JPH04359851A - X-ray tube device with rotary anode - Google Patents

X-ray tube device with rotary anode

Info

Publication number
JPH04359851A
JPH04359851A JP16085891A JP16085891A JPH04359851A JP H04359851 A JPH04359851 A JP H04359851A JP 16085891 A JP16085891 A JP 16085891A JP 16085891 A JP16085891 A JP 16085891A JP H04359851 A JPH04359851 A JP H04359851A
Authority
JP
Japan
Prior art keywords
ray tube
anode
bearing
rotating
frequency components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16085891A
Other languages
Japanese (ja)
Inventor
Mototatsu Doi
元達 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP16085891A priority Critical patent/JPH04359851A/en
Publication of JPH04359851A publication Critical patent/JPH04359851A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To predict failure through monitoring of the performance of a ball bearing in an X-ray tube, and thereby prevent interruption of photographing due to sudden occurrence of failure in an X-ray device with rotary anode. CONSTITUTION:A vibratory acceleration sensor 15 is installed on a tube support 14 or envelope 9 of an X-ray tube device with rotary anode, and signals therefrom are amplified by an electric charge amplifier 16 and separated by a filter 17 into high frequency components and low frequency component. The low frequency components are converted by a frequency-voltage converter 18 into a voltage to indicate the revolving speed and by an AC/DC converter into a voltage to exhibit the amount of unbalance, while the high frequency components are converted by AC/DC converter into a voltage to show the coarse loss of a ball bearing, and a relay switch judges whether the current situation is normal or abnormal. Thereby the frictional torque of X-ray tube, amount of unbalance, and coarse loss of bearing can be known on real time basis, which should contribute to prevention of trouble in advance, and also the X-ray tube replacing timing can be set well scheduled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はターゲットと陽極組立体
が玉軸受で支持されて高速で回転する回転陽極X線管装
置に係り、特にX線CT装置のような大きなシステムの
なかで使われ、寿命による交換の時期を前もって知りた
い場合や、回転数の速い立上り特性が要求される回転陽
極X線管装置に関する。
[Industrial Application Field] The present invention relates to a rotating anode X-ray tube device in which a target and anode assembly are supported by ball bearings and rotate at high speed, and is particularly used in a large system such as an X-ray CT device. This invention relates to a rotating anode X-ray tube device in which it is desired to know in advance when to replace it due to its lifespan, and in which a fast start-up characteristic of the rotational speed is required.

【0002】0002

【従来の技術】回転陽極X線管装置は、陰極からの高速
電子による陽極ターゲットの焦点部分の溶解を防止する
ため、陽極ターゲットを回転させるようにしたもので、
陰極と回転陽極とこの回転陽極に連結されているロータ
とが、ガラス等の真空外囲器中に配置され、この真空外
囲器外にステータコイルを配してロータを回転させて回
転陽極を回転させる構成となっている。
2. Description of the Related Art A rotating anode X-ray tube device rotates an anode target in order to prevent the focal portion of the anode target from being melted by high-speed electrons from the cathode.
A cathode, a rotating anode, and a rotor connected to the rotating anode are placed in a vacuum envelope made of glass or the like, and a stator coil is placed outside the vacuum envelope to rotate the rotor to generate the rotating anode. It is configured to rotate.

【0003】このX線管の許容負荷定格(X線管電圧K
V,X線管電流mA,負荷印加時間sec )は回転数
によって決まり、破壊等の事故を防ぐ上からも、回転数
を検出しフィードバックして回転数制御を行うことが種
々考えられている。例えば光電式回転検出器をX線管装
置外囲器外に設置して光の透過または反射によって陽極
の回転を検出しようというものである。しかし、この方
式では高電圧側に近い位置に光電式回転検出器を配置し
なければならず危険なうえ、位置合わせの煩雑さやスペ
ースの問題等があり、あるいは冷却油の劣化により反射
光あるいは透過光が減弱する問題があり、実際上実現不
可能と言わざるを得ない。
[0003] The allowable load rating of this X-ray tube (X-ray tube voltage K
V, X-ray tube current mA, and load application time sec) are determined by the rotational speed, and in order to prevent accidents such as destruction, various methods have been proposed to control the rotational speed by detecting and feeding back the rotational speed. For example, a photoelectric rotation detector is installed outside the envelope of the X-ray tube apparatus to detect the rotation of the anode by transmitting or reflecting light. However, with this method, the photoelectric rotation detector must be placed close to the high voltage side, which is dangerous, and there are problems such as complicated positioning and space problems.Also, due to deterioration of the cooling oil, reflected light or transmitted light There is a problem with light attenuation, so it has to be said that it is practically impossible.

【0004】また、ステータコイルの主コイルと補助コ
イルに生じる電圧を検出し、基準電圧と比較して回転数
を検出する方法が実公平1−24880号で提案されて
いる。 しかし、この方法では回転数検出の精度が不十分で、回
転数の詳細なフィードバックができない欠点がある。
[0004] Furthermore, Japanese Utility Model Publication No. 1-24880 proposes a method of detecting the voltage generated in the main coil and the auxiliary coil of the stator coil and comparing it with a reference voltage to detect the rotation speed. However, this method has the disadvantage that the rotation speed detection accuracy is insufficient and detailed feedback of the rotation speed cannot be provided.

【0005】一方、従来の転がり軸受の機械的な損傷に
よる異常判定装置は、特開昭51−136465号や特
開昭53−9584号に記載のように、軸受の損傷によ
って発生する周期性で、しかもパルス状の高い衝撃加速
度を振動加速度検出器で検出し、別に検出した回転数情
報に応じた判定規準値と比較判定したり、衝撃加速度の
大きさの経時的な増加の割合から異常時期を予測するよ
うになっていた。したがって、この方法では軸受の振動
加速度と軸の回転数の二つの検出情報を必要とし、X線
管においては上述の如く回転数の検出が困難なため、本
方式によりX線管の軸受の損傷による異常判定はできな
かった。
On the other hand, conventional abnormality determination devices due to mechanical damage to rolling bearings detect periodicity caused by damage to bearings, as described in Japanese Patent Laid-Open Nos. 51-136465 and 53-9584. Moreover, the pulse-like high impact acceleration is detected by a vibration acceleration detector, and compared with the judgment standard value according to the separately detected rotation speed information, and the abnormality period is determined based on the rate of increase in the magnitude of the impact acceleration over time. was beginning to be predicted. Therefore, this method requires two pieces of detection information: the vibration acceleration of the bearing and the rotational speed of the shaft, and since it is difficult to detect the rotational speed in the X-ray tube as mentioned above, this method can prevent damage to the bearing of the X-ray tube. It was not possible to determine an abnormality.

【0006】また、本発明者等はX線管に静電容量形変
位計を用いた回転数検出装置を設け、軸の惰性回転時の
時間変化に対する回転数の変化の割合を検出し、これを
もとに軸受の摩擦トルクに換算し、更にこの摩擦トルク
を判定基準値と比較して軸受の異常の度合いを判定する
方法を特願昭61−100987号にて提案した。しか
し、本方式でも回転数の検出を必要とし、静電容量変位
計の取付け位置は高電圧となる場合があり、回転数検出
が本方式の実用化上のあい路となっていた。
[0006] The present inventors also installed a rotation speed detection device using a capacitive displacement meter in the X-ray tube, and detected the ratio of change in rotation speed with respect to time change during inertial rotation of the shaft. In Japanese Patent Application No. 100987/1987, a method was proposed in which the degree of abnormality in the bearing is determined by converting the friction torque into the friction torque of the bearing based on the value, and then comparing this friction torque with a determination reference value. However, this method also requires the detection of rotational speed, and the mounting position of the capacitance displacement meter may be subject to high voltage, so detection of rotational speed has been a hurdle in the practical application of this method.

