒体の主要部を
構成することが好ましい。
The dielectric layer is used to protect the substrate, recording layer, etc. from being deformed by heat during recording, thereby preventing deterioration of recording characteristics. This dielectric layer includes inorganic thin films such as ZnS, SiO2, silicon nitride, and aluminum oxide. In particular, thin films of ZnS, thin films of oxides of metals such as Si, Ge, Al, Ti, Zr, Ta, etc., thin films of nitrides such as Si, Al, etc.
, Zr, Hf, etc., and films of mixtures of these compounds are preferred because of their high heat resistance. Also,
These mixed with fluorides such as MgF2 are also available.
This is preferable because the residual stress of the film is small. In particular, a mixed film of ZnS and SiO2 is preferable because the recording sensitivity, C/N, erasing rate, etc. are unlikely to deteriorate even after repeated recording and erasing. The thickness of the first and second dielectric layers is
It is approximately 10-500 nm. The first dielectric layer preferably has a thickness of 100 to 400 nm because it is difficult to peel off from the substrate or the recording layer and is difficult to cause defects such as cracks. Also the second
The dielectric layer preferably has a thickness of 10 to 30 nm from the viewpoint of recording characteristics such as C/N and erasing rate, and stable rewriting many times. In particular, it is preferable to constitute the main part of the optical recording medium as described below because it has high recording sensitivity, enables high-speed one-beam overwriting, and has a high erasing rate and good erasing characteristics.

【0032】すなわち、第1誘電体層の厚さが100n
m〜400nmであり、第2誘電体層の厚さが10nm
〜30nmであり、かつ記録層の厚さを10nm〜30
nm、第1反射層の厚さを10nm〜50nm、第2反
射層の厚さを30nm〜150nmとし、誘電体層がZ
nSとSiO2 の混合膜であり、SiO2 の混合比
が15〜35モル%であり、かつ記録層の組成が次式で
表される範囲にあることが好ましい。
That is, the thickness of the first dielectric layer is 100 nm.
m ~ 400 nm, and the thickness of the second dielectric layer is 10 nm.
~30 nm, and the thickness of the recording layer is 10 nm ~30 nm.
nm, the thickness of the first reflective layer is 10 nm to 50 nm, the thickness of the second reflective layer is 30 nm to 150 nm, and the dielectric layer is Z.
It is preferable that the film is a mixture of nS and SiO2, the mixing ratio of SiO2 is 15 to 35 mol %, and the composition of the recording layer is within the range expressed by the following formula.

【0033】     (Pdx Sby Te1−x−y )1−z
 (Te0.5 Ge0.5 )z         
  0.01≦x≦0.1          0.3
5≦y≦0.65            0.2≦z
≦  0.4  但しx,y,z、0.5は各元素の原
子数比をあらわす。
(Pdx Sby Te1-x-y)1-z
(Te0.5 Ge0.5)z
0.01≦x≦0.1 0.3
5≦y≦0.65 0.2≦z
≦0.4 However, x, y, z, and 0.5 represent the atomic ratio of each element.

【0034】本発明では、ほこり、基板の傷などの影響
をさける目的で、集束した光ビームを用いて、基板側か
ら記録を行なうため、基板として透明材料を用いる。こ
の様な材料としては、ガラス、ポリカーボネート、ポリ
メチル・メタクリレート、ポリオレフィン樹脂、エポキ
シ樹脂、ポリイミド樹脂などがあげられる。
In the present invention, a transparent material is used as the substrate because recording is performed from the substrate side using a focused light beam in order to avoid the effects of dust, scratches on the substrate, and the like. Examples of such materials include glass, polycarbonate, polymethyl methacrylate, polyolefin resin, epoxy resin, and polyimide resin.

【0035】特に、光学的複屈折が小さく、吸湿性が小
さく、成形が容易であることからポリカーボネート樹脂
、エポキシ樹脂が好ましい。特に耐熱性が要求される場
合には、エポキシ樹脂が好ましい。
In particular, polycarbonate resins and epoxy resins are preferred because they have low optical birefringence, low hygroscopicity, and are easy to mold. Especially when heat resistance is required, epoxy resin is preferred.

