JPH0435913B2 - - Google Patents

Info

Publication number
JPH0435913B2
JPH0435913B2 JP60209474A JP20947485A JPH0435913B2 JP H0435913 B2 JPH0435913 B2 JP H0435913B2 JP 60209474 A JP60209474 A JP 60209474A JP 20947485 A JP20947485 A JP 20947485A JP H0435913 B2 JPH0435913 B2 JP H0435913B2
Authority
JP
Japan
Prior art keywords
conductivity type
insulating film
silicon
layer
columnar structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60209474A
Other languages
Japanese (ja)
Other versions
JPS6269549A (en
Inventor
Mitsutaka Morimoto
Toshio Takeshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60209474A priority Critical patent/JPS6269549A/en
Priority to US06/845,297 priority patent/US4737829A/en
Publication of JPS6269549A publication Critical patent/JPS6269549A/en
Publication of JPH0435913B2 publication Critical patent/JPH0435913B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS
    • H01L29/945Trench capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate
    • H10B12/0383Making the capacitor or connections thereto the capacitor being in a trench in the substrate wherein the transistor is vertical
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/39DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
    • H10B12/395DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はダイナミツク型MIS半導体記憶素子と
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a dynamic MIS semiconductor memory element and a method for manufacturing the same.

(従来の技術) 近年半導体記憶素子の高集積化、高密度化の傾
向が盛んであり、それに伴つて素子の微細化が進
められているが、微細加工技術の進展はリソグラ
フイ技術当を始めとして多くの面で各種技術的困
難に直面している。また、特にダイナミツク型ラ
ンダムアクセスメモリ(以下DRAMと略記する)
の代表的構造であるトランジスタを1つと蓄電用
容量1つからなる1トランジスタメモリセルに於
ては、蓄電容量を小さくし得ないため、その微細
化はさらに難しい問題に直面しており、各種新技
法が検討されている。1982年12月に米国ワシント
ンで開催された国際電子素子会議
(International Electron Device Meeting)論文
予稿集806ページから807ページに「A
CORRUGATED CAPACITANCE CELL
(CCC)FOR MEGABIT DYNAMICMOS
MEMORIES」と題してスナミ(H.SUNAMI)
等により発表された論文においては、蓄電用容量
の一部を基板単結晶に溝型凹みを設けて素子面積
の減少をはかると共に約1ミクロン程度の設計基
準を採用して従来のダイナミツク型MOS半導体
記憶素子より素子面積を減少している。
(Prior art) In recent years, there has been a growing trend towards higher integration and higher density of semiconductor memory elements, and along with this, the miniaturization of elements has progressed. As a result, we are facing various technical difficulties on many fronts. In particular, dynamic random access memory (hereinafter abbreviated as DRAM)
In a one-transistor memory cell consisting of one transistor and one storage capacitor, which is a typical structure of the techniques are being considered. "A
CORRUGATED CAPACITANCE CELL
(CCC) FOR MEGABIT DYNAMICMOS
H.SUNAMI titled “MEMORIES”
In a paper published by et. The element area is smaller than that of a memory element.

(発明が解決しようとする問題点) しかしその素子面積は、周辺の分離領域を含め
て約21平方ミクロン程度であり、かりにこの構造
を用いて4メガビツトの記憶回路を作成しようと
すると記憶素子部分だけで88平方ミリ程度と、か
なり大面積になつてしまう。
(Problem to be Solved by the Invention) However, the element area is approximately 21 square microns including the surrounding isolation area, and if a 4 megabit memory circuit is created using this structure, the memory element area The area alone is about 88 square millimeters, which is quite large.

本発明の目的はこのような従来の欠点を除去し
て、同一設計基準で従来の素子より圧倒的に素子
面積を減少させ、しかも制御用トランジスタのチ
ヤネル部が電気的に基板と接続され、かつ折り返
しビツト線構成に対応可能な半導体記憶素子並び
にその製造方法を提供することにある。
The purpose of the present invention is to eliminate such conventional drawbacks, reduce the device area overwhelmingly compared to the conventional device with the same design standard, and furthermore, the channel part of the control transistor is electrically connected to the substrate, and It is an object of the present invention to provide a semiconductor memory element compatible with a folded bit line configuration and a method for manufacturing the same.