【0007】[0007]

【発明が解決しようとする課題】回転陽極X線管装置は
、衆知の如くX線CT装置のX線源である。また、最近
の循環診断における医療技術の向上は目ざましく、X線
画像を観察しながら検査や施術を行うようにもなってい
る。そのため従来にも増してX線管には高い信頼性が要
求されている。しかし、X線管は一種の電子管で消耗品
であり寿命がある。医用診断装置は人命に関わるため全
て高い信頼性を要するが、特にX線管は消耗品という位
置付けから交換時期を事前に予知したい。X線CT装置
は極めて複雑な機構で、X線管の取りはずし,取付けに
は長時間を要するため事前に交換時期がわかれば夜間、
あるいは休日等診断業務に支障の無いときに交換できる
As is well known, a rotating anode X-ray tube device is an X-ray source for an X-ray CT apparatus. Furthermore, recent advances in medical technology in circulatory diagnosis have been remarkable, and tests and treatments are now performed while observing X-ray images. Therefore, higher reliability is required of X-ray tubes than ever before. However, an X-ray tube is a type of electron tube and is a consumable item with a limited lifespan. All medical diagnostic equipment requires high reliability because human life is involved, but in particular, since X-ray tubes are considered consumables, it is desirable to be able to predict in advance when they will need to be replaced. X-ray CT equipment is an extremely complex mechanism, and it takes a long time to remove and install the X-ray tube.
Alternatively, it can be replaced when it does not interfere with diagnostic work, such as on holidays.

【0008】X線管の故障は(1)耐電圧性能の低下、
と(2)回転性能の不良に尽きると言っても過言ではな
い。耐電圧性能の低下は軸受に起因することが多い。す
なわち、軸受の損傷が進展し摩耗粉が発生すると、電界
分布が乱れ耐電圧性能は低下する。また、摩擦トルクが
増加すると回転数が低下し、陽極ターゲットへの熱負荷
が過大となり局部的に過昇温する。陽極ターゲットは、
その過昇温によりガスを放出し、その結果耐電圧性能が
低下する
[0008] Failure of an X-ray tube is caused by (1) a decrease in withstand voltage performance;
It is no exaggeration to say that (2) the problems are all about poor rotational performance. Decrease in voltage resistance performance is often caused by bearings. That is, as damage to the bearing progresses and wear particles are generated, the electric field distribution is disturbed and the withstand voltage performance is reduced. Furthermore, when the friction torque increases, the rotational speed decreases, and the heat load on the anode target becomes excessive, causing local temperature rise. The anode target is
Due to the excessive temperature rise, gas is released, resulting in a decrease in withstand voltage performance.

【0009】また、回転性能の不良は軸受損傷の進展に
よる騒音の増大、あるいは回転体の変形にもとづくアン
バランスの過大があげられる。摩擦トルクについては(
1)耐電圧性能の低下に関連して既述した。
[0009] In addition, poor rotational performance can be caused by an increase in noise due to the progress of bearing damage, or by excessive unbalance due to deformation of the rotating body. Regarding friction torque (
1) As already mentioned in relation to the decrease in withstand voltage performance.

【0010】要するに軸受の回転性能、すなわち摩擦ト
ルクと振動加速度がわかればX線管の寿命、あるいは故
障を予知でき、摩擦トルクは回転数の検出によって知る
ことができる。
In short, if the rotational performance of the bearing, that is, the friction torque and vibration acceleration, are known, the lifespan or failure of the X-ray tube can be predicted, and the friction torque can be determined by detecting the rotational speed.

【0011】本発明はX線管の故障・寿命を事前に予知
し、X線管の突発的な故障による診断の中断を防止し、
患者の苦痛を必要最小限にとどまるようにし、ひいては
人命を救うことを目的とする。
[0011] The present invention predicts the failure and lifespan of the X-ray tube in advance, prevents interruption of diagnosis due to sudden failure of the X-ray tube,
The aim is to keep the patient's suffering to a minimum and ultimately save lives.

【0012】0012

【課題を解決するための手段】上記の目的を達成するた
め、振動加速度センサを管球支持体または密封容器の管
球支持体に近い位置に取り付け、センサからの加速度信
号をローパスフィルタとハイパスフィルタで低周波成分
と高周波成分に分離し、増幅装置で増幅する。振動加速
度センサを取り付ける位置は、ステータコイルの電磁力
による加振を受けないようにステータコイル支持体とゴ
ム等で振動絶縁する。
[Means for Solving the Problem] In order to achieve the above object, a vibration acceleration sensor is attached to a tube support or a position close to the tube support of a sealed container, and the acceleration signal from the sensor is filtered through a low-pass filter and a high-pass filter. The signal is separated into low-frequency components and high-frequency components, and amplified by an amplifier. The position where the vibration acceleration sensor is installed is insulated from the stator coil support with rubber or the like so that it is not subjected to vibration due to the electromagnetic force of the stator coil.

【0013】回転成分から成る低周波成分を周波数−電
圧変換器に入れ、回転数を電圧に変換する。低周波成分
,高周波成分は交流−直流変換器で振動強度に応じた直
流電圧に変換する。
The low frequency component consisting of the rotational component is input into a frequency-voltage converter, and the rotational speed is converted into voltage. An AC-DC converter converts the low-frequency components and high-frequency components into DC voltage according to the vibration intensity.

【0014】低周波成分の出力電圧は基準値と比較し、
所定の時間に所定の回転数に到達したか、あるいは異常
な回転数の低下が無いか検査する。高周波成分は複数の
基準値を設定し、順序警報の注意度合いを強くし、交換
時期を予告する。
The output voltage of the low frequency component is compared with a reference value,
It is checked whether a predetermined number of rotations has been reached at a predetermined time or whether there is an abnormal drop in the number of rotations. Multiple reference values are set for high-frequency components, the order of warnings is made more careful, and the time for replacement is announced.

【0015】振動加速度から回転数成分を取り出すため
に二重積分回路を設けることもある。
A double integration circuit may be provided to extract the rotational speed component from the vibration acceleration.

【0016】[0016]

【作用】回転陽極X線管は陽極ターゲットを10−6t
orr以下の高真空中で回転させ、陽極ターゲットで発
生する膨大な熱量のため軸受部は400〜500℃の高
温となる。そのため銀,鉛,二硫化モリブデン(MoS
2)等の固体で潤滑しているが、固体潤滑は、摩擦トル
クが不安定,騒音が大、寿命が短かいという欠点を持つ
。以上の基本的な回転性能をモニタするため、種々の試
験を行い、データを解析した結果、振動加速度による情
報が最もモニタするのに適すると判断した。
[Operation] The rotating anode X-ray tube has an anode target of 10-6t.
The anode target rotates in a high vacuum of less than orr, and the bearing portion reaches a high temperature of 400 to 500° C. due to the enormous amount of heat generated in the anode target. Therefore, silver, lead, molybdenum disulfide (MoS)
2) Solid lubrication is used, but solid lubrication has the disadvantages of unstable friction torque, high noise, and short life. In order to monitor the above basic rotational performance, we conducted various tests and analyzed the data, and as a result, we determined that information based on vibration acceleration is most suitable for monitoring.

