JPH0435969B2 - - Google Patents

Info

Publication number
JPH0435969B2
JPH0435969B2 JP1521186A JP1521186A JPH0435969B2 JP H0435969 B2 JPH0435969 B2 JP H0435969B2 JP 1521186 A JP1521186 A JP 1521186A JP 1521186 A JP1521186 A JP 1521186A JP H0435969 B2 JPH0435969 B2 JP H0435969B2
Authority
JP
Japan
Prior art keywords
current
transformer
difference
ratio
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1521186A
Other languages
Japanese (ja)
Other versions
JPS62173932A (en
Inventor
Hideo Kaneko
Kenji Iguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1521186A priority Critical patent/JPS62173932A/en
Publication of JPS62173932A publication Critical patent/JPS62173932A/en
Publication of JPH0435969B2 publication Critical patent/JPH0435969B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、変圧器内部に事故が生じたとき、
この事故を検知して変圧器を回路から切り離し、
変圧器を焼損から守る保護継電装置であつて、1
次電流と、2次電流を1次側に換算した電流との
差の電流が所定値を超過するとともにこの差電流
中に含まれる第2高調波成分の基本波成分に対す
る割合が所定値以下のときには変圧器の内部事故
と判定して変圧器を回路から切り離す信号を出力
するとともに前記第2高調波の割合が所定値を超
過したときは前記差動流は内部事故ではなく励磁
突入電流によつて生じたものと判定して変圧器が
回路から切り離されないよう信号を出力しない変
圧器の比率差動継電装置に関する。
[Detailed Description of the Invention] [Technical Field to Which the Invention Pertains] This invention provides a method for solving problems that occur when an accident occurs inside a transformer.
This accident is detected and the transformer is disconnected from the circuit.
A protective relay device that protects a transformer from burnout, comprising: 1
The difference between the secondary current and the current obtained by converting the secondary current to the primary side exceeds a predetermined value, and the ratio of the second harmonic component to the fundamental component included in this difference current is less than a predetermined value. Sometimes, it is determined that there is an internal fault in the transformer and a signal is output to disconnect the transformer from the circuit, and if the ratio of the second harmonic exceeds a predetermined value, the differential current is caused by the magnetizing inrush current rather than the internal fault. The present invention relates to a ratio differential relay for a transformer that determines that a fault has occurred and does not output a signal to prevent the transformer from being disconnected from the circuit.

〔従来技術とその問題点〕[Prior art and its problems]

比率差動継電器を用いて変圧器を内部事故から
保護する際の基本的な回路構成を第2図に示す。
1次側がY,2次側がΔに結線された変圧器1の
1次側から流入する三相電流の変流器2次巻線電
流をそれぞれia,ib,icとしたとき、該変流器の
出力電流がそれぞれia−ic,ib−ia,ic−ibとな
りかつ変圧器2次側の変流器出力電流がそれぞれ
ia−ic,ib−ia,ic−ibとなるように変流器の2
次側を変圧器のY巻線側はΔに、Δ巻線側はYに
結線するとともに変流比を変圧器の変圧比に応じ
て調整すると、変圧器の正常な運転時に変圧器1
次側の変流器3から比率差動電器2に流入する電
流と、この比率差動継電器から変圧器2次側の変
流器4へ向かつて流出する電流とは大きさが等し
くなるから、比率差動継電器2の動作コイル2a
には電流が流れず、継電器は動作しない。しかし
変圧器内部の、たとえば同一巻線の層間に短絡事
故が生じると、変流器3から流出する電流と、比
率差動継電器(以下継電器という)2から変流器
4へ向かつて流出する電流の大きさとに差を生
じ、この差に等しい電流が動作コイル2aに流入
して継電器2が動作し、遮断器5,6が遮断して
変圧器1を回路から切り離す。
Figure 2 shows the basic circuit configuration when using a ratio differential relay to protect a transformer from internal accidents.
When the current transformer secondary winding currents of the three-phase current flowing from the primary side of the transformer 1, in which the primary side is connected to Y and the secondary side is connected to Δ, are respectively ia, ib, and ic, the current transformer The output currents of are respectively ia−ic, ib−ia, and ic−ib, and the current transformer output currents on the secondary side of the transformer are respectively
2 of the current transformer so that ia−ic, ib−ia, ic−ib.
If the Y winding side of the transformer is connected to Δ, and the Δ winding side is connected to Y, and the current transformation ratio is adjusted according to the transformer's transformation ratio, then during normal operation of the transformer, transformer 1
Since the current flowing into the ratio differential relay 2 from the current transformer 3 on the next side and the current flowing out from this ratio differential relay toward the current transformer 4 on the secondary side of the transformer are equal in magnitude, Operating coil 2a of ratio differential relay 2
No current flows and the relay does not operate. However, if a short circuit occurs inside the transformer, for example between layers of the same winding, the current flows out from the current transformer 3 and the current flows from the ratio differential relay (hereinafter referred to as relay) 2 towards the current transformer 4. A current equal to this difference flows into the operating coil 2a, operating the relay 2, and interrupting the circuit breakers 5 and 6 to disconnect the transformer 1 from the circuit.