【0036】基板の厚さは特に限定するものではないが
、0.01mm〜5mmが実用的である。0.01mm
未満では、基板側から集束した光ビ−ムで記録する場合
でも、ごみの影響を受け易くなり、5mm以上では、対
物レンズの開口数を大きくすることが困難になり、照射
光ビームスポットサイズが大きくなるため、記録密度を
あげることが困難になる。基板はフレキシブルなもので
あっても良いし、リジッドなものであっても良い。フレ
キシブルな基板は、テープ状、シート状、カ−ド状で使
用する。リジッドな基板は、カード状、あるいはデ  
スク状で使用する。また、これらの基板は、記録層など
を形成した後、2枚の基板を用いて、エアーサンドイッ
チ構造、エアーインシデント構造、密着張合せ構造とし
てもよい。本発明の光記録媒体の記録に用いる光源とし
ては、レーザー光、ストロボ光のごとき高強度の光源で
あり、特に半導体レーザー光は、光源が小型化できるこ
と、消費電力が小さいこと、変調が容易であることから
好ましい。
The thickness of the substrate is not particularly limited, but is practically 0.01 mm to 5 mm. 0.01mm
If it is less than 5 mm, it will be easily affected by dust even when recording with a light beam focused from the substrate side, and if it is more than 5 mm, it will be difficult to increase the numerical aperture of the objective lens, and the irradiation light beam spot size will be reduced. This makes it difficult to increase the recording density. The substrate may be flexible or rigid. The flexible substrate is used in the form of a tape, sheet, or card. Rigid substrates are card-like or digital
Use in the form of a square. Further, these substrates may be formed into an air sandwich structure, an air incident structure, or a close bonding structure by using two substrates after forming a recording layer and the like. The light source used for recording on the optical recording medium of the present invention is a high-intensity light source such as a laser beam or a strobe light. In particular, a semiconductor laser beam is suitable because the light source can be miniaturized, power consumption is low, and modulation is easy. It is preferable for certain reasons.

【0037】記録は結晶状態の記録層にレーザー光パル
スなどを照射してアモルファスの記録マークを形成して
行う。また、反対に非晶状態の記録層に結晶状態の記録
マークを形成してもよい。消去はレーザー光照射によっ
て、アモルファスの記録マークを結晶化するか、もしく
は、結晶状態の記録マークをアモルファス化して行うこ
とができる。
Recording is performed by irradiating the crystalline recording layer with a laser beam pulse or the like to form an amorphous recording mark. Alternatively, crystalline recording marks may be formed on an amorphous recording layer. Erasing can be performed by crystallizing an amorphous recording mark or by converting a crystalline recording mark into an amorphous state by laser beam irradiation.

【0038】記録速度を高速化でき、かつ記録層の変形
が発生しにくいことから記録時はアモルファスの記録マ
ークを形成し、消去時は結晶化を行う方法が好ましい。
[0038] Since the recording speed can be increased and deformation of the recording layer is less likely to occur, it is preferable to form an amorphous recording mark during recording and crystallize it during erasing.

【0039】また、記録マーク形成時は光強度を高く、
消去時はやや弱くし、1回の光ビームの照射により書換
を行う1ビーム・オーバーライトは、書換の所要時間が
短くなることから好ましい。
[0039] Furthermore, when forming recording marks, the light intensity is increased;
One-beam overwrite, in which the light beam is slightly weaker during erasing and rewriting is performed by irradiating the light beam once, is preferable because the time required for rewriting is shortened.

【0040】次に、本発明の光記録媒体の製造方法につ
いて述べる。反射層、記録層などを基板上に形成する方
法としては、公知の真空中での薄膜形成法、例えば真空
蒸着法、イオンプレーティング法、スパッタリング法な
どがあげられる。特に組成、膜厚のコントロールが容易
であることから、スパッタリング法が好ましい。
Next, a method for manufacturing the optical recording medium of the present invention will be described. Methods for forming the reflective layer, recording layer, etc. on the substrate include known thin film forming methods in vacuum, such as vacuum evaporation, ion plating, and sputtering. In particular, the sputtering method is preferred because the composition and film thickness can be easily controlled.

【0041】形成する記録層などの厚さの制御は、公知
の技術である水晶振動子膜厚計などで、堆積状態をモニ
タリングすることで、容易に行える。
The thickness of the recording layer, etc. to be formed can be easily controlled by monitoring the deposition state using a known technique such as a crystal resonator film thickness meter.