【0017】容易に測定できる代表的振動は、振動変位
と加速度であり変位を二階微分すると加速度になる関係
にあり、次式で表わされる。振動変位をa,振動加速度
をαとすると、 ここで、A:定数、π:円周率、f:振動周波数、t:
時間
Typical vibrations that can be easily measured are vibration displacement and acceleration, and the second-order differentiation of displacement gives acceleration, which is expressed by the following equation. Letting the vibration displacement be a and the vibration acceleration α, where A: constant, π: pi, f: vibration frequency, t:
time

【0018】数2式からわかるように振動加速度αは高
周波ほど、すなわちfが大きいほど大きくなり、変位で
は測定不可能な高周波振動を加速度では測定できる。加
速度を二重積分すると数1式の変位になり、振動変位は
回転数成分が支配的である。
As can be seen from Equation 2, the vibration acceleration α increases as the frequency increases, that is, as f increases, and high-frequency vibrations that cannot be measured by displacement can be measured by acceleration. When the acceleration is double integrated, the displacement is expressed by Equation 1, and the vibration displacement is dominated by the rotational speed component.

【0019】逆に、振動変位を計測してそれを二階微分
しても高周波の振動加速度は検出できない。すなわち、
加速度で議論の対象となる周波数とレベルの変位振幅は
0.1μm以下あるいは0.01μm 以下で測定不能
だからである。
Conversely, high-frequency vibration acceleration cannot be detected even if the vibration displacement is measured and second-order differentiated. That is,
This is because the frequency and level displacement amplitudes that are the subject of discussion in terms of acceleration are less than 0.1 μm or less than 0.01 μm and cannot be measured.

【0020】管球支持体、あるいは管球支持体近傍に取
り付けられた加速度センサは、回転数成分から可聴周波
数帯の20KHzまでの振動加速度を出力する。それを
増幅し、1KHz以上の高周波成分と回転数成分を取り
出せば、高周波成分からは軸受の損傷すなわち、いたみ
具合が、回転数成分で回転数が判る。
[0020] The acceleration sensor attached to the tube support or near the tube support outputs vibration acceleration ranging from the rotational speed component to 20 KHz in the audible frequency band. If this is amplified and a high frequency component of 1 KHz or more and a rotational speed component are extracted, damage to the bearing can be determined from the high frequency component, and the rotational speed can be determined from the rotational speed component.

【0021】また、振動加速度は固体を伝播する弾性波
である。よって電気絶縁性の高い高分子樹脂やセラミッ
クのような固体を伝播経路の間に配置しても加速度セン
サにより振動を検出できる。回転陽極X線管装置におい
てはこの点は極めて重要である。なぜなら回転体をそれ
を取り巻く部材は数十キロボルトという高電圧が印加さ
れる傾向にあるからである。そのため回転体とそれを取
り巻く金属製の部材には、センサを取り付けることはも
ちろん近づけることも不可能である。しかし、加速度を
検出するのであれば固体伝播性を利用して計測できる。
[0021] Furthermore, vibration acceleration is an elastic wave propagating through a solid body. Therefore, vibrations can be detected by the acceleration sensor even if a solid material such as a polymer resin or ceramic with high electrical insulation is placed between the propagation paths. This point is extremely important in a rotating anode X-ray tube device. This is because high voltages of several tens of kilovolts tend to be applied to members surrounding the rotating body. Therefore, it is impossible to attach a sensor to the rotating body and the metal members surrounding it, and it is also impossible to get close to it. However, if acceleration is to be detected, it can be measured using solid propagation.

【0022】[0022]

【実施例】以下、本発明の一実施例について図面を参照
して説明する。図1は本発明による回転陽極X線管装置
を示すものである。回転陽極X線管装置はガラス製、あ
るいは金属製の真空外囲器8の中に熱電子を発生する陰
極2,熱電子を受けてX線を発生する陽極ターゲット1
,陽極ターゲット1を回転させるロータ3、及び回転軸
4に取り付けられロータ3を回転自在に支持する玉軸受
5,玉軸受5を収納するハウジング6が真空外囲器8の
なかで高真空の状態で封入されているものである。以上
の構成体を回転陽極X線管(以下X線管と称す)という
。真空外囲器8の外周にはステータ7があり、ステータ
7はフレーム12に取り付けられる。フレーム12には
管球支持体14が固着され、X線管は管球支持体14の
中央部で固定される。X線管とフレーム12はハウベと
呼ぶ外囲器9に収納され、外囲器9内には冷却と電気絶
縁のために絶縁油11が封入されている。X線管は陰極
側はゴムチップ10を介して外囲器9に支持される。 13a,13bは陰極2と陽極(陽極ターゲット1,ロ
ータ3,回転軸4,軸受5,ハウジング6)に高電圧を
供給するブッシングである。圧電型振動加速度センサ1
5は管球支持体14にねじと接着剤にて固着される。外
囲器9の外部に電荷増幅器(チャージアンプ)16,フ
ィルタ17,周波数−電圧変換器18,交流−直流変換
器19,20,リレースイッチ21,22,23を設け
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a rotating anode X-ray tube device according to the present invention. The rotating anode X-ray tube device includes a cathode 2 that generates thermionic electrons in a vacuum envelope 8 made of glass or metal, and an anode target 1 that generates X-rays by receiving thermionic electrons.
, a rotor 3 that rotates the anode target 1, a ball bearing 5 that is attached to the rotating shaft 4 and rotatably supports the rotor 3, and a housing 6 that houses the ball bearing 5 in a high vacuum state within the vacuum envelope 8. It is enclosed in. The above structure is called a rotating anode X-ray tube (hereinafter referred to as an X-ray tube). A stator 7 is provided on the outer periphery of the vacuum envelope 8 , and the stator 7 is attached to a frame 12 . A tube support 14 is fixed to the frame 12, and the X-ray tube is fixed at the center of the tube support 14. The X-ray tube and frame 12 are housed in an envelope 9 called a Haube, and insulating oil 11 is sealed in the envelope 9 for cooling and electrical insulation. The cathode side of the X-ray tube is supported by an envelope 9 via a rubber chip 10. 13a and 13b are bushings that supply high voltage to the cathode 2 and anode (anode target 1, rotor 3, rotating shaft 4, bearing 5, housing 6). Piezoelectric vibration acceleration sensor 1
5 is fixed to the tube support 14 with screws and adhesive. A charge amplifier 16, a filter 17, a frequency-voltage converter 18, AC-DC converters 19, 20, and relay switches 21, 22, 23 are provided outside the envelope 9.

【0023】以上の構成の回転陽極X線管装置において
、陽極ターゲット1が回転すると陰極2と陽極ターゲッ
ト1との間にブッシング13a,13bにより供給され
る高電圧が印加され、陰極2から陽極ターゲット1に電
子ビームが放射されると陽極ターゲット1の表面から図
中の矢印方向にX線が発生する。この際、陽極ターゲッ
ト1の平均温度は約1000℃となり、ガラスあるいは
金属製の真空外囲器8の内部は高真空に気密保持されて
いるので、ほとんどの熱は真空外囲器外へ放射伝熱され
る。しかし、陽極ターゲット1の熱の一部は伝導により
回転軸4及び玉軸受5,ハウジング6へと伝熱され、玉
軸受5は約500℃の高温となるため、鉛または銀の薄
膜をボールに被覆して固体潤滑している。固体潤滑膜の
破片のかみ込み、あるいは熱膨張を考慮して軸受すきま
は40〜60μm(通常の電動機用では5〜10μm)
のものが使用されている。
In the rotating anode X-ray tube device having the above configuration, when the anode target 1 rotates, a high voltage supplied by the bushings 13a and 13b is applied between the cathode 2 and the anode target 1, and the cathode 2 is connected to the anode target. When an electron beam is emitted onto the anode target 1, X-rays are generated from the surface of the anode target 1 in the direction of the arrow in the figure. At this time, the average temperature of the anode target 1 is approximately 1000°C, and since the inside of the vacuum envelope 8 made of glass or metal is kept airtight at a high vacuum, most of the heat is radiated and transferred to the outside of the vacuum envelope. It gets heated. However, some of the heat from the anode target 1 is transferred to the rotating shaft 4, ball bearing 5, and housing 6 by conduction, and the ball bearing 5 reaches a high temperature of approximately 500°C, so a thin film of lead or silver is applied to the ball. Covered with solid lubrication. The bearing clearance should be 40 to 60 μm (5 to 10 μm for normal electric motors) to take into account the entrapment of solid lubricant film fragments or thermal expansion.
are used.