しかしながら、一方、遮断器5を投入して変圧
器1を生かそうとすると、投入位相(変圧器に電
流が流れはじめる時点の電源電圧波形上の位置)
と変圧器鉄心中の残留磁束の大きさとによつては
変圧器1次側にい定格負加電流の数倍の励磁電流
すなわち励磁投入電流が流れる。この電流は励磁
電流であるから変圧器の2次側からは流出せず、
1、2次間の差電流として継電器の動作コイルに
流入して継電器を動作させようとする。このとき
の変圧器1次側で観測される電流、電圧と変圧器
鉄心中の磁束との関係を第3図に示す。図におい
てe、電源電圧波形、Emは電源電圧波高値、i
は励磁突入電流波形、φrは遮断突入時点におけ
る変圧器鉄心中の残留磁束、φsは鉄心の飽和磁
束、φtは過度磁束波形、φは定常磁束波形、φ
mは定常磁束波高値である。図からみられるよう
に、励磁電流の流れはじめの時点が電源電圧波形
の零点と一致すると、投入後1/2サイクルの間に
磁束は2φmの変化をする。投入時点において変
圧器鉄心中に残留磁束φrが存在していたとすれ
ば、投入後1/2サイクルの時点では磁束はφr+2φ
mのなり、鉄心の飽和磁束φsをはるかに越え、
この結果大きい励磁突入電流を生ずることにな
る。すなわち過渡磁束φtが飽和磁束φsを越える
あたりから突入電流が急に上昇する。
However, on the other hand, if you try to keep the transformer 1 alive by closing the circuit breaker 5, the closing phase (the position on the power supply voltage waveform at the point when current begins to flow through the transformer)
Depending on the magnitude of the residual magnetic flux in the transformer core, an excitation current, that is, an excitation closing current several times the rated negative current flows in the primary side of the transformer. Since this current is an exciting current, it does not flow out from the secondary side of the transformer.
The current flows into the operating coil of the relay as a difference current between the first and second order and attempts to operate the relay. Figure 3 shows the relationship between the current and voltage observed on the primary side of the transformer and the magnetic flux in the transformer core at this time. In the figure, e is the power supply voltage waveform, Em is the power supply voltage peak value, and i
is the excitation inrush current waveform, φr is the residual magnetic flux in the transformer core at the time of interrupting inrush, φs is the saturation magnetic flux in the core, φt is the transient magnetic flux waveform, φ is the steady magnetic flux waveform, φ
m is the steady magnetic flux peak value. As can be seen from the figure, when the point at which the excitation current begins to flow coincides with the zero point of the power supply voltage waveform, the magnetic flux changes by 2φm during 1/2 cycle after turning on. If residual magnetic flux φr exists in the transformer core at the time of turning on, the magnetic flux will be φr + 2φ at 1/2 cycle after turning on.
m, which far exceeds the saturation magnetic flux φs of the iron core,
This results in a large excitation inrush current. That is, the rush current suddenly increases from the point where the transient magnetic flux φt exceeds the saturation magnetic flux φs.

しかし、継電器の動作コイルに流れる電流は励
磁電流であつて事故電流ではないから、継電器は
動作することなく変圧器を回路中に接続状態に維
持しなければならない。このため、従来、励磁突
入電流が減衰して変圧器の1,2次の差電流が継
電器の感度以下となるまでの時間継電器の動作を
ロツクする限時阻止方式や、励磁突入電流中には
高調波が含まれることから、この高調波分を継電
器中に設けられた抑制コイルに流し、動作コイル
によつて駆動されようとする継電器接点の動きを
抑制する高調波抑制方式などが採用されてきた。
この高調波抑制の原理を第4図に示す。図におい
てidは変圧器1、2次間の差電流、10は差電流
id中に含まれる基本波を通過させる基本波通過フ
イルタ、11は基本波を阻止する基本波阻止フイ
ルタ、12は基本波を除くすべての高調波に対す
る全波整流器、13は同一方向に整流されたすべ
ての高調波が通過する際に継電器接点の動きを阻
止しようとする抑制コイル、14は継電器の動作
コイル、15は以上の10〜14を用いて構成さ
れる継電器接点の制御回路に対する後備保護用の
過電流要素である。
However, since the current flowing through the operating coil of the relay is an excitation current and not a fault current, the relay must maintain the transformer connected in the circuit without operating. For this reason, conventionally, a time-limiting method has been used that locks the operation of the relay for a time until the magnetizing inrush current attenuates and the difference current between the primary and secondary of the transformer becomes less than the sensitivity of the relay, and a Since this includes waves, harmonic suppression methods have been adopted in which the harmonic components are passed through a suppression coil installed in the relay to suppress the movement of the relay contacts that are about to be driven by the operating coil. .
The principle of harmonic suppression is shown in FIG. In the figure, id is the difference current between transformer 1 and secondary, and 10 is the difference current
A fundamental wave passing filter that passes the fundamental wave included in the ID, 11 a fundamental wave blocking filter that blocks the fundamental wave, 12 a full wave rectifier for all harmonics except the fundamental wave, and 13 rectified in the same direction. A suppression coil that tries to prevent the movement of the relay contacts when all harmonics pass through, 14 is the operation coil of the relay, and 15 is for backup protection for the relay contact control circuit configured using the above 10 to 14. is the overcurrent element.

現在では、励磁突入電流中に含まれる高調波成
分のうち、第2高調波成分が多く第3高調波以上
の成分は少ないことに着目して、第2高調波抑制
方式の比率差動継電器が広く使用されている。こ
の場合の第2高調波抑制比率すなわち第2高調波
成分の波高値が基本波成分波高値の何%以上とな
つたとき継電器の動作を抑制させるかは、過去の
励磁突入電流の実測結果や電算機を用いたシユミ
レーシヨンによる検討結果から、一般に15%程度
が採用されている。
At present, focusing on the fact that among the harmonic components contained in the excitation inrush current, there are many second harmonic components and few components of the third harmonic and above, a ratio differential relay with a second harmonic suppression method is being developed. Widely used. In this case, the second harmonic suppression ratio, that is, the percentage of the peak value of the second harmonic component of the fundamental wave component peak value at which the operation of the relay is suppressed can be determined based on the actual measurement results of the excitation inrush current in the past. Based on the results of computer simulation studies, a value of about 15% is generally adopted.