【0042】記録層などの形成は、基板を固定したまま
、あるいは移動、回転した状態のどちらでもよい。膜厚
の面内の均一性に優れることから、基板を自転させるこ
とが好ましく、さらに公転を組合わせることが、より好
ましい。
[0042] The recording layer and the like may be formed either while the substrate is fixed, or while it is being moved or rotated. Since the in-plane uniformity of the film thickness is excellent, it is preferable to rotate the substrate, and it is more preferable to rotate the substrate in combination.

【0043】また、本発明の効果を著しく損なわない範
囲において、反射層などを形成した後、傷、変形の防止
などのため、紫外線硬化樹脂などの樹脂保護層などを必
要に応じて設けてもよい。また、反射層などを形成した
後、あるいはさらに前述の樹脂保護層を形成した後、2
枚の基板を対向して、接着材で張り合わせてもよい。
In addition, after forming the reflective layer, etc., a resin protective layer such as an ultraviolet curing resin may be provided as necessary to prevent scratches and deformation, as long as the effects of the present invention are not significantly impaired. good. In addition, after forming a reflective layer or the like, or after forming the above-mentioned resin protective layer,
Two substrates may be placed facing each other and bonded together using an adhesive.

【0044】[0044]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。 (分析,測定方法)反射層、記録層の組成は、ICP発
光分析(セイコー電子工業(株)製)により確認した。 またキャリア対ノイズ比および消去率(記録後と消去後
の再生キャリア信号強度の差)は、スペクトラムアナラ
イザにより測定した。
EXAMPLES The present invention will be specifically explained below based on examples. (Analysis and measurement method) The compositions of the reflective layer and the recording layer were confirmed by ICP emission analysis (manufactured by Seiko Electronic Industries, Ltd.). Further, the carrier-to-noise ratio and erasure rate (difference in reproduced carrier signal strength after recording and after erasure) were measured using a spectrum analyzer.

【0045】記録層、誘電体層、反射層の膜厚は、水晶
振動子膜厚計によりモニターした。 実施例1 厚さ1.2mm、直径13cm、1.6μmピッチのス
パイラルグルーブ付きポリカーボネート製基板を毎分3
0回転で回転させながら、高周波スパッタ法により、記
録層、誘電体層、反射層を形成した。
The film thicknesses of the recording layer, dielectric layer, and reflective layer were monitored using a crystal resonator film thickness meter. Example 1 A polycarbonate substrate with spiral grooves with a thickness of 1.2 mm, a diameter of 13 cm, and a pitch of 1.6 μm was processed at 3/min.
A recording layer, a dielectric layer, and a reflective layer were formed by high-frequency sputtering while rotating at 0 rotations.

【0046】まず、真空容器内を1×10−5Paまで
排気した後、2×10−1PaのArガス雰囲気中でS
iO2 を20mol%添加したZnSをスパッタし、
基板上に膜厚170nmの第1誘電体層を形成した。続
いて、Pd、Ge、Sb、Teからなる合金ターゲット
をスパッタして、組成Pd1 Ge17Sb26Te5
6(原子%)の膜厚20nmの記録層を形成した。さら
に前述の第2誘電体層を17nm形成し、この上に、M
n0.01Si0.04Al0.95合金をスパッタし
て膜厚15nmの第1反射層を形成し、さらにZr0.
10Mn0.01Si0.04Al0.85合金をスパ
ッタして膜厚70nmの第2反射層を形成した。さらに
このディスクを真空容器より取り出した後、この反射層
上にアクリル系紫外線硬化樹脂をスピンコートし、紫外
線照射により硬化させて膜厚10μmの樹脂層を形成し
本発明の光記録媒体を得た。
First, after evacuating the inside of the vacuum container to 1×10-5 Pa, S
ZnS added with 20 mol% of iO2 was sputtered,
A first dielectric layer with a thickness of 170 nm was formed on the substrate. Subsequently, an alloy target consisting of Pd, Ge, Sb, and Te is sputtered to obtain a composition of Pd1 Ge17Sb26Te5.
A recording layer with a film thickness of 20 nm was formed. Furthermore, the aforementioned second dielectric layer is formed to a thickness of 17 nm, and on top of this, M
A first reflective layer having a thickness of 15 nm was formed by sputtering n0.01Si0.04Al0.95 alloy, and Zr0.
A second reflective layer having a thickness of 70 nm was formed by sputtering a 10Mn0.01Si0.04Al0.85 alloy. Further, after taking out this disk from the vacuum container, an acrylic ultraviolet curing resin was spin-coated on the reflective layer and cured by ultraviolet irradiation to form a resin layer with a thickness of 10 μm, thereby obtaining an optical recording medium of the present invention. .