【0024】固体潤滑膜の厚さは従来は0.5〜0.7
μmとしていたが、ここでは0.2〜0.4μm とし
ている。その理由は次のとおりである。
Conventionally, the thickness of the solid lubricant film is 0.5 to 0.7.
Although the thickness was assumed to be .mu.m, here it is set to 0.2 to 0.4 .mu.m. The reason is as follows.

【0025】0.5〜0.7μmの厚さは寿命が十分に
長く、陽極ターゲットの電子衝撃を受けたことにより生
じる荒損でX線の量が減ってもさらに回転可能であった
。 X線管は最終的には陽極ターゲットの電子線を受けてX
線を発生する焦点面の荒損で寿命が決まる。陽極ターゲ
ットの材料面の改良も進み、タングステンにレニウムを
混合した現在の材料は荒損の進展が遅い。しかし、長時
間使用していればX線量は減少するので必要以上に軸受
寿命を延ばす必要はない。
[0025] A thickness of 0.5 to 0.7 μm had a sufficiently long life, and further rotation was possible even if the amount of X-rays was reduced due to rough damage caused by electron bombardment of the anode target. The X-ray tube ultimately receives the electron beam from the anode target and produces X-rays.
The lifespan is determined by the damage to the focal plane that generates the lines. Improvements have been made in the materials used for anode targets, and the current material, which is a mixture of tungsten and rhenium, is slow to develop roughness. However, if the bearing is used for a long time, the amount of X-rays will decrease, so there is no need to extend the life of the bearing more than necessary.

【0026】一方、固体潤滑膜は振動・騒音の抑制の面
からできるだけ薄いことが望ましい。固体潤滑剤はその
名のとおり固体であり、有限の大きさと形状を持ってお
り、油膜のような均一性は維持できない。そのためボー
ル表面、あるいは内輪・外輪転走面にミクロン単位の凹
凸を形成して潤滑作用を行う。その凹凸の大きさは潤滑
膜の厚さが厚いほど、すなわち供給量が多いほど大きい
。騒音・振動はボール表面および転走面の凹凸の大きさ
につれて大きくなるので、潤滑膜は薄いことが望ましい
のである。X線管は病院という静かな環境で使われ、患
者に不安感を与えないためにも静しゅくでなければなら
ない。また、振動が大きいとX線源がゆれ動きX線画質
の低下をもたらす。
On the other hand, it is desirable that the solid lubricant film be as thin as possible from the viewpoint of suppressing vibration and noise. As the name suggests, solid lubricants are solids, have a finite size and shape, and cannot maintain the same uniformity as an oil film. For this reason, lubrication is achieved by forming micron-level irregularities on the ball surface or the raceway surfaces of the inner and outer rings. The size of the unevenness increases as the thickness of the lubricant film increases, that is, as the supply amount increases. Since noise and vibration increase with the size of the irregularities on the ball surface and rolling surface, it is desirable that the lubricating film be thin. X-ray tubes are used in quiet environments such as hospitals, and they must be quiet so as not to make patients feel anxious. Furthermore, if the vibration is large, the X-ray source will shake, resulting in a reduction in the quality of the X-ray image.

【0027】以上の理由により膜厚は0.2〜0.4μ
mとし、静音化と低振動を達成したが、寿命は従来の半
無限から有限となり、X線量の低下による交換時期とほ
ぼ同じ長となった。なお、ターゲット焦点面の荒損度合
は使用期間、すなわち撮影回数と電子ビーム強度により
決まる。弱いX線しか出さない使い方では、使用回数が
多くても陽極ターゲットの荒損は緩やかにしか進まない
。 一方、軸受寿命も電子ビーム強度に依るところが大なの
である。固体潤滑される玉軸受ではその温度が寿命を決
定する。すなわち、温度が高いと軸受素材の硬さが低下
し、摩耗し易くなるとともに、潤滑剤の蒸発が速くなり
、消失することがある。陽極ターゲットへの電子ビーム
強度が強いと陽極ターゲットの温度は高くなり、それに
つれて軸受温度も高くなる。このように、陽極ターゲッ
トへの電子ビーム強度は陽極ターゲットと軸受の寿命を
決定する要因で、電子ビーム強度が強ければ陽極ターゲ
ットの荒損は進むが、同じく軸受寿命も短かくなる。 よって、軸受寿命を監視すれば、X線管装置の寿命を判
定できる。
[0027] For the above reasons, the film thickness is 0.2 to 0.4μ.
m, achieving quietness and low vibration, but the lifespan is now finite instead of the conventional semi-infinite life, which is almost as long as the replacement period due to the decrease in the amount of X-rays. Note that the degree of damage to the target focal plane is determined by the period of use, that is, the number of times of imaging and the intensity of the electron beam. If it is used to emit only weak X-rays, the damage to the anode target will only progress slowly even if it is used many times. On the other hand, the bearing life also largely depends on the electron beam intensity. For solid lubricated ball bearings, the temperature determines the lifespan. That is, when the temperature is high, the hardness of the bearing material decreases, making it more likely to wear, and the lubricant evaporates faster and may disappear. When the intensity of the electron beam to the anode target is strong, the temperature of the anode target increases, and the bearing temperature also increases accordingly. In this way, the intensity of the electron beam to the anode target is a factor that determines the life of the anode target and the bearing.If the electron beam intensity is strong, the damage to the anode target will increase, but the life of the bearing will also be shortened. Therefore, by monitoring the bearing life, the life of the X-ray tube device can be determined.

【0028】X線管が回転すると玉軸受5のボールの転
走により発生する高周波成分と、回転系のアンバランス
により生じる回転数成分が振動となる。これらの振動は
加速度センサ15で検出され、電荷増幅器16で増幅さ
れたのち、フィルタ17で500Hzまでの低周波成分
と800Hz〜10KHzまでの高周波分に分離される
。図2は電荷増幅器16で増幅された振動信号を周波数
分析した結果を示す。(a)は回転が良好状態にあるも
ので、高周波成分は全般に低く静かである。170Hz
のピークωは回転数成分である。(b)は寿命に近いレ
ベルを示し、800Hz以上の高周波域が強い。この状
態で騒音は大きい。
When the X-ray tube rotates, a high frequency component generated by rolling of the balls of the ball bearing 5 and a rotational speed component generated by an imbalance in the rotation system become vibrations. These vibrations are detected by the acceleration sensor 15, amplified by the charge amplifier 16, and then separated by the filter 17 into low frequency components up to 500 Hz and high frequency components from 800 Hz to 10 KHz. FIG. 2 shows the results of frequency analysis of the vibration signal amplified by the charge amplifier 16. In (a), the rotation is in good condition, and the high frequency components are generally low and quiet. 170Hz
The peak ω is the rotational speed component. (b) shows a level close to the end of life, and the high frequency region of 800 Hz or more is strong. In this state, the noise is loud.