最近、変圧器の大容量化、騒音対策、高効率化
に伴い鉄心材料は、冷間圧延硅素鋼板に変わり、
高透磁率方向性硅素鋼板が採用されている。高透
磁率硅素鋼板は、従来の冷間延けい素鋼板に比
べ、励磁突入電流が大きくなり、突入電流中の第
2高調波成分含有率が低くなる傾向がある。変圧
器使用中におけるもつとも過酷な過励磁条件(定
格電圧の110%)では第2高調波成分含有率がさ
らに数%減少する傾向にある。このため、従来の
ように第2高調波抑制比率を15%程度に設定した
ままでは抑制力が不足し、誤動作が頻繁にみられ
るようになつた。
Recently, with the increase in capacity, noise reduction, and efficiency of transformers, the iron core material has changed to cold-rolled silicon steel sheets.
High magnetic permeability grain-oriented silicon steel plate is used. High magnetic permeability silicon steel sheets tend to have larger excitation inrush currents and lower second harmonic component content in the inrush currents than conventional cold-rolled silicon steel sheets. Under extremely severe overexcitation conditions (110% of rated voltage) during use of a transformer, the content of second harmonic components tends to further decrease by several percentage points. For this reason, if the second harmonic suppression ratio is set to about 15% as in the past, the suppressing power is insufficient and malfunctions are frequently observed.

そこで、もつとも過酷な過励磁条件時にも誤動
作が生じないよう、たとえば (1) 低励磁投入 (2) 第2高調波抑制比率の変更 などの対策がとられている。ここで、低励磁投
入とは、同一電源電圧に対して鉄心中の磁束密度
が最小となるような巻線タツプを用いて投入操作
を行ないものであり、鉄心中に生ずる最高磁束密
度が鉄心の飽和磁束密度を越える時間幅を小さく
して、第2高調波成分が従来の第2高調波抑制比
率(15%)を下まわるような励磁突入電流を生じ
させないようにするものであり、また、第2高調
波抑制比率の変更とは、抑制コイルの設計を変更
して抑制比率を数%下げるものである。
Therefore, measures such as (1) turning on low excitation and (2) changing the second harmonic suppression ratio are taken to prevent malfunctions even under severe overexcitation conditions. Here, low excitation closing means that the closing operation is performed using a winding tap that minimizes the magnetic flux density in the iron core for the same power supply voltage, and the maximum magnetic flux density generated in the iron core is The time width exceeding the saturation magnetic flux density is reduced to prevent the generation of excitation inrush current that causes the second harmonic component to fall below the conventional second harmonic suppression ratio (15%), and Changing the second harmonic suppression ratio means changing the design of the suppression coil to lower the suppression ratio by several percent.

しかしながら、低励磁投入においては、変圧器
の2次側に現われる電圧が常時の運転電圧と異な
ることから、現実にはこの対策の実行は不可能な
場合を生じ、また可能であつたとしてもこのよう
な操作が行なわれるという情報連絡やこの操作に
伴う変動所運転上の注意に遺漏があつてはなら
ず、普偏的な対策とはなり得ないという欠点があ
る。また、抑制比率の変更は、抑制コイルの抑制
力を強化する変更であるから、変圧器内部事故時
の歪み電流により抑制がかかり、継電器が正動作
しないことがある。この、変圧器内部事故時の歪
み電流は、内部事故電流たとえば同一巻線内の層
間短絡時の短絡電流中に含まれる微小な高調波成
分が、最近のような、変圧器に接続された外部系
統に大きい静電容量たとえば地中ケーブルを含む
ような場合に強調されることによつて生ずるもの
であり、この歪み電流による継電器の不動作は、
変圧器保護の点から極めて重大な問題である。ま
た、継電器が不動作とならないまでも、継電器の
動作が遅れる傾向を生ずる。
However, when low excitation is applied, the voltage appearing on the secondary side of the transformer is different from the normal operating voltage, so in reality this countermeasure may not be possible, and even if it is possible, this measure may not be possible. There is a drawback in that there must be no omissions in the communication of information that such operations will be carried out and the precautions taken when operating the variable station associated with these operations, and that it cannot be a universal countermeasure. Furthermore, since the change in the suppression ratio is a change that strengthens the suppression force of the suppression coil, the distortion current caused by an internal fault in the transformer may cause the suppression to occur, and the relay may not operate properly. This distortion current at the time of an internal fault in a transformer is caused by the minute harmonic components contained in the internal fault current, for example, the short circuit current caused by a short circuit between layers within the same winding. This is caused by the fact that the system has a large capacitance, for example, when it includes underground cables, and the malfunction of the relay due to this distorted current is
This is an extremely serious problem from the point of view of transformer protection. Further, even if the relay does not become inoperable, the operation of the relay tends to be delayed.

なお、最近のデジタル形比率差動継電器におい
ては、第2高調波抑制比率の変更は、第5図にお
ける定数Kの変更によつて行なつている。すなわ
ち、第6図に示すような励磁突入電流i1、(実際
には変圧器1次側電流)を第5図に示すように、
変流器20を介して基本波抽出フイルタ21と第
2高調波フイルタ22とに並列に入力し、それぞ
れのフイルタにおいて抽出された基本波と第2高
調波とのそれぞれの波高値のレベルをアナログー
デジタル変換器を用いたレベル検出器23により
デジタルに検出し、この検出されたデジタル量
X1,X2を用いてX2/X1を計算し、この値があら
かじめ設定された第2高調波抑制比率Kを越える
と励磁突入電流と判定して継電器の動作をロツク
し、遮断器への信号出力を阻止する。従つて継電
器の動作、不動作は、第2高調波成分の基本波成
分に対する比率が、あらかじめ設定された第2高
調波抑制比率Kより小さいか、大きいかのみによ
りきまり、従来のアナログ形継電器のように、継
電器の動作、不動作をきめる抑制コイルを必要と
しないから、内部事故時の継電器動作に時間遅れ
はなく、この点では従来のアナログ形比率差動継
電器の欠点が除去されていることになる。しか
し、第2高調波抑制比率Kを下げて励磁突入電流
時の誤動作を避けようとすると、この抑制比率の
設定の仕方によつては、内部事故時の歪波形中に
含まれる第2高調波成分が抑制比率Kより大きく
なり、継電器が内部事故時に不動作となるおそれ
がある。
In recent digital ratio differential relays, the second harmonic suppression ratio is changed by changing the constant K in FIG. That is, the excitation inrush current i 1 (actually the transformer primary current) as shown in FIG. 6 is changed as shown in FIG.
It is input in parallel to the fundamental wave extraction filter 21 and the second harmonic filter 22 via the current transformer 20, and the levels of the respective peak values of the fundamental wave and the second harmonic extracted in each filter are analogized. Digitally detected by a level detector 23 using a goo digital converter, and the detected digital amount
X 2 /X 1 is calculated using X 1 and Prevent signal output to. Therefore, the operation or non-operation of the relay is determined only by whether the ratio of the second harmonic component to the fundamental wave component is smaller or larger than the preset second harmonic suppression ratio K. As there is no need for a suppression coil to determine whether the relay operates or not, there is no time delay in relay operation in the event of an internal fault, and in this respect, the drawbacks of conventional analog ratio differential relays have been eliminated. become. However, if you lower the second harmonic suppression ratio K to avoid malfunctions during excitation inrush current, depending on how this suppression ratio is set, the second harmonics contained in the distorted waveform during an internal fault may component becomes larger than the suppression ratio K, and the relay may become inoperable in the event of an internal accident.