(問題点を解決するための手段) 本発明によれば、第1導電型シリコン単結晶基
板上に側面の一部に第2導電型の第1の不純物ド
ープ層を有しかつ上面に前記第2導電型の不純物
ドープ層とは連続していない第2導電型の第2の
不純物ドープ層を有する第1導電型の単結晶シリ
コン層で構成された柱状構造を有し、更にその柱
状構造の周囲が基板単結晶シリコンと電気的に接
続された第1導電型シリコンで第1の不純物ドー
プ層が途中まで埋まつておりこの埋め込み層上面
に絶縁膜が形成され、当該埋め込み層で覆われて
いない柱状構造側面にゲート絶縁膜が形成されて
おり、このゲート絶縁膜に接しかつ第2導電型の
第1及び第2の不純物ドープ層にまたがりゲート
電極となる導体層を有し、当該導体層は柱状構造
列間に2本並行して相互に絶縁された形で配置さ
れ、かつおのおのは柱状構造に1つおきにゲート
絶縁膜を介して接することを特徴とする半導体記
憶素子が得られる。
(Means for Solving the Problems) According to the present invention, the first impurity doped layer of the second conductivity type is provided on a part of the side surface on the first conductivity type silicon single crystal substrate, and the first impurity doped layer of the second conductivity type is provided on the upper surface. It has a columnar structure composed of a first conductivity type single crystal silicon layer having a second conductivity type second impurity doped layer that is not continuous with the second conductivity type impurity doped layer, and The first impurity doped layer is partially buried with first conductivity type silicon whose periphery is electrically connected to the substrate single crystal silicon, and an insulating film is formed on the top surface of this buried layer, and the first impurity doped layer is covered with the buried layer. A gate insulating film is formed on the side surface of the columnar structure, and a conductor layer that is in contact with the gate insulating film and straddles the first and second impurity doped layers of the second conductivity type serves as a gate electrode. There is obtained a semiconductor memory element characterized in that two bonitos are arranged in parallel between columns of columnar structures in a mutually insulated manner, and each bonito is in contact with every other columnar structure via a gate insulating film.

更に本発明によれば、第1導電型の単結晶シ
リコン基板上に第2導電型の単結晶シリコン層が
形成されたものに対してエツチングを施して所望
の領域をこのシリコン層より深く柱状に残し、 露出されたシリコン面を絶縁膜で覆い、エツ
チングされて掘り込まれた底面上に堆積した絶
縁膜のみを選択的にエツチング除去し、 前記基板を更に深くエツチングし、 工程において形成された絶縁膜をマスクと
して露出シリコン表面に第2導電型の不純物を
ドープし、その表面を薄い絶縁膜で覆い、 柱状構造周囲の掘りこまれたシリコン基板の
底面上にも形成される薄い絶縁膜と第2導電型
の不純物ドープ層を選択的にエツチング除去
し、 該溝部に第1導電型のシリコンを前記柱状構
造の側面下部に設けられた第2導電型の不純物
ドープ層の上端を残す所まで埋め込み、 該埋め込み層表面に絶縁膜を形成し、 柱状構造の行列のうち奇数番目の行について
は第1の側面の、また偶数番目の行については
第1の側面の反対側の側面の絶縁膜を表面から
前記第2導電型の不純物ドープ層の上端までエ
ツチング除去してシリコン表面を露出しそこに
ゲート絶縁膜を形成し、 該ゲート絶縁膜に接し前記第2導電型不純物
ドープ層の上端と前記柱状構造上部に設けた第
2導電型の不純物ドープ層側面とにまたがりゲ
ート電極となる導体層を柱状構造行間に2本ず
つ形成する、 ことを特徴とする半導体記憶素子の製造方法が得
られる。
Furthermore, according to the present invention, a single crystal silicon layer of a second conductivity type is formed on a single crystal silicon substrate of a first conductivity type, and a desired region is formed into a columnar shape deeper than the silicon layer by etching. Then, the exposed silicon surface is covered with an insulating film, and only the insulating film deposited on the etched and dug bottom surface is selectively etched away, and the substrate is etched more deeply to remove the insulating film formed in the process. Using the film as a mask, the exposed silicon surface is doped with impurities of the second conductivity type, and the surface is covered with a thin insulating film. The second conductivity type impurity doped layer is selectively etched away, and the first conductivity type silicon is buried in the groove until the upper end of the second conductivity type impurity doped layer provided at the lower side of the columnar structure remains. , an insulating film is formed on the surface of the buried layer, and an insulating film is formed on the first side surface for odd rows of the matrix of the columnar structure, and on the side surface opposite to the first side surface for the even rows. The silicon surface is exposed by etching away from the surface to the upper end of the impurity doped layer of the second conductivity type, and a gate insulating film is formed thereon. There is obtained a method for manufacturing a semiconductor memory element characterized in that two conductor layers serving as gate electrodes are formed between rows of the columnar structure so as to straddle the side surface of the second conductivity type impurity doped layer provided on the top of the columnar structure.