【0029】図3は、フィルタ17で分離された500
Hzまでの信号波形で、この範囲の低周波成分は、ほぼ
正弦波を呈し、これが回転数成分である。周波数−電圧
変換器18はこの信号波形の低周波成分の周波数を電圧
に変え、周波数に応じた電圧を出力する。図3において
振幅はX線管の陽極ターゲットのアンバランス量に比例
する。交流−直流変換器20はこの振幅に比例した直流
電圧を出力するので図3の信号波形を交流−直流変換器
20に入力すれば、X線管の陽極ターゲットのアンバラ
ンス量もわかる。
FIG. 3 shows 500 filters separated by filter 17.
In the signal waveform up to Hz, the low frequency component in this range exhibits a substantially sinusoidal wave, which is the rotational speed component. The frequency-voltage converter 18 converts the frequency of the low frequency component of this signal waveform into a voltage, and outputs a voltage according to the frequency. In FIG. 3, the amplitude is proportional to the amount of unbalance of the anode target of the X-ray tube. Since the AC-DC converter 20 outputs a DC voltage proportional to this amplitude, by inputting the signal waveform shown in FIG. 3 to the AC-DC converter 20, the amount of unbalance of the anode target of the X-ray tube can also be determined.

【0030】図4はフィルタ17で分離された800H
z〜10KHzの高周波振動波形で、振幅が強度を表わ
す。交流−直流変換器19はこの波形を直流電圧に変換
し、ボール表面、あるいは転走面の荒損に応じた電圧を
出力する。
FIG. 4 shows 800H separated by filter 17.
It is a high frequency vibration waveform of z~10KHz, and the amplitude represents the intensity. The AC-DC converter 19 converts this waveform into a DC voltage and outputs a voltage depending on the roughness of the ball surface or rolling surface.

【0031】リレースイッチ21,22,23は回転数
とアンバランス、及び高周波成分の判定器を成す。回転
陽極X線管の回転性能は、摩擦トルクが小さく振動・騒
音が低いことが要求される。X線管はステータ7に所定
の周波数,電圧を一定時間通電し、真空外囲器8内のロ
ータ3と誘導電動機を形成して駆動する。駆動周波数,
電圧,通電時間は予め決められて固定している。そのた
め何らかの原因で摩擦トルクが大きくなると到達回転数
は下がる。
The relay switches 21, 22, and 23 constitute a determiner for determining rotation speed, unbalance, and high frequency components. The rotational performance of a rotating anode X-ray tube requires low friction torque and low vibration and noise. The X-ray tube is driven by energizing the stator 7 with a predetermined frequency and voltage for a fixed period of time to form an induction motor with the rotor 3 within the vacuum envelope 8. Drive frequency,
The voltage and energization time are predetermined and fixed. Therefore, if the friction torque increases for some reason, the number of rotations reached will decrease.

【0032】図5はリレースイッチ21の動作状況を示
し、範囲Iは正常、範囲IIは注意、範囲III は運
転停止である。範囲Iの正常に幅があるのは、X線管の
ロータ3が陽極ターゲットで発生した熱で暖められると
、モータ効率が低下して到達回転数が下がるからである
。正常時は(イ)のように回転数が変化する。固体潤滑
剤の大きな破片がボールと転走面の間にかみ込まれると
、一時的に摩擦トルクが大きくなり(ロ)のようにII
の注意域に入る。この注意域はターゲット焦点面が過昇
温して放電するまでには到らない。固体潤滑剤のかみ込
みはしばらく回転させていると次第に慣らされて平滑に
なり、摩擦トルクは正常に戻る(ハ)。
FIG. 5 shows the operating status of the relay switch 21, where range I is normal, range II is caution, and range III is stopped. The reason why there is a normal width in range I is that when the rotor 3 of the X-ray tube is warmed by the heat generated by the anode target, the motor efficiency decreases and the number of rotations reached decreases. Under normal conditions, the rotation speed changes as shown in (a). When large pieces of solid lubricant get caught between the balls and the raceway, the friction torque temporarily increases, as shown in (b).
falls into the caution zone. This caution area does not reach the point where the target focal plane becomes too heated and discharges. If the solid lubricant gets caught in the engine for a while, it will gradually get used to it and become smooth, and the friction torque will return to normal (c).

【0033】これに対し、慣らし回転をしても次第に(
ニ)のように到達回転数が低下し、注意域から運転停止
域に入り、しかも後述のように高周波の振動加速度が大
きくなる場合は、固体潤滑剤のかみ込みではなく、素材
の摩耗が進行したためで、X線管の交換が必要である。 また、(ホ)は駆動電源側の異常あるいはステータコイ
ルのレアショートが生じた場合で、回転数が低いため振
動加速度は極めて小さい。電源系を調べて修理すれば再
生可能となる。
[0033] On the other hand, even if the running-in rotation is performed, the (
If the reached rotation speed decreases as shown in (d) and enters the operation stop range from the caution range, and the high frequency vibration acceleration increases as described later, it is not due to the solid lubricant being trapped, but due to wear of the material. Therefore, the X-ray tube needs to be replaced. In addition, (e) is a case where an abnormality on the drive power supply side or a layer short in the stator coil occurs, and the vibration acceleration is extremely small because the rotation speed is low. If the power supply system is examined and repaired, it will be possible to play it again.

【0034】このように、従来は回転数が低下しすぎて
使用中に陽極ターゲットの焦点溶けを起こしたり、放電
を頻発してから慌てて交換していたが、本発明では事前
に計画的に交換できる。また、放電を起こして撮影をや
り直すという患者に苦痛を与える事故も防止できる。
As described above, in the past, the rotational speed decreased too much, causing focus melting of the anode target during use, or frequent discharge occurred, and then the target was replaced in a hurry, but with the present invention, it is possible to replace the anode target in a planned manner in advance. Can be exchanged. Furthermore, it is possible to prevent accidents that cause pain to the patient, such as having to retake the image due to discharge.

【0035】循環器診断用X線管装置では陽極ターゲッ
ト1の回転数立ち上がり特性が重要視される。これは造
影剤を患者の血管に注入し血流を撮影する際、造影剤が
撮影すべきところに流れてきた瞬間をとらえるためで、
その瞬間から強力なX線を必要とする。図5(イ)のな
かで回転数がS点に到達すればX線曝射開始可能だが、
従来はタイマーで2〜3倍の時間の余裕を設けていた。 本発明によりX線管の駆動能力限界まで立ち上がり特性
を向上し、医師の待ち時間を大幅に減少した。
[0035] In the X-ray tube device for diagnosing the cardiovascular system, importance is placed on the characteristics of the rotational speed rise of the anode target 1. This is to capture the moment when the contrast agent flows into the area where it should be imaged, when injecting the contrast agent into a patient's blood vessels and photographing the blood flow.
From that moment on, powerful X-rays are required. In Figure 5 (a), when the rotation speed reaches point S, it is possible to start X-ray irradiation, but
Previously, a timer was used to allow for two or three times as much time. The present invention has improved the start-up characteristics to the limit of the driving capacity of the X-ray tube, and has significantly reduced the waiting time for doctors.

【0036】X線管は陽極ターゲット1で膨大な熱量を
発生し、その熱を冷却器(図示せず)で大気中に放散し
ている。冷却器の能力には限界があるのでステータ7で
発生する熱量が多いとその分陽極ターゲット1の発生熱
量は制限され、X線管の休止時間を長くする。これを防
ぐにはステータ7への通電時間を短かくする必要がある
。 本発明では最高回転数到達後、駆動電源をしゃ断し、惰
性で回転させることが可能である。そして、S点まで回
転数が低下したら駆動を短時間投入して加速し、再びS
点まで惰性回転させる。このようにして駆動電力を大幅
に減少できた。
The X-ray tube generates a huge amount of heat at the anode target 1, which is dissipated into the atmosphere by a cooler (not shown). Since there is a limit to the capacity of the cooler, if the amount of heat generated by the stator 7 is large, the amount of heat generated by the anode target 1 is limited accordingly, which lengthens the downtime of the X-ray tube. To prevent this, it is necessary to shorten the time during which the stator 7 is energized. In the present invention, after the maximum rotational speed is reached, the drive power is cut off and the rotation can be performed by inertia. Then, when the rotation speed drops to the S point, the drive is turned on for a short time to accelerate, and then the S point is reached again.
Freeze to a point. In this way, driving power could be significantly reduced.