〔発明の目的〕[Purpose of the invention]

この発明は、比率差動継電器における前記従来
の欠点すなわち第2高調波抑制比率を下げたとき
に生ずる、変圧器内部事故時の動作時間のおくれ
や不動作を生ずることなく広い範囲にこの抑制比
率を自在に変えうる比率差動継電装置を提供する
こと目的とする。
The present invention aims to improve the suppression ratio over a wide range without causing delay in operation time or non-operation in the event of an internal fault in the transformer, which occurs when the second harmonic suppression ratio is lowered. The purpose of the present invention is to provide a ratio differential relay device that can freely change the ratio.

〔発明の要点〕[Key points of the invention]

まず、この発明の原理につき説明する。 First, the principle of this invention will be explained.

励磁突入電流の現象は、変圧器鉄心中の磁束が
飽和したときに鉄心中の大量の磁束が時間的に変
化しなくなり、従つて飽和後は鉄心に巻かれた巻
線が空心リアクトルとして作用することにより、
励磁電流が飽和点以降急速に大きくなる現象であ
る。一方、変圧器鉄心中の磁束が飽和していない
ときには、鉄心中の大量の磁束時間的に変化して
変圧器巻線は著しく大きいリアクタンスを示し、
励磁電流の大きさは実質的に零に近くなる。第7
図にこの励磁突入電流に対して調波分析を行なつ
た結果を示す。図は第2高調波に対する分析結果
を示すが、第7図において、横軸は、第9図に示
すように、励磁突入電流が発生している時間Aを
1サイクル中の電気角で表わしたものである。こ
の時間Aは第8図に示す磁束密度の波形が飽和磁
束密度Bsを超過している間の時間幅A1と実質的
に同一である。第7図からみられるように、突入
電流発生時間Aが長いほど、すなわち磁束の飽和
時間幅A1が広いほど第2高調波の含有率は小さ
く、飽和時間幅A1が狭くなるほど第2高調波の
含有率は大きくなる。すなわち、突入電流はその
発生時間Aと波高値とを増して大きいループを面
くほど第2高調波の含有率は小さくなり、逆に小
ループを画くときには第2高調波の含有率は大き
くなる性質をもつており、第2高調波の含有率
は、結局、第9図に示すA,Bの割合によつてき
まることになる。
The phenomenon of magnetizing inrush current is that when the magnetic flux in the transformer core is saturated, a large amount of magnetic flux in the core no longer changes over time, and therefore, after saturation, the windings wound around the core act as an air-core reactor. By this,
This is a phenomenon in which the excitation current rapidly increases after the saturation point. On the other hand, when the magnetic flux in the transformer core is not saturated, the large amount of magnetic flux in the core changes over time and the transformer winding exhibits a significantly large reactance.
The magnitude of the excitation current is substantially close to zero. 7th
The figure shows the results of harmonic analysis of this magnetizing inrush current. The figure shows the analysis results for the second harmonic. In Figure 7, the horizontal axis represents the time A during which the excitation inrush current is generated in terms of electrical angle during one cycle, as shown in Figure 9. It is something. This time A is substantially the same as the time width A 1 during which the magnetic flux density waveform shown in FIG. 8 exceeds the saturation magnetic flux density Bs. As can be seen from Figure 7, the longer the inrush current generation time A, that is, the wider the saturation time width A1 of the magnetic flux, the lower the second harmonic content, and the narrower the saturation time width A1 , the lower the second harmonic content. The content rate of will increase. In other words, as the inrush current increases its generation time A and peak value and forms a large loop, the content of the second harmonic decreases, and conversely, when the inrush current forms a small loop, the content of the second harmonic increases. In the end, the content of the second harmonic is determined by the ratio of A and B shown in FIG.