【0047】この光記録媒体を線速度5.5m/秒で回
転させ、基板側から22×66μmの長円に集光した波
長820nmの半導体レーザー光を膜面強度1.1Wの
条件で照射して、記録層を結晶化し初期化した。その後
、線速度6m/秒の条件で、対物レンズの開口数0.5
3、半導体レーザーの波長780nmの光学ヘッドを使
用して、周波数3.7MHz、パルス幅50nsec、
ピークパワー11〜17mW、ボトムパワー5〜9mW
の各条件に変調した半導体レーザー光で100回オーバ
ーライト記録した後、再生パワー1.3mWの半導体レ
ーザ光を照射してバンド幅30kHzの条件でC/Nを
測定した。
This optical recording medium was rotated at a linear velocity of 5.5 m/sec and irradiated with semiconductor laser light of a wavelength of 820 nm focused on an ellipse of 22 x 66 μm from the substrate side at a film surface intensity of 1.1 W. Then, the recording layer was crystallized and initialized. After that, at a linear velocity of 6 m/s, the numerical aperture of the objective lens was 0.5.
3. Using an optical head with a semiconductor laser wavelength of 780 nm, the frequency is 3.7 MHz, the pulse width is 50 nsec,
Peak power 11-17mW, bottom power 5-9mW
After performing overwrite recording 100 times with semiconductor laser light modulated to each condition, C/N was measured under the condition of a bandwidth of 30 kHz by irradiating semiconductor laser light with a reproduction power of 1.3 mW.

【0048】さらにこの部分を1.4MHzで、先と同
様に変調した半導体レーザ光を照射し、ワンビーム・オ
ーバーライトし、この時の3.7MHzの消去率を測定
した。ピークパワー13mW以上で実用上十分な50〜
55dBのC/Nが得られ、かつボトムパワー4.5〜
8mWで実用上十分な20〜27dBの消去率が得られ
た。
Further, this portion was irradiated with a semiconductor laser beam modulated in the same manner as before at 1.4 MHz for one-beam overwriting, and the erasure rate at 3.7 MHz at this time was measured. Peak power of 13mW or more is 50~, which is sufficient for practical use.
A C/N of 55 dB is obtained, and the bottom power is 4.5~
At 8 mW, a practically sufficient erasure rate of 20 to 27 dB was obtained.

【0049】さらにピーク・パワー15mW、ボトムパ
ワー6mW、周波数3.7MHzの条件で、ワンビーム
・オーバーライトの繰り返しを1000回及び10万回
行った後、同様の測定を行ったが、C/N、消去率の変
化は、いずれも2dB以内でほとんど劣化が認められな
かった。
Further, similar measurements were made after repeating one-beam overwriting 1000 times and 100,000 times under the conditions of peak power 15 mW, bottom power 6 mW, and frequency 3.7 MHz, but the C/N, The changes in erasure rate were all within 2 dB, and almost no deterioration was observed.

【0050】また、この光記録媒体を,80℃、相対湿
度80%の環境に1000時間置いた後、その後記録部
分を再生したが、C/Nの変化は2dB未満でほとんど
変化がなかった。さらに再度、記録、消去を行いC/N
、消去率を測定したところ、同様にほとんど変化がなく
、かつ欠陥の増加もほとんど見られなかった。
Further, this optical recording medium was left in an environment of 80° C. and relative humidity of 80% for 1000 hours, and then the recorded portion was reproduced, but the change in C/N was less than 2 dB, and there was almost no change. Record and erase again and C/N
When the erasure rate was measured, it was found that there was almost no change, and almost no increase in defects was observed.

【0051】実施例2 実施例1の第2反射層を膜厚40nmのTi膜とした他
は、実施例1と同じ構成の光記録媒体を作製した。この
光記録媒体を実施例1と同様にC/Nと消去率を測定し
たところ、ピークパワー13mW以上で実用上十分な5
0〜54dBのC/Nが得られ、かつボトムパワー4.
5〜7.5mWで実用上十分な20〜26dBの消去率
が得られた。
Example 2 An optical recording medium having the same structure as Example 1 was produced except that the second reflective layer of Example 1 was a Ti film with a thickness of 40 nm. When the C/N and erasure rate of this optical recording medium were measured in the same manner as in Example 1, it was found that the peak power was 13 mW or more, which was sufficient for practical use.
A C/N of 0 to 54 dB can be obtained, and the bottom power is 4.
A practically sufficient erasure rate of 20 to 26 dB was obtained at 5 to 7.5 mW.