更に本発明によれば、所望の領域を柱状に残
して第1導電型の単結晶シリコン基板をエツチン
グし、 柱状構造シリコン側面に第2導電型の不純物
をドープし、その表面を薄い絶縁膜で覆い、 柱状構造周囲の掘り込まれたシリコン基板の
底面上にも形成される薄い絶縁膜と第2導電型
の不純物ドープ層とを選択的にエツチング除去
し、 該溝部に第1導電型のシリコンを前記柱状構
造側面に設けられた第2導電型の不純物ドープ
層の上端を残す所まで埋め込み、 該埋め込み層表面に絶縁膜を形成し、 前記柱状構造上面に第1導電型の単結晶シリ
コン層を、更にその上面に第2導電型の単結晶
シリコン層を選択的に形成し、 前記埋め込み層上に少くとも前記第2導電型
の単結晶シリコン層と同じ高さまで絶縁膜を形
成し、 柱状構造の行列のうち奇数番目の行について
は第1の側面の、また偶数番目の行については
第1の側面の反対側の側面の絶縁膜を表面から
前記第2導電型の不純物ドープ層の上端までエ
ツチング除去してシリコン表面を露出しそこに
ゲート絶縁膜を形成し、 該ゲート絶縁膜に接し前記第2導電型不純物
ドープ層の上端と前記柱状構造上部に設けた第
2導電型の不純物ドープ層側面とにまたがりゲ
ート電極となる導体層を柱状構造行間に2本ず
つ形成する、 ことを特徴とする半導体記憶素子の製造方法が得
られる。
Furthermore, according to the present invention, a single crystal silicon substrate of the first conductivity type is etched leaving a desired region in the form of a columnar structure, an impurity of the second conductivity type is doped on the side surface of the columnar structure silicon, and the surface is covered with a thin insulating film. The thin insulating film and the impurity doped layer of the second conductivity type, which are also formed on the bottom surface of the silicon substrate dug around the columnar structure, are selectively etched away, and silicon of the first conductivity type is deposited in the trench. burying the impurity doped layer of the second conductivity type provided on the side surface of the columnar structure until the upper end thereof remains, forming an insulating film on the surface of the buried layer, and forming a single crystal silicon layer of the first conductivity type on the top surface of the columnar structure. further selectively forming a second conductivity type single crystal silicon layer on the upper surface thereof, forming an insulating film on the buried layer to at least the same height as the second conductivity type single crystal silicon layer, and forming a columnar shape. For the odd rows of the structure matrix, the insulating film on the first side surface, and for the even rows, the insulating film on the side surface opposite to the first side surface from the top of the impurity doped layer of the second conductivity type. A gate insulating film is formed thereon by etching to expose the silicon surface, and a second conductive type impurity doped layer is provided on the upper end of the second conductive type impurity doped layer and on the top of the columnar structure in contact with the gate insulating film. A method for manufacturing a semiconductor memory element is obtained, which is characterized in that two conductor layers serving as gate electrodes are formed between each row of a columnar structure so as to span the side surfaces of the layers.