一方、一般に、保護継電器が監視対象とする電
流の波形において、励磁突入電流のように、電流
値が実質的に零となる区間を有するような電流が
存在しうるかをみてみると第10ないし13図のよう
になる。第10図は系統において生ずる事故電流
たとえば短絡電流の波形を示す。この波形は、短
絡発生時点の電圧位相により、減衰する値流分を
含んで非対称波形となることもあるが電流の零値
区間を生ずることはなく、しかも通常は短絡が電
圧の零値において発明することは極めて少ないか
ら、短絡電流の波形は図のような対称波形とな
る。第11図は負荷電流であつて、この負荷電流
波形は、小容量の変圧器に対して比較的大きい非
線形負荷がかかつているときには歪むこともある
が、本発明が対象とする、少なくとも送電用変電
所の場合には図のような対称波形を示す。しか
し、いずれの場合にも電流の零値区間は生じな
い。第12図は変圧器内部事故たとえば同一巻線
内の層間短絡時の短絡電流の波形を示す。すでに
述べたように、変圧器に接続された外部系統中
に、地中ケーブルのような大きな対地静電容量が
存在していると、短絡電流中の高調波が強調さ
れ、これにより図のように電流波形に歪みを生ず
ることがある。しかしこの場合にも電流の零値区
間は生じない。第13図は励磁突入電流の波形で
ある。
On the other hand, in general, in the current waveform that is monitored by a protective relay, if we look at whether there is a current that has a section where the current value is substantially zero, such as an excitation inrush current, It will look like the figure. FIG. 10 shows the waveform of a fault current, such as a short circuit current, occurring in the system. Depending on the voltage phase at the time the short circuit occurs, this waveform may include an attenuating value current and become an asymmetric waveform, but it will not produce a zero value section of the current, and usually the short circuit occurs at the zero value of the voltage. Since there is very little to do, the waveform of the short circuit current will be symmetrical as shown in the figure. Figure 11 shows the load current, and although this load current waveform may be distorted when a relatively large nonlinear load is applied to a small capacity transformer, In the case of a substation, a symmetrical waveform is shown as shown in the figure. However, in neither case does a zero-value section of the current occur. FIG. 12 shows the waveform of a short-circuit current when an internal fault occurs in a transformer, such as a short circuit between layers within the same winding. As already mentioned, the presence of large ground capacitances in the external system connected to the transformer, such as underground cables, accentuates harmonics in the short circuit current, which causes may cause distortion in the current waveform. However, in this case as well, no current zero value section occurs. FIG. 13 shows the waveform of the excitation inrush current.

このように系統の運転周波数を有する電流のう
ち、明瞭な零値区間を有する電流は励磁突入電流
のみであり、従つてこの零値区間の幅を検出する
ことによつて励磁突入電流であることを判定する
ことができる。また、この零値区間の幅と第2高
調波含有率との間には第7図に示すような関係が
存在することから本発明は、変流器によつて取り
出された変圧器1次側電流と2次側電流との差の
電流を一定の微小時間間隔、たとえば運転周波の
1周期の数十分の1の時間間隔でサンプリング
し、サンプリングされた電流を時系列的につぎつ
ぎに比較しながわ差が連続して実質的に零となる
サンプリングの数をカウントし、このカウントさ
れたサンプリング数が所定値以上となつたときに
継電器の動作を抑制しあるいは出力信号を阻止す
るようにして前記の目的を達成しようとするもの
である。
In this way, among the currents that have the operating frequency of the system, the only current that has a clear zero value section is the magnetizing inrush current, and therefore, by detecting the width of this zero value section, it can be determined that the current is the magnetizing inrush current. can be determined. Furthermore, since there is a relationship between the width of this zero value section and the second harmonic content as shown in FIG. The current difference between the side current and the secondary side current is sampled at certain minute time intervals, for example, at a time interval of several tenths of one cycle of the operating frequency, and the sampled currents are compared one after another in chronological order. The number of samplings in which the line difference is continuously substantially zero is counted, and when the counted number of samplings exceeds a predetermined value, the operation of the relay is suppressed or the output signal is blocked. It aims to achieve the objectives of

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明に基づいて構成される変圧器比
率差動継電装置の回路構成の一実施例を示す。変
流器3と変流器4とによりそれぞれ取り出された
変圧器1次側電流と2次側電流との間に差が生じ
ると、この差電流は動作コイル2aを介してアナ
ログーデジタル変換回路(以下A/D変換回路と
記す)31に入力される。このA/D変換回路は
後段のマイクロコンピユータ32により一定の微
小時間間隔たとえば電気角度にして6゜の間隔で前
記差電流をサンプリングするように制御され、サ
ンプリングした電流値はデジタル化して後段のマ
イクロコンピユータ32に入力する。マイクロコ
ンピユータ32内では入力された電流値をつぎつ
ぎに比較して差を求め、この差が所定値以下であ
る間はマイクロコンピユータに内蔵されたカウン
タを連続して歩進させる。この差が所定値を越え
るとそれまでのカウント数を消去し、ふたたび差
が所定値以下となる時点からカウンタを歩進させ
る。このようにしてカウント数が所定値に等しく
なつた時点、すなわち第9図における時間幅Bの
所定値が得られた時点でマイクロコンピユータ3
2から継電装置の出力信号を阻止する信号が出力
される。この信号はたとえばサイリスタ33のゲ
ートに導かれてサイリスタをオンさせ、サイリス
タと直列に接続された補助開閉器34の動作コイ
ル34aを励磁して、本発明の継電装置における
第2の接点を構成する補助接点34bを開路させ
る。従つて変圧器1次側電流と2次側電流との差
の電流が所定値以上となつて動作コイル2aによ
り第1の接点35aが閉成されても、この接点閉
成には、第2の接点34bの動作時間すなわち第
2の接点に開放指令が与えられてから接点が開放
されるまでの時間より運転周波の1サイクル以上
長い時間を要するように時間設定がなされている
から、第2の接点34bはすでに開路されてお
り、このため、遮断器の引外しコイル36には引
外し電流が流れず遮断器は投入状態に保持され
る。
FIG. 1 shows an embodiment of the circuit configuration of a transformer ratio differential relay device constructed based on the present invention. When a difference occurs between the transformer primary and secondary currents taken out by the current transformers 3 and 4, this difference current is transferred to the analog-to-digital conversion circuit via the operating coil 2a. (hereinafter referred to as an A/D conversion circuit) 31. This A/D converter circuit is controlled by the microcomputer 32 in the subsequent stage to sample the difference current at fixed minute time intervals, for example, at intervals of 6 degrees in electrical angle, and the sampled current value is digitized and transmitted to the microcomputer 32 in the subsequent stage. input into the computer 32. Inside the microcomputer 32, the input current values are compared one after another to find a difference, and while this difference is less than a predetermined value, a counter built into the microcomputer is continuously incremented. When this difference exceeds a predetermined value, the count up to that point is erased, and the counter is incremented from the time when the difference becomes less than the predetermined value again. In this way, when the count becomes equal to the predetermined value, that is, when the predetermined value of time width B in FIG. 9 is obtained, the microcomputer 3
2 outputs a signal that blocks the output signal of the relay device. This signal is guided, for example, to the gate of the thyristor 33, turns on the thyristor, and excites the operating coil 34a of the auxiliary switch 34 connected in series with the thyristor, thereby forming the second contact in the relay device of the present invention. The auxiliary contact 34b is opened. Therefore, even if the difference between the primary and secondary currents of the transformer exceeds a predetermined value and the first contact 35a is closed by the operating coil 2a, the second contact 35a is closed by the operating coil 2a. The time is set so that the operating time of the contact 34b, that is, the time from when the opening command is given to the second contact until the contact is opened, is longer by at least one cycle of the operating frequency. The contact 34b has already been opened, and therefore no tripping current flows through the tripping coil 36 of the circuit breaker, keeping the circuit breaker in the closed state.