【0037】交流−直流変換器20の出力電圧は回転数
成分の振幅に比例し、前述のようにこれはアンバランス
量に対応する。X線管は急速な加熱と冷却をくり返し、
しかも陽極ターゲット1の最高温度は1000℃、ロー
タ3は700℃、回転軸は500℃に達することがある
。そのため、どうしても組立結合部で熱膨張による位置
ズレが生じ、その結果アンバランスが生じてしまう。 高速回転時のアンバランスはさらにアンバランスを増大
する方向に作用し、X線管装置全体を加振し、画像の乱
れを生じる。最悪の場合、X線管を破壊する恐れもある
。組立精度の向上、バランシングの徹底,振動エネルギ
ーの吸収等さまざまな対策を講じてアンバランス量を増
大させないようにしているが、予期せぬ原因でアンバラ
ンスが増大することがある。本発明では交流−直流変換
器20の出力電圧でアンバランス量を監視できるので規
定の領域まで増大した時点でリレースイッチ22により
計画的に交換時期を設定できる。
The output voltage of the AC-DC converter 20 is proportional to the amplitude of the rotational speed component, and as described above, this corresponds to the amount of unbalance. The X-ray tube repeatedly heats and cools rapidly.
Furthermore, the maximum temperature of the anode target 1 may reach 1000°C, the rotor 3 may reach 700°C, and the rotating shaft may reach 500°C. Therefore, misalignment inevitably occurs at the assembly joint due to thermal expansion, resulting in imbalance. The unbalance during high-speed rotation acts in a direction that further increases the unbalance, vibrates the entire X-ray tube apparatus, and causes image disturbance. In the worst case, there is a risk of destroying the X-ray tube. Although various measures are taken to prevent the amount of unbalance from increasing, such as improving assembly precision, thorough balancing, and absorbing vibration energy, unbalance may increase due to unexpected causes. In the present invention, since the amount of unbalance can be monitored using the output voltage of the AC-DC converter 20, the time for replacement can be set in a planned manner using the relay switch 22 when the amount of unbalance increases to a specified range.

【0038】交流−直流変換器19の高周波成分の出力
は図6に示すようにリレースイッチ23によりIの正常
,IIの注意,III の回転停止に分類される。固体
潤滑玉軸受では潤滑剤が消失して素材が摩耗しても、摩
擦トルクがそれほど増加せず既述の回転数の監視では捉
えられない場合が多い。それは素材が表面から均一にわ
ずかずつ摩耗すると摩耗粉は小さく量は多いが、摩耗粉
がボールと転走面の間にかみ込まれても、小さいため摩
擦トルクの大幅な増加には到らない。しかし、摩耗粉の
排出は放電を誘発し撮影不能となるのでX線管を事前に
交換する必要がある。幸い、摩耗粉が放電を誘発するに
は、ロータ3から外に出て陽極ターゲット1、あるいは
陰極2の近傍に飛散することが条件で、そこに到達する
には時間を要する。高周波成分の出力電圧を監視してい
れば図6のように放電を頻発する前に事前に計画的に交
換できる。図6は出力の実効値で、図中(イ)は潤滑膜
の厚さが0.25μm の場合の代表例、(ロ)は膜厚
0.6μm の軸受を組み込んだなかで比較的振動加速
度が低かったデータを示す。
As shown in FIG. 6, the output of the high frequency component of the AC-DC converter 19 is classified by the relay switch 23 into I (normal), II (attention), and III (rotation stopped). In solid lubricated ball bearings, even if the lubricant disappears and the material wears, the friction torque does not increase significantly and is often not detected by monitoring the rotational speed as described above. This is because when the material wears uniformly and little by little from the surface, the amount of wear particles is small and large, but even if the wear particles are caught between the ball and the raceway, they are small and will not significantly increase the friction torque. . However, the discharge of wear powder induces electrical discharge, making it impossible to take pictures, so it is necessary to replace the X-ray tube in advance. Fortunately, in order for the abrasion powder to induce discharge, it must come out from the rotor 3 and scatter near the anode target 1 or the cathode 2, and it takes time to reach there. If the output voltage of the high frequency component is monitored, it is possible to replace the battery in a planned manner before frequent discharge occurs as shown in FIG. Figure 6 shows the effective value of the output, in which (a) is a typical example when the lubricant film thickness is 0.25 μm, and (b) is a typical example when the lubricant film thickness is 0.6 μm. The data shows that the results were low.

【0039】図7から図9は本発明の他の実施例を示し
、加速度センサ15の取付け法に関する。加速度センサ
15の取付け位置が管球支持体14から遠ざかるにつれ
て振動エネルギは減衰し、特に高周波成分ほど減衰率は
大きい。しかし、電荷増幅器16の増幅器は十分に大き
いので、本発明の実施において問題は無く図7,図8の
ようにまたは外囲器9の外側などのように陽極に印加さ
れる高電圧の影響を受けず、取付け易い位置に加速度セ
ンサ15を取り付ければ良い。
FIGS. 7 to 9 show another embodiment of the present invention and relate to a method of mounting the acceleration sensor 15. FIG. The vibration energy is attenuated as the mounting position of the acceleration sensor 15 moves away from the tube support 14, and in particular, the higher the frequency component, the greater the attenuation rate. However, since the amplifier of the charge amplifier 16 is sufficiently large, there is no problem in implementing the present invention, and the influence of the high voltage applied to the anode as shown in FIGS. The acceleration sensor 15 may be attached to a position where it can be easily attached without being damaged.

【0040】図9はX線管を防振支持したX線管装置へ
の実施例で、X線管陽極側はハウジング6を放熱リング
14aと防振ゴム14b、及び防振リング14cを介し
て管球支持体14に取付ける。加速度センサ15は絶縁
性の高い樹脂で製作した絶縁プレート16にねじと接着
剤で固定される。ステータ7へ供給する駆動電力が極め
て強く、駆動周波数でステータ7が振動したり、あるい
は回転陽極X線管装置が取付けられる医用診断装置から
強い振動が伝播すると、加速度センサ15へそれらの振
動が入り誤動作の原因となる危険性がある。図9の実施
例は防振ゴム14bと防振リング14cで振動絶縁して
おり、外部振動の影響を無視できるレベルに減少できる
FIG. 9 shows an embodiment of an X-ray tube apparatus in which an X-ray tube is supported in a vibration-isolated manner. It is attached to the tube support 14. The acceleration sensor 15 is fixed to an insulating plate 16 made of highly insulating resin with screws and adhesive. If the driving power supplied to the stator 7 is extremely strong and the stator 7 vibrates at the driving frequency, or if strong vibrations propagate from the medical diagnostic equipment to which the rotating anode X-ray tube device is attached, those vibrations will enter the acceleration sensor 15. There is a risk of causing malfunction. In the embodiment shown in FIG. 9, vibration is insulated by the vibration isolating rubber 14b and the vibration isolating ring 14c, and the influence of external vibration can be reduced to a negligible level.