(実施例) 以下本発明の実施例を図面を参照しながら詳細
に説明する。第1図は本願第1の発明の実施例を
示す一部切り欠き斜視図で、4ビツト分の記憶素
子を示している。101は単結晶p型シリコン基
板、102は基板101に垂直な柱状構造のp型
シリコン単結晶、103はこの柱状構造側壁の下
方一部の表面に設けられp型シリコン基板101
あるいはそれに電気的に接続される形で設けられ
るp型シリコン102との間で接合容量を形成す
るn型不純物ドープ層、104は不純物ドープ層
103表面の少なくとも一部を覆うSiO2やSiO2
とSi3N4の積層構造の絶縁薄膜であり、p型シリ
コン105との間にMIS容量を形成する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a partially cutaway perspective view showing an embodiment of the first invention of the present application, showing a memory element for 4 bits. 101 is a single-crystal p-type silicon substrate, 102 is a p-type silicon single crystal with a columnar structure perpendicular to the substrate 101, and 103 is a p-type silicon substrate provided on the lower part of the side wall of this columnar structure.
Alternatively, an n-type impurity doped layer 104 forms a junction capacitance with the p-type silicon 102 provided in a form that is electrically connected to the n-type impurity doped layer 104, which is SiO 2 or SiO 2 that covers at least a part of the surface of the impurity doped layer 103.
It is an insulating thin film having a laminated structure of Si 3 N 4 and Si 3 N 4 , and forms an MIS capacitor between it and the p-type silicon 105 .

106は柱状構造の頂部分に形成されたn型不
純物ドープ層でありこのドープ層と103とで制
御用MISトランジスタのソース・ドレイン電極を
構成する。この2つのドープ層間のp型シリコン
102がチヤネル部を構成する。このようにして
1本の柱の上側に制御用MISトランジスタ、下側
に蓄電容量が形成されしかもトランジスタのチヤ
ネル部が基板と電気的に接続している。107は
前記溝部の残りの部分を埋め込んだSiO2等の絶
縁膜、109はゲート絶縁膜、108はゲート絶
縁膜に接し2つのn型不純物ドープ層103と1
06とにまたがり制御用MISトランジスタのゲー
ト電極を構成しワード線となるn+型多結晶シリ
コンである。110は金属でありn型ドープ層に
接続してビツト線となる。このようにしてダイナ
ミツクメモリセルが構成される。
Reference numeral 106 denotes an n-type impurity doped layer formed at the top of the columnar structure, and this doped layer and 103 constitute the source/drain electrodes of the control MIS transistor. The p-type silicon 102 between these two doped layers constitutes a channel portion. In this way, a control MIS transistor is formed on the upper side of one pillar, and a storage capacitor is formed on the lower side, and the channel portion of the transistor is electrically connected to the substrate. Reference numeral 107 indicates an insulating film such as SiO 2 that fills the remaining portion of the trench, 109 indicates a gate insulating film, and 108 indicates two n-type impurity doped layers 103 and 1 in contact with the gate insulating film.
06 and constitutes the gate electrode of the control MIS transistor and serves as the word line. Reference numeral 110 is a metal and is connected to the n-type doped layer to form a bit line. In this way, a dynamic memory cell is constructed.

MIS容量を形成する絶縁薄膜104は、p型シ
リコン基板とのpn接合を完全に覆つた104a
のような場合と、前記pn接合を覆いきつていな
い104bのような場合とが絶縁薄膜の一部除去
工程の際起こりうる。蓄電容量はMIS型容量と接
合型容量との合成容量になり、前者の場合はMIS
型の面積と接合型の面積とがおおむね等しくな
り、後者の場合は殆どが接合型となる。これら2
つの容量は柱状構造部分の周囲長と、n型不純物
ドープ層103とp型埋め込み層105の重なり
合いの高さとの積で表わされる面積と、n型不純
物ドープ層103がp型層102に接する面積と
の和に従つて増大する。このため柱状構造部分の
断面積を小さくしても、基板深さ方向すなわち高
さ方向に寸法を大きくとることにより充分な大き
さの蓄電容量が得られる利点がある。
The insulating thin film 104 forming the MIS capacitor completely covers the pn junction with the p-type silicon substrate 104a.
A case like this and a case like 104b where the pn junction is not completely covered may occur during the process of partially removing the insulating thin film. The storage capacity is a composite capacity of MIS type capacitance and junction type capacitance, and in the case of the former, MIS
The area of the mold and the area of the joint mold are approximately equal, and in the latter case, most of the mold is the joint mold. These 2
The two capacitances are the area represented by the product of the peripheral length of the columnar structure, the overlap height of the n-type impurity doped layer 103 and the p-type buried layer 105, and the area where the n-type impurity doped layer 103 is in contact with the p-type layer 102. increases according to the sum of Therefore, even if the cross-sectional area of the columnar structure portion is made small, there is an advantage that a sufficiently large storage capacity can be obtained by increasing the dimension in the depth direction, that is, the height direction of the substrate.