このように、比率差動継電器における第2高調
波抑制比率を励磁突入電流の零値区間の時間幅に
置き換え、この時間幅を検出することにより継電
器の出力信号阻止することができ、従来のよう
な、高調波電流によつて動作する抑制コイルを省
略することができるから、第2高調波抑制比率を
下げたときの変圧器内部事故時の継電器の動作時
間のおくれや継電器の不動作を生ずることがなく
なり、内部事故時の継電器動作に影響を与えるこ
となく、第2高調波抑制比率を自在に設定するこ
とが可能になる。
In this way, by replacing the second harmonic suppression ratio in a ratio differential relay with the time width of the zero value section of the magnetizing inrush current and detecting this time width, it is possible to block the output signal of the relay. In addition, since the suppression coil operated by the harmonic current can be omitted, when the second harmonic suppression ratio is lowered, the relay operating time may be delayed or the relay may not operate in the event of an internal fault in the transformer. Therefore, it becomes possible to freely set the second harmonic suppression ratio without affecting the operation of the relay in the event of an internal accident.

なお、上述の実施例においては、継電器の出力
信号を阻止する第2の接点34bとして補助開閉
器の接点すなわち補助接点を用いているが、この
補助接点を用いる代わりに動作コイル34aを従
来の抑制コイルとして作用させても継電器の動作
を抑制することができる。このときは、抑制コイ
ルの抑制力は変圧器の1次側電流と2次側電流と
の差電流ではなく、変電所の制御電源母線P,H
から得られる一定の直流電流によつて得られるか
ら、差電流の波形の影響をうけることなく常に確
実な動作抑制が可能になる。
In the above embodiment, the contact of the auxiliary switch, that is, the auxiliary contact is used as the second contact 34b that blocks the output signal of the relay, but instead of using this auxiliary contact, the operating coil 34a is Even if it acts as a coil, the operation of the relay can be suppressed. In this case, the suppressing force of the suppressing coil is not the difference current between the primary and secondary currents of the transformer, but the control power buses P and H of the substation.
Since it is obtained by using a constant DC current obtained from the current, it is possible to always reliably suppress the operation without being affected by the waveform of the differential current.

なお、上述の実施例において、設定された第2
高調波抑制比率すなわち電流零値区間の時間幅B
が小さいと、励磁突入電流の波高値近傍において
は電流値の時間変化が小さいことから、マイクロ
コンピユータ32に入力されるデジタル量をつぎ
つぎに比較して差を求め、この差が所定値以下で
ある間はカウンタを連続して歩進させて所定時間
幅に到達したか否かを検出するのみでは、所定の
電流零値区間幅が得られたと誤認するおそれがあ
る。従つて時間幅Bを小さく設定したいときに
は、マイクロコンピユータに入力されるデジタル
量の絶対値がたとえば変圧器の定格負荷電流の30
%以下のときのみカウンタの歩進が可能となるよ
う、デジタル量の絶対値を判別した結果と前記デ
ジタル量の比較すなわち差計算から得られた判別
結果との論理和によりカウンタの歩進をきめるよ
うにすれば、極めて広い範囲に第2高調波抑制比
率を設定することが可能になる。
Note that in the above embodiment, the set second
Harmonic suppression ratio, that is, the time width B of the current zero value section
If is small, the time change in the current value is small near the peak value of the excitation inrush current. Therefore, the digital values input to the microcomputer 32 are compared one after another to determine the difference, and this difference is less than or equal to a predetermined value. If only detecting whether or not a predetermined time interval has been reached by continuously incrementing a counter during the interval, there is a risk of misunderstanding that a predetermined current zero value interval width has been obtained. Therefore, if you want to set the time width B small, the absolute value of the digital quantity input to the microcomputer should be, for example, 30% of the rated load current of the transformer.
% or less, the increment of the counter is determined by the logical sum of the result of determining the absolute value of the digital quantity and the determination result obtained from the comparison of the digital quantity, that is, the difference calculation. By doing so, it becomes possible to set the second harmonic suppression ratio in an extremely wide range.

なお、第1図に示す補助開閉器の接点すなわち
第2の接点34bは図のように複数設けるこがで
きるから、これらの接点を、変圧器に接続された
回路に設けられた過電流継電器や、系統が直接接
地系統である場合の変圧器中性点側に設けられた
保護継電器の接点と直列に設ければ、励磁突入電
流時の誤動作を避けることが可能になり、変動所
運転の円滑化に寄与することができる。
In addition, since a plurality of contacts of the auxiliary switch, that is, the second contacts 34b shown in FIG. 1 can be provided as shown in the figure, these contacts can be connected to overcurrent relays or If the system is a directly grounded system, if it is installed in series with the contact of the protective relay installed on the neutral point side of the transformer, it will be possible to avoid malfunctions at the time of excitation inrush current, and smooth operation of the variable station will be possible. It is possible to contribute to the development of