【0052】比較例1 実施例1の第1反射層と第2反射層をMn0.01Si
0.04Al0.95合金の膜厚70nmの1層の反射
層で置き換えた従来の急冷構成の光記録媒体を作製した
。この光記録媒体を実施例1と同様に測定したところ、
ピークパワー16mW以上で実用上十分な50〜54d
BのC/Nが得られ、かつボトムパワー6〜9mWで実
用上十分な20〜28dBの消去率が得られた。実施例
1、2に比べ、C/N50dB以上の得られる記録時の
ピークパワーが3mWも高く、実施例1,2の方が本比
較例1の従来の急冷構成の光記録媒体よりも高感度であ
ることが分かった。
Comparative Example 1 The first reflective layer and second reflective layer of Example 1 were made of Mn0.01Si.
An optical recording medium with a conventional quenching configuration was produced in which a single reflective layer of 0.04Al0.95 alloy with a thickness of 70 nm was substituted. When this optical recording medium was measured in the same manner as in Example 1,
50 to 54 d, which is practically sufficient with a peak power of 16 mW or more.
B C/N was obtained, and a practically sufficient erasure rate of 20 to 28 dB was obtained with a bottom power of 6 to 9 mW. Compared to Examples 1 and 2, the peak power when recording with a C/N of 50 dB or more is higher by 3 mW, and Examples 1 and 2 have higher sensitivity than the optical recording medium with the conventional rapid cooling configuration of Comparative Example 1. It turned out to be.

【0053】[0053]

【発明の効果】本発明は、光記録媒体の構成を熱伝導率
の異なる2層の反射層を有する構成としたので、以下の
効果が得られた。 (1)   高感度で、かつ消去率、C/Nが高い。 (2)   多数回の記録消去を繰り返しても、動作が
安定しており、特性の劣化、欠陥の発生がほとんどない
。 (3)   耐湿熱性、耐酸化性に優れ、長寿命である
。 (4)   スパッタ法により容易に作製できる。
Effects of the Invention In the present invention, since the optical recording medium is structured to have two reflective layers having different thermal conductivities, the following effects can be obtained. (1) High sensitivity, high erasure rate, and high C/N. (2) Even after repeated recording and erasing many times, the operation is stable, with almost no deterioration of characteristics or occurrence of defects. (3) Excellent heat and humidity resistance, oxidation resistance, and long life. (4) It can be easily manufactured by sputtering.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の光記録媒体の基本的層構成の一例を模
式的に示したものである。
FIG. 1 schematically shows an example of the basic layer structure of the optical recording medium of the present invention.

【図2】従来の光記録媒体の基本的層構成の一例を模式
的に示したものである。
FIG. 2 schematically shows an example of the basic layer structure of a conventional optical recording medium.

【符号の説明】[Explanation of symbols]

1:基板 2:第1誘電体層 3:記録層 4:第2誘電体層 5:第1反射層 6:第2反射層 7:反射層 8:樹脂層 9:光の入射方向 1: Substrate 2: First dielectric layer 3: Recording layer 4: Second dielectric layer 5: First reflective layer 6: Second reflective layer 7: Reflective layer 8: Resin layer 9: Direction of light incidence

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成された記録層に光を照射する
ことによって、情報の記録、消去、及び再生が可能であ
り、情報の記録及び消去が、非晶相と結晶相の間の相変
化により行われる光記録媒体において、前記光記録媒体
が少なくとも記録層と誘電体層と反射層を有し、かつ反
射層が熱伝導率の異なる2層の反射層で構成されており
、かつ記録層に近接する側の反射層が他の1つの反射層
より熱伝導率が高いことを特徴とする光記録媒体。
Claim 1: Information can be recorded, erased, and reproduced by irradiating a recording layer formed on a substrate with light, and information can be recorded and erased by irradiating light onto a recording layer formed on a substrate. In an optical recording medium that performs phase change, the optical recording medium has at least a recording layer, a dielectric layer, and a reflective layer, and the reflective layer is composed of two reflective layers having different thermal conductivities, and An optical recording medium characterized in that a reflective layer closer to a recording layer has a higher thermal conductivity than another reflective layer.
JP3135019A 1991-06-06 1991-06-06 Optical recording medium Pending JPH04360039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135019A JPH04360039A (en) 1991-06-06 1991-06-06 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135019A JPH04360039A (en) 1991-06-06 1991-06-06 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH04360039A true JPH04360039A (en) 1992-12-14