本構造のゲート電極となる導体膜108は柱状
構造列間に2本並行する108a,108bよう
に配置されかつおのおの柱状構造に1つおきにゲ
ート絶縁膜を介し接し制御用MISトランジスタを
構成しているため、行方向に伸びるビツト線11
0は折り返し型(フオールデツド型)を採用でき
る。このため開放型(オープン型)と比較し、セ
ンスアツプの配置ピツチが2倍になり周辺回路の
設計基準が緩和できること、更にノイズ耐性が向
上することなどの利点がある。
The conductor films 108, which serve as gate electrodes of this structure, are arranged in two parallel rows 108a and 108b between columns of columnar structures, and are in contact with every other columnar structure via a gate insulating film to form a control MIS transistor. Therefore, the bit line 11 extending in the row direction
0 can adopt a folded type. Therefore, compared to the open type, the arrangement pitch of the sense up is doubled, and there are advantages such as relaxing design standards for peripheral circuits and improving noise resistance.

本構造を用いれば、設計基準をFとしたとき、
最小占有面積は6F2(2F×3F)にまで小さくでき
高密度化が達成可能である。等に、制御用トラン
ジスタのチヤネル部は柱状構造中心部のp型部分
を介してp型基板に接続されており、チヤネル部
が基板から浮いている場合に起こる不都合(チヤ
ネル内のチヤージアツプ、しきい値電圧の不安定
性など)を回避できる利点がある。
If this structure is used, when the design standard is F,
The minimum occupied area can be reduced to 6F 2 (2F x 3F), making it possible to achieve high density. etc., the channel part of the control transistor is connected to the p-type substrate via the p-type part at the center of the columnar structure, and problems that occur when the channel part is floating from the substrate (charge increase in the channel, threshold This has the advantage of avoiding problems such as voltage instability.

以下本実施例を更に具体的に示したものを本願
第2の発明(製造方法)と共に第2図を参照しな
がら説明する。
Hereinafter, a more specific example of this embodiment will be described with reference to FIG. 2 together with the second invention (manufacturing method) of the present application.

まず、濃度5×1016cm-3程度のp型単結晶シリ
コン基板201上に厚さ約0.5μmのn型不純物ド
ープ層206を形成した基板を用い、その表面に
厚さ200Å程度の薄いSiO2膜、その上に厚さ1000
Å程度のSi3N4膜、その上に厚いSiO2膜を積層し
たマスクパターンを用いて反応性イオンエツチン
グ(RIE)等の異方性エツチングにより当該基板
のうちメモリセルを形成したい領域を2μm程度掘
り込んで、横方3μmピツチ、縦方向4.5μmピツチ
に配列された1.5μm×1.5μmの角柱パターンを形
成した。このあと露出シリコン表面をシリコン酸
化膜などの絶縁膜211で覆つたのち掘り込んだ
シリコン溝部底面上の絶縁膜のみを選択的に除去
した。(第2図a) 次に、前記シリコン溝部をRIEで更に6μm程度
掘り込んだ、砒素の熱拡散法等により柱状構造の
側面の一部にn型不純物ドープ層203を浅く形
成した状態を示す(第2図b)。
First, a substrate in which an n-type impurity doped layer 206 with a thickness of about 0.5 μm is formed on a p-type single crystal silicon substrate 201 with a concentration of about 5×10 16 cm -3 is used, and a thin SiO 2 membranes, thickness 1000 on top
Using a mask pattern consisting of a Si 3 N 4 film with a thickness of about 1.5 Å thick and a thick SiO 2 film laminated on top of it, the area where the memory cell is to be formed on the substrate is etched by 2 μm by anisotropic etching such as reactive ion etching (RIE). A prismatic pattern of 1.5 μm x 1.5 μm arranged at a pitch of 3 μm in the horizontal direction and a pitch of 4.5 μm in the vertical direction was formed by digging to a certain extent. Thereafter, the exposed silicon surface was covered with an insulating film 211 such as a silicon oxide film, and only the insulating film on the bottom of the dug silicon trench was selectively removed. (Fig. 2a) Next, the silicon groove is further dug by about 6 μm using RIE, and an n-type impurity doped layer 203 is formed shallowly on a part of the side surface of the columnar structure by a thermal diffusion method of arsenic, etc. (Figure 2b).