〔発明の効果〕〔Effect of the invention〕

以上述でたように、本発明によれば、 (1) 第2高調波抑制比率を励磁突入電流の零値区
間間隔に置き換え、この幅が所定値以上である
か否かを検出することにより、変流器を介して
得られた変圧器1次側電流と2次側電流との差
電流が励磁突入電流により生じたものか否かを
判定するようにし、従来のような、高調波電流
によつて動作する抑制コイルを省略したので、
零値区間幅を広範囲に変えても、変圧器内部事
故時に事故電流中に含まれる歪み電流による継
電器動作の時間おくれや不動作などが生ぜず、
変圧器内部事故を第2高調波抑制比率と無関係
に常に正常に処理することが可能になる。
As described above, according to the present invention, (1) by replacing the second harmonic suppression ratio with the zero value interval interval of the magnetizing inrush current and detecting whether this width is greater than or equal to a predetermined value; , it is determined whether the difference current between the primary side current and the secondary side current of the transformer obtained through the current transformer is caused by the excitation inrush current, and harmonic current as in the conventional case is determined. Since we omitted the suppression coil operated by
Even if the zero value interval width is varied over a wide range, the relay will not operate delayed or fail due to the distorted current contained in the fault current in the event of an internal fault in the transformer.
It becomes possible to always normally handle a transformer internal fault regardless of the second harmonic suppression ratio.

(2) 変流器を介して得られた励磁突入電流の波形
は、変流器鉄心の飽和現象により第14図のよ
うに零点がシフトすることがあるが、電流零値
区間の検出にはサイプリングして得られた電流
値の差を用いているから、この零点のシフトに
は関係なく、正しい検出が可能である。
(2) In the waveform of the magnetizing inrush current obtained through the current transformer, the zero point may shift as shown in Figure 14 due to the saturation phenomenon of the current transformer core, but it is difficult to detect the current zero value section. Since the difference between the current values obtained by sibling is used, correct detection is possible regardless of this shift of the zero point.

(3) 変流器を介して得られた変圧器1次側電流と
2次側電流との差の電流が変圧器の励磁突入電
流によるものであるか否かの判定が、変圧器の
運転周波数の1サイクル内における電流零値区
間幅を検出して行なわれるから、判定時間が1
サイクルすなわち運転周波数が50Hzのときは20
ms、60Hzのときは16.7msの短時間となり、
従来方式における約30msと比較して著しく短
縮されるから、内部事故時の継電器動作時間の
許容下限値をさらに短縮して変圧器の保護効果
を高めることができる。
(3) Determining whether the difference between the primary and secondary currents of the transformer obtained through the current transformer is due to the magnetizing inrush current of the transformer This is done by detecting the current zero value interval width within one cycle of the frequency, so the judgment time is 1
20 when the cycle or operating frequency is 50Hz
ms, at 60Hz, it is a short time of 16.7ms,
This is significantly shorter than about 30 ms in the conventional system, so the lower limit of allowable relay operation time in the event of an internal accident can be further shortened and the protection effect of the transformer can be enhanced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づいて構成される変圧器の
比率差動継電装置の実施例による回路構成図、第
2図は従来の比率差動継電器の動作原理を説明す
る、変圧器を含む全体回路図、第3図は変圧器1
次側に励磁突入電流が流入したときの変圧器1次
側の電流、電圧と変圧器鉄心中の磁束との関係を
示す説明図、第4図は励磁突入電流中の高調波分
を用いて継電器の動作を抑制する、高調波抑制の
原理を説明する要部回路図、第5図は現在実用さ
れているデジタル形比率差動継電器の動作原理を
示す機能ブロツク図、第6図は第5図の継電器に
入力される励磁突入電流の波形図、第7ないし9
図は本発明の原理を説明するための線図および波
形図であつて、第7図は励磁突入電流が発生して
いる1サイクル中の時間と第2高調波成分の含有
率との関係を示す図、第8図は励磁突入電流が発
生している時間または零値区間の幅を説明するた
めの鉄心中磁束の大きさの関係を示す波形図、第
9図は励磁突入電流が発生している1サイクル中
の時間Aと電流の零値区間幅Bとの定義を示す波
形図である。第10ないし13図は変圧器に流れ
る運転周波電流の種類を示す波形図、第14図は
変流器鉄心が飽和したときの変流器2次電流の零
点のシフトを示す波形図である。 1……変圧器、2……比率差動継電器、10…
…基本波通過フイルタ、11……基本波阻止フイ
ルタ、13……抑制コイル、14……動作コイ
ル、21……基本波抽出フイルタ、22……第2
高調波抽出フイルタ、31……アナログーデジタ
ル変換回路、32……マイクロコンピユータ、3
4……補助開閉器、34b……第2の接点、35
a……第1の接点、100……比率差動継電装
置。
FIG. 1 is a circuit configuration diagram according to an embodiment of a ratio differential relay device for a transformer constructed based on the present invention, and FIG. 2 illustrates the operating principle of a conventional ratio differential relay including a transformer. Overall circuit diagram, Figure 3 is transformer 1
An explanatory diagram showing the relationship between the current and voltage on the primary side of the transformer and the magnetic flux in the transformer core when the magnetizing inrush current flows into the next side. Figure 5 is a functional block diagram illustrating the principle of harmonic suppression that suppresses the operation of relays. Waveform diagram of magnetizing inrush current input to the relay shown in Figure 7 to 9
The figures are diagrams and waveform diagrams for explaining the principle of the present invention, and Fig. 7 shows the relationship between the time during one cycle in which the excitation inrush current is generated and the content rate of the second harmonic component. 8 is a waveform diagram showing the relationship between the magnitude of the magnetic flux in the core to explain the time during which the magnetizing inrush current is generated or the width of the zero value section, and FIG. 9 is a waveform diagram showing the relationship between the magnitude of the magnetic flux in the core and FIG. 3 is a waveform diagram showing definitions of time A during one cycle and zero value interval width B of current. 10 to 13 are waveform diagrams showing the types of operating frequency currents flowing through the transformer, and FIG. 14 is a waveform diagram showing the shift of the zero point of the current transformer secondary current when the current transformer core is saturated. 1...Transformer, 2...Ratio differential relay, 10...
... Fundamental wave passing filter, 11 ... Fundamental wave blocking filter, 13 ... Suppression coil, 14 ... Operating coil, 21 ... Fundamental wave extraction filter, 22 ... Second
Harmonic extraction filter, 31...Analog-digital conversion circuit, 32...Microcomputer, 3
4...Auxiliary switch, 34b...Second contact, 35
a...First contact, 100...Ratio differential relay device.