【0041】図10はさらに他の実施例で、加速度セン
サ15を鉛の薄い板15aで覆い、かつ接地線15bを
設けている。鉛の板15aはX線をしゃへいし、X線に
よる加速度センサ15のドリフト(一種の誤動作)を防
止し、接地線15bで電界によるドリフトを防止してい
る。高性能で大容量の強力な回転陽極X線管装置では、
X線しゃへいと帯電防止を行い加速度センサの保護とド
リフトを防ぐ必要がある。
FIG. 10 shows still another embodiment in which the acceleration sensor 15 is covered with a thin lead plate 15a and a ground wire 15b is provided. The lead plate 15a shields X-rays and prevents drift (a kind of malfunction) of the acceleration sensor 15 due to X-rays, and the ground wire 15b prevents drift due to an electric field. With high performance, large capacity, and powerful rotating anode X-ray tube equipment,
It is necessary to protect the acceleration sensor and prevent drift by shielding it from X-rays and preventing static electricity.

【0042】図11はフィルタ17の代わりに二重積分
回路17′を設けた実施例を示す。二重積分回路17′
を経た振動信号はフィルタリングされた図3の波形より
回転数成分のみの完全な正弦波が得られる。回転数成分
は二重積分回路17′から得、高周波成分は電荷増幅器
16から直接交流−直流変換器20へ送る。0から10
KHzの全域にわたる振動加速度のエネルギー強度は8
00Hz以上の高周波成分が支配的で、ボールの転走状
態を監視するには500Hz以下の振動成分の有無は無
視できる。そのためフィルタ17の代わりに二重積分回
路17′で回転数成分を取り出せば、図1と同じ効果が
得られる。
FIG. 11 shows an embodiment in which the filter 17 is replaced by a double integration circuit 17'. Double integration circuit 17'
From the filtered waveform of FIG. 3, a complete sine wave with only the rotational speed component is obtained from the vibration signal that has passed through the filter. The rotational speed component is obtained from the double integration circuit 17', and the high frequency component is sent from the charge amplifier 16 directly to the AC-DC converter 20. 0 to 10
The energy intensity of vibration acceleration over the entire KHz range is 8
High frequency components of 00 Hz or more are dominant, and the presence or absence of vibration components of 500 Hz or less can be ignored when monitoring the rolling state of the ball. Therefore, if the rotational speed component is extracted using a double integration circuit 17' instead of the filter 17, the same effect as in FIG. 1 can be obtained.

【0043】[0043]

【発明の効果】以上詳述したように本発明によれば振動
加速度センサを回転陽極X線管装置に取付け、回転数成
分と高周波成分を監視できるようにしたので、油潤滑と
くらべて寿命が短かく騒音が大きい固体潤滑玉軸受の故
障にもとづく不具合を事前に予知し、故障防止できる。 すなわち、固体潤滑膜、あるいは軸受素材の大きな破片
のかみ込み等により摩擦トルクが急増して規定の回転数
に達しないと、陰極と陽極間に高電圧を印加できないよ
うにし、電子ビームにより陽極ターゲットが過昇温、あ
るいは溶融するのを未然に防止する。その後、しばらく
の間慣らし運転で回復するのを待つことができる。また
、回復しない場合は交換することになるが、その際加速
度センサからの情報により何を実施すれば良いか容易に
、かつ確実に判るので、保守時間が大幅に短縮できる。 回転数をリアルタイムに監視できるので、循環器用途に
おいて急速に回転を立ち上げたい場合、従来のように不
必要な待ち時間を無くすことができ、撮影開始までの待
ち時間を1/2〜1/3に短縮できる。さらに、アンバ
ランス量に比例する回転数成分の振動振幅を出力できる
ので、回転陽極系のアンバランス増加による画質の低下
や破壊事故を未然に防止し、計画的な交換が可能となる
[Effects of the Invention] As detailed above, according to the present invention, a vibration acceleration sensor is attached to a rotating anode X-ray tube device so that the rotational speed component and high frequency component can be monitored. It is possible to predict and prevent malfunctions caused by short, noisy solid lubricated ball bearings in advance. In other words, if the frictional torque rapidly increases due to the solid lubricant film or large pieces of bearing material getting caught, and the specified rotational speed is not reached, high voltage cannot be applied between the cathode and anode, and the electron beam is applied to the anode target. Prevents excessive temperature rise or melting. After that, you can wait for some time to recover by running it in. Furthermore, if the device does not recover, it will have to be replaced, but at that time, it can be easily and reliably determined what to do based on the information from the acceleration sensor, so maintenance time can be significantly reduced. Since the rotation speed can be monitored in real time, when you want to quickly start up rotation in cardiovascular applications, you can eliminate the unnecessary waiting time required with conventional methods, and reduce the waiting time until the start of imaging by 1/2 to 1/2. It can be shortened to 3. Furthermore, since it is possible to output the vibration amplitude of the rotational speed component that is proportional to the amount of unbalance, it is possible to prevent image quality deterioration and destruction accidents due to increased unbalance in the rotating anode system, and to enable planned replacement.

【0044】固体潤滑は寿命を延ばすためには膜厚を厚
くしたいが、厚膜化は騒音の増大を招く。本発明によれ
ば潤滑寿命を管球全体の寿命と同程度に設計しても高周
波成分の監視により交換時期を事前に知ることができる
。そして、寿命を短かくする分潤滑膜の薄膜化が図れ、
大幅な騒音低減と安定化が達成できる。
[0044] In order to extend the life of solid lubricants, it is desirable to increase the thickness of the film, but thickening the film leads to an increase in noise. According to the present invention, even if the lubrication life is designed to be the same as the life of the entire tube, the time for replacement can be known in advance by monitoring high frequency components. In addition, the lubricating film can be made thinner to reduce the lifespan.
Significant noise reduction and stability can be achieved.

【0045】最も大きな効果は、患者の診断中に放電等
のX線管の故障による診断中断、あるいは失敗を未然に
防止できることである。
The most significant effect is that interruption or failure of diagnosis due to malfunction of the X-ray tube, such as discharge, can be prevented during patient diagnosis.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を適用した回転陽極X線管装置の断面図
とブロック図。
FIG. 1 is a sectional view and a block diagram of a rotating anode X-ray tube device to which the present invention is applied.

【図2】加速度センサから得られた振動の成分を示す周
波数分析結果。
FIG. 2: Frequency analysis results showing vibration components obtained from an acceleration sensor.

【図3】回転数成分の振動波形。[Figure 3] Vibration waveform of rotational speed component.

【図4】高周波成分の振動波形。FIG. 4: Vibration waveform of high frequency component.

【図5】種々のX線管の昇速特性と正常異常判別を示す
図。
FIG. 5 is a diagram showing the acceleration characteristics and normal/abnormality determination of various X-ray tubes.

【図6】X線管の運転時間の経過にともなう高周波成分
の推移を示す図。
FIG. 6 is a diagram showing the transition of high frequency components as the operating time of the X-ray tube passes.

【図7】加速度センサの取り付け法に関する他の実施例
を示す回転陽極X線管装置の部分断面図。
FIG. 7 is a partial cross-sectional view of a rotating anode X-ray tube device showing another example of how to attach an acceleration sensor.

【図8】加速度センサの取り付け法に関する他の実施例
を示す回転陽極X線管装置の部分断面図。
FIG. 8 is a partial sectional view of a rotating anode X-ray tube device showing another example of how to attach an acceleration sensor.

【図9】加速度センサの取り付け法に関する他の実施例
を示す回転陽極X線管装置の部分断面図。
FIG. 9 is a partial cross-sectional view of a rotating anode X-ray tube device showing another embodiment of the method for attaching an acceleration sensor.

【図10】加速度センサの取り付け法に関する他の実施
例を示す回転陽極X線管装置の部分断面図。
FIG. 10 is a partial cross-sectional view of a rotating anode X-ray tube device showing another example of how to attach an acceleration sensor.