次に前記熱拡散により掘り込まれたシリコン溝
部底面にも形成されるn型不純物ドープ層を異方
エツチングで選択的に除去したのち、MIS容量と
なる薄い絶縁膜たとえば熱酸化膜や熱酸化膜と
CVD窒化膜との積層204を露出シリコン表面
に形成する。そのあとシリコン溝部底面上にも堆
積された当該絶縁膜を異方性エツチングで選択的
に除去した(第2図c)。エツチングの異方性が
やや悪いかあるいは柱状構造が少し斜めになつて
いると側壁の下部の絶縁薄膜が第1図104bに
示したように一部除去される。ただしエツチング
後に絶縁薄膜の残る面積が隣りあうセル間で10
4a,104bのように極端にばらつくことはな
く、少なくとも1つのチツプ内では同程度であ
る。
Next, the n-type impurity doped layer that is also formed on the bottom of the silicon trench dug by the thermal diffusion is selectively removed by anisotropic etching, and then a thin insulating film, such as a thermal oxide film or a thermal oxide film, which will become the MIS capacitor is etched. and
A stack 204 with CVD nitride is formed on the exposed silicon surface. Thereafter, the insulating film deposited also on the bottom of the silicon trench was selectively removed by anisotropic etching (FIG. 2c). If the anisotropy of the etching is slightly poor or the columnar structure is slightly slanted, a portion of the insulating thin film at the bottom of the sidewall will be removed as shown in FIG. 104b. However, the remaining area of the insulating thin film after etching is 10% between adjacent cells.
Unlike 4a and 104b, there is no extreme variation, and the variation is the same within at least one chip.

第2図dは、前記掘り込まれたシリコン溝部を
選択エピタキシヤル成長法によりp型シリコン層
205で5μm程度埋め込んだ状態を示す。埋めこ
む方法としてはp型多結晶シリコン膜を気相成長
しそのあとエツチパツクしてもよく、選択エピと
この方法をくみあわせてもよい。
FIG. 2d shows a state in which the dug silicon trench is filled with a p-type silicon layer 205 of about 5 μm by selective epitaxial growth. As a filling method, a p-type polycrystalline silicon film may be grown in vapor phase and then etched, or this method may be combined with selective epitaxy.

第2図eは、残りの溝部をCVD法やRFバイア
ススパツタ法やシリカガラスの塗布法等を用いて
シリコン酸化膜207で埋め込んだ後2つのn型
不純物ドープ層203,206並びにそれらを分
離する形で存在する基板に連続しているp型柱状
シリコン202の一部、の表面にまたがつた形で
接する深さ2.5μm程度、幅1.5μm程度の溝212
を形成した状態を示す。
Figure 2e shows that after filling the remaining groove with a silicon oxide film 207 using CVD, RF bias sputtering, or silica glass coating, two n-type impurity doped layers 203 and 206 are separated. A groove 212 with a depth of about 2.5 μm and a width of about 1.5 μm is in contact with the surface of a part of the p-type columnar silicon 202 that is continuous with the substrate.
This shows the state in which it has been formed.