Claims (1)

【特許請求の範囲】[Claims] 1 1次電流と、2次電流を1次側に換算した電
流との差の電流が所定値を超過するとともにこの
差電流中に含まれる第2高調波成分の基本波成分
に対する割合が所定値以下のときには変圧器の内
部事故と判定して変圧器を回路から切り離す信号
を出力するとともに前記第2高調波の割合が所定
値を超過したときには前記差電流は内部事故では
なく励磁突入電流によつて生じたものと判定して
変圧器が回路から切り離されないよう信号を出力
しない変圧器の比率差動継電装置であつて、該継
電装置が、前記差電流が所定値を超過したときに
閉成される第1の接点と、前記差電流中に含まれ
る第2高調波成分の基本波成分に対する割合が所
定値を超過したときに開放される第2の接点とを
直列に備えるとともに第1の接点の動作時間が第
2の接点に開放指令が与えられてから開放される
までの時間より回路の運転周波の1サイクル以上
長くなるように設定され、かつ、前記第2の接点
の開放が、前記差電流波形を回路の運転周波の1
サイクルより十分小さい一定の微小時間間隙でサ
ンプリングし、該サンプリングされた電流を時系
列的につぎつぎに比較しながら差が連続して所定
値以下となるサンプリングの数をカウントし、こ
のカウントされたサンプリング数が所定値を超過
したときにはじめて生ずる指令によつて行なわれ
ることを特徴とする変圧器比率差動継電装置。
1 The difference between the primary current and the current obtained by converting the secondary current to the primary side exceeds a predetermined value, and the ratio of the second harmonic component to the fundamental component included in this difference current exceeds a predetermined value. In the following cases, it is determined that there is an internal fault in the transformer, and a signal is output to disconnect the transformer from the circuit. If the ratio of the second harmonic exceeds a predetermined value, the difference current is caused by an excitation inrush current rather than an internal fault. A ratio differential relay for a transformer that determines that a current difference has occurred and does not output a signal to prevent the transformer from being disconnected from the circuit; and a second contact that is opened when the ratio of the second harmonic component included in the difference current to the fundamental wave component exceeds a predetermined value, in series. The operating time of the first contact is set to be longer than the time from when the opening command is given to the second contact until it is opened, by one cycle or more of the operating frequency of the circuit, and The opening causes the difference current waveform to be one of the operating frequency of the circuit.
The sampled currents are sampled at a certain minute time interval that is sufficiently smaller than the cycle, and the number of samplings in which the difference is continuously equal to or less than a predetermined value is counted while comparing the sampled current one after another in time series. 1. A transformer ratio differential relay device, characterized in that the relay is operated by a command that occurs only when the number exceeds a predetermined value.
JP1521186A 1986-01-27 1986-01-27 Transformer ratio cifferential relay Granted JPS62173932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1521186A JPS62173932A (en) 1986-01-27 1986-01-27 Transformer ratio cifferential relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1521186A JPS62173932A (en) 1986-01-27 1986-01-27 Transformer ratio cifferential relay

Publications (2)

Publication Number Publication Date
JPS62173932A JPS62173932A (en) 1987-07-30
JPH0435969B2 true JPH0435969B2 (en) 1992-06-12

Family

ID=11882539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1521186A Granted JPS62173932A (en) 1986-01-27 1986-01-27 Transformer ratio cifferential relay

Country Status (1)

Country Link
JP (1) JPS62173932A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703273B2 (en) * 1988-08-12 1998-01-26 東京電力株式会社 Differential relay

Also Published As

Publication number Publication date
JPS62173932A (en) 1987-07-30

Similar Documents

Publication Publication Date Title
CN100490266C (en) System for power transformer differential protection
Yabe Power differential method for discrimination between fault and magnetizing inrush current in transformers
Hamilton Analysis of transformer inrush current and comparison of harmonic restraint methods in transformer protection
Hou et al. Capacitive voltage transformer: transient overreach concerns and solutions for distance relaying
Kasztenny et al. Digital relays improve protection of large transformers
CN100461572C (en) Floating threshold and current ratio brake combined turn-to-turn protection method for electric generator
Kang et al. Busbar differential protection in conjunction with a current transformer compensating algorithm
Aktaibi et al. Digital differential protection of power transformer using matlab
Tziouvaras et al. The effect of conventional instrument transformer transients on numerical relay elements
JPH0435969B2 (en)
JP3199940B2 (en) Transformer protection relay device
JP3447811B2 (en) Transformer protection relay system for substation equipment and transformer protection method for substation equipment
Nimtaj et al. A comparison of two numerical relay low impedance restricted earth fault algorithms in power transformer
Wang et al. The multifunctional numerical transformer protection and control system with adaptive and flexible features
JPS5852838Y2 (en) transformer protection device
Sezi A new approach for transformer ground differential protection
JP3028093B2 (en) System fault current detector
Zou et al. CT saturation—A simulation study of different detection and blocking algorithms
Dinesh et al. Power Transformer Protection Using Adaptive Differential Relay Using For Fault Analysis
JPS6321420B2 (en)
Zimmerman et al. Distance element response to distorted waveforms
Makwana et al. Enhanced transformer differential protection–design, test and field experience
Saha et al. A fuzzy logic based relay for power transformer protection
Dong et al. Analysis and application of suppression measures for protection misoperation caused by excitation inrush current of 15.75 kV transformer
Ristic et al. The major differences between electromechanical and microprocessor based technologies in relay setting rules for transformer current differential protection