【図11】本発明の他の実施例を示すブロック図。FIG. 11 is a block diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1      陽極ターゲット 2      陰極 3      ロータ 4      回転軸 5      玉軸受 6      ハウジング 7      ステータ 8      真空外囲器 9      外囲器 10    ゴムチップ 11    絶縁油 12    フレーム 13a  ブッシング 13b  ブッシング 14    管球支持体 15    加速度センサ 16    電荷増幅器 17    フィルタ 18    周波数−電圧変換器 19    交流−直流変換器 20    交流−直流変換器 21    リレースイッチ 22    リレースイッチ 23    リレースイッチ 1 Anode target 2 Cathode 3 Rotor 4 Rotation axis 5 Ball bearing 6 Housing 7 Stator 8 Vacuum envelope 9 Envelope 10 Rubber tip 11 Insulating oil 12 Frame 13a Bushing 13b Bushing 14 Tube support 15 Acceleration sensor 16 Charge amplifier 17 Filter 18 Frequency-voltage converter 19 AC-DC converter 20 AC-DC converter 21 Relay switch 22 Relay switch 23 Relay switch

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】陰極と対向配置した陽極ターゲットと、こ
の陽極ターゲットと一体構成の回転部材と、この回転部
材を回転自在に支持する軸受装置と、この軸受装置の一
部と真空外囲器とで上記構成部材を覆い真空に構成した
回転陽極X線管と、回転陽極X線管を密閉容器内に管球
支持体にて支持し、かつ管球支持体に設けた回転部材の
回転磁界発生装置とによりなる回転陽極X線管装置にお
いて、振動加速度センサを管球支持体、又は密閉容器に
装着し、この振動加速度センサの出力に基づき軸受の寿
命の良否を判定する軸受寿命判定手段とを備えたことを
特徴とする回転陽極X線管装置。
Claim 1: An anode target disposed facing a cathode, a rotating member integrally formed with the anode target, a bearing device that rotatably supports the rotating member, a part of the bearing device, and a vacuum envelope. A rotating anode X-ray tube with the above-mentioned components covered and evacuated, the rotating anode X-ray tube supported in a sealed container by a tube support, and a rotating magnetic field generated by a rotating member provided on the tube support. A rotating anode X-ray tube device comprising a rotating anode X-ray tube device includes a vibration acceleration sensor mounted on a tube support or a sealed container, and a bearing life judgment means for determining whether the life of the bearing is good or bad based on the output of the vibration acceleration sensor. A rotating anode X-ray tube device characterized by comprising:
【請求項2】前記軸受寿命判定手段がローパスフィルタ
とハイパスフィルタを具備し、両フィルタにより振動加
速度信号から低周波成分と高周波成分を分離し、高周波
成分から軸受損傷度合を判定し、低周波成分から回転数
および/またはアンバランスを検出することを特徴とす
る請求項1記載の回転陽極X線管装置。
2. The bearing life determination means includes a low-pass filter and a high-pass filter, the filters separate low frequency components and high frequency components from the vibration acceleration signal, determine the degree of bearing damage from the high frequency components, and detect the low frequency components. 2. The rotating anode X-ray tube device according to claim 1, wherein the rotating anode X-ray tube device detects rotational speed and/or unbalance.
【請求項3】前記軸受寿命判定手段が二重積分回路を具
備し、振動加速度信号を振動変位信号に変換し、振動変
位信号から回転数および/またはアンバランスを検出す
ることを特徴とする請求項1記載の回転陽極X線管装置
3. A claim in which the bearing life determination means includes a double integration circuit, converts a vibration acceleration signal into a vibration displacement signal, and detects the rotation speed and/or unbalance from the vibration displacement signal. Item 1. The rotating anode X-ray tube device according to item 1.
【請求項4】振動加速度センサは鉛の薄板で覆われてい
ることを特徴とする請求項1〜3記載の回転陽極X線管
装置。
4. The rotating anode X-ray tube device according to claim 1, wherein the vibration acceleration sensor is covered with a thin lead plate.
JP16085891A 1991-06-06 1991-06-06 X-ray tube device with rotary anode Pending JPH04359851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16085891A JPH04359851A (en) 1991-06-06 1991-06-06 X-ray tube device with rotary anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16085891A JPH04359851A (en) 1991-06-06 1991-06-06 X-ray tube device with rotary anode

Publications (1)

Publication Number Publication Date
JPH04359851A true JPH04359851A (en) 1992-12-14

Family

ID=15723906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16085891A Pending JPH04359851A (en) 1991-06-06 1991-06-06 X-ray tube device with rotary anode

Country Status (1)

Country Link
JP (1) JPH04359851A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218762A (en) * 2000-02-09 2001-08-14 Ge Yokogawa Medical Systems Ltd X-ray ct device and monitoring system therefor
JP2015032446A (en) * 2013-08-02 2015-02-16 株式会社日立メディコ X-ray tube device, and x-ray image-capturing apparatus
JP2019516210A (en) * 2016-03-18 2019-06-13 ヴァレックス イメージング コーポレイション Magnetic lift device for x-ray tube
JP2020113445A (en) * 2019-01-11 2020-07-27 キヤノンメディカルシステムズ株式会社 Medical system and X-ray computed tomography apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218762A (en) * 2000-02-09 2001-08-14 Ge Yokogawa Medical Systems Ltd X-ray ct device and monitoring system therefor
JP2015032446A (en) * 2013-08-02 2015-02-16 株式会社日立メディコ X-ray tube device, and x-ray image-capturing apparatus
JP2019516210A (en) * 2016-03-18 2019-06-13 ヴァレックス イメージング コーポレイション Magnetic lift device for x-ray tube
US10804064B2 (en) 2016-03-18 2020-10-13 Varex Imaging Corporation Magnetic lift device for an x-ray tube
JP2020113445A (en) * 2019-01-11 2020-07-27 キヤノンメディカルシステムズ株式会社 Medical system and X-ray computed tomography apparatus

Similar Documents

Publication Publication Date Title
JP4257121B2 (en) Aerodynamic rotor bearing
JP4598656B2 (en) Turbomachine with a device for automatically detecting ferromagnetic particles in an oil enclosure
US7558375B2 (en) Stationary cathode in rotating frame x-ray tube
JP5383387B2 (en) X-ray CT system
US11037752B2 (en) Spiral groove bearing assembly with minimized deflection
JPH04359851A (en) X-ray tube device with rotary anode
AU683912B2 (en) Method and system for extending the service life of an X-ray tube
US10069377B2 (en) Flywheel assembly
EP0546532A1 (en) X-ray tube apparatus
US20050160588A1 (en) Integrated component mounting system
JPS62259397A (en) X-ray tube with bearing life judging device
JP6085372B2 (en) X-ray diagnostic apparatus, X-ray tube failure sign detection method, and rotating anode type X-ray tube
JP6368007B1 (en) Brake failure predictor
JPH08102277A (en) X-ray system and x-ray tube
JP2005164314A (en) Abnormality prediction method for rolling apparatus and abnormality prediction device for same
US6891928B2 (en) Liquid metal gasket in x-ray tubes
JP2018159623A (en) Condition monitoring device
JPH09213494A (en) X-ray device
JP2000292373A (en) Method for internally inspecting fluid bearing
JPH03163214A (en) Bearing device
JPH09213495A (en) X-ray device
JP6168907B2 (en) X-ray tube apparatus and X-ray diagnostic imaging apparatus
JP2019050165A (en) X-ray tube device
JPH05168619A (en) X-ray ct system
JPH0562693B2 (en)