Family

ID=15142034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135019A Pending JPH04360039A (en) 1991-06-06 1991-06-06 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH04360039A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05274717A (en) * 1992-03-30 1993-10-22 Nec Corp Optical information recording medium and its recording and reproducing method
EP0844607A2 (en) * 1996-11-25 1998-05-27 Hitachi, Ltd. Information recording medium and information recording and reproducing apparatus using the same
EP1143432A2 (en) * 1997-03-27 2001-10-10 Mitsubishi Chemical Corporation Optical information recording medium
US6596366B2 (en) 2000-08-02 2003-07-22 Mitsubishi Chemical Corporation Optical recording medium and process for producing an optical recording medium
WO2007083674A1 (en) * 2006-01-18 2007-07-26 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium
US7422838B1 (en) 1999-06-01 2008-09-09 Ricoh Company, Ltd. Phase-change optical recording medium
JP2012062244A (en) * 2003-08-13 2012-03-29 Saint-Gobain Glass France Transparent substrate having antireflection film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05274717A (en) * 1992-03-30 1993-10-22 Nec Corp Optical information recording medium and its recording and reproducing method
EP0844607A2 (en) * 1996-11-25 1998-05-27 Hitachi, Ltd. Information recording medium and information recording and reproducing apparatus using the same
EP0844607A3 (en) * 1996-11-25 2000-02-09 Hitachi, Ltd. Information recording medium and information recording and reproducing apparatus using the same
EP1146509A3 (en) * 1997-03-27 2002-05-02 Mitsubishi Chemical Corporation Optical information recording medium
EP1146509A2 (en) * 1997-03-27 2001-10-17 Mitsubishi Chemical Corporation Optical information recording medium
EP1143432A3 (en) * 1997-03-27 2002-04-24 Mitsubishi Chemical Corporation Optical information recording medium
EP1143432A2 (en) * 1997-03-27 2001-10-10 Mitsubishi Chemical Corporation Optical information recording medium
US7422838B1 (en) 1999-06-01 2008-09-09 Ricoh Company, Ltd. Phase-change optical recording medium
US6596366B2 (en) 2000-08-02 2003-07-22 Mitsubishi Chemical Corporation Optical recording medium and process for producing an optical recording medium
JP2012062244A (en) * 2003-08-13 2012-03-29 Saint-Gobain Glass France Transparent substrate having antireflection film
WO2007083674A1 (en) * 2006-01-18 2007-07-26 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium
US7910192B2 (en) 2006-01-18 2011-03-22 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium
US8158234B2 (en) 2006-01-18 2012-04-17 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium

Similar Documents

Publication Publication Date Title
JP3011200B2 (en) Optical recording medium
KR100364506B1 (en) Optical recording medium and its manufacturing method
JPH04360039A (en) Optical recording medium
JPH08190734A (en) Optical recording medium
JP3163943B2 (en) Optical recording medium
JPH07161071A (en) Optical recording medium
JP3211537B2 (en) Optical recording medium
JP3087598B2 (en) Optical recording medium
JPH07262613A (en) Optical recording medium
JPH07262607A (en) Optical recording medium
JP2002230839A (en) Optical recording medium
JP3173177B2 (en) Optical recording medium and manufacturing method thereof
JPH08115536A (en) Optical recording medium
JP2982329B2 (en) Information optical recording medium and recording / reproducing method thereof
JPH08124213A (en) Optical recording medium
JPH04238125A (en) Optical recording medium
JPH06127135A (en) Optical record medium
JPH10255323A (en) Optical recording medium
JPH06191160A (en) Optical recording medium
JPH10172180A (en) Optical recording medium
JPH08115535A (en) Optical recording medium
JPH06191161A (en) Optical recording medium
JPH0963117A (en) Optical information recording medium
JPH0540961A (en) Optical recording medium
JPH1097734A (en) Optical recording medium