第2図fは前記202,203,206の露出
シリコン表面にゲート絶縁膜を熱酸化法等で形成
したのち、少くとも前記溝部側壁に接する形で化
学気相成長(CVD)法によりのちにワード線と
して成形するn+多結晶シリコン208を全面に
約0.5μmの厚さで被着した状態を示す。
FIG. 2 f shows that after a gate insulating film is formed on the exposed silicon surfaces of the silicon layers 202, 203, and 206 by a thermal oxidation method, etc., a gate insulating film is formed by a chemical vapor deposition (CVD) method at least in contact with the side walls of the trench. It shows a state in which n + polycrystalline silicon 208, which is formed into a wire, is deposited over the entire surface to a thickness of about 0.5 μm.

第2図gは反応性イオンエツチング(RIE)法
など異方性のエツチング法により、前記溝部にÅ
字形に堆積した多結晶シリコンの底部と柱状構造
頂上並びに埋め込み絶縁膜207上に堆積した多
結晶シリコンを除去したのち、ワード線として分
離された208aと208b,208cと208
dの間に絶縁膜207′をCVD法とRIEによるエ
ツチパツク法の組み合わせ等により埋め込んだ状
態を示す。
In Figure 2g, the grooves are etched by an anisotropic etching method such as reactive ion etching (RIE).
After removing the polycrystalline silicon deposited on the bottom of the polycrystalline silicon deposited in the shape of a letter, the top of the columnar structure, and the buried insulating film 207, word lines 208a and 208b, 208c and 208 are separated as word lines.
d shows a state in which an insulating film 207' is buried by a combination of CVD and RIE etching.

次いで、第1図に示すごとく、層間絶縁膜を全
表面上に形成し、ビツト線となる金属配線110
をn型不純物ドープ層106に施すことにより、
新しい構造のダイナミツク型メモリセルが得られ
る。
Next, as shown in FIG. 1, an interlayer insulating film is formed on the entire surface, and a metal wiring 110 that becomes a bit line is formed.
By applying this to the n-type impurity doped layer 106,
A dynamic memory cell with a new structure can be obtained.

nチヤネルMOSトランジスタにリークが生じ
る恐れがある場合は、シリコン酸化膜207の代
わりにボロンガラス(BSG)をうめこみ、溝2
12を形成したあと熱処理してゲート電極108
に接しない領域のシリコンにボロンをドープすれ
ばよい。
If there is a risk of leakage occurring in the n-channel MOS transistor, fill in boron glass (BSG) instead of the silicon oxide film 207 and fill the trench 2.
After forming the gate electrode 108, heat treatment is performed to form the gate electrode 108.
What is necessary is to dope boron into the silicon in the region that is not in contact with the silicon.

次に、本願第三の発明(製造方法)の実施例を
第3図を参照しながら説明する。
Next, an embodiment of the third invention (manufacturing method) of the present application will be described with reference to FIG.

まず、5×1016cm-3程度の不純物濃度のp型単
結晶シリコン基板301を用い、その表面に厚さ
200Å程度の薄いSiO2膜、その上に厚さ1000Å程
度のSi3N4膜、その上に厚いSiO2膜を積層したマ
スクパターンを用いて反応性イオンエツチング
(RIE)等の異方性エツチングにより当該基板の
うちメモリセルを形成したい領域を6μm程度掘り
込んで、前記実施例と平面方向の寸法が同じ角柱
パターンを形成する。このあと砒素の熱拡散法等
により柱状構造側面にn型不純物ドープ層303
を浅く形成し、その表面にMIS容量となる絶縁薄
膜304、例えば熱酸化膜や熱酸化膜とCVD窒
化膜との積層膜を形成する。(第3図a) 次に、前記シリコン溝部底面上にも堆積された
絶縁膜と、それに覆われているn型不純物ドープ
層とを異方性エツチングで選択的に除去したのち
当該溝部を前記実施例と同様にSiH2Cl2とHClを
原料ガスとした選択エピタキシヤル成長法により
p型シリコン層305で5μm程度埋め込み、更に
該埋め込み層表面を熱酸化してシリコン酸化膜3
07で覆う。(第3図b) 次に、柱状構造上面を露出し、選択エピタキシ
ヤル成長法により、厚さ1μmのp型シリコン積層
322、厚さ0.5μmのn+型シリコン積層306を
連続的に形成する(第3図c)。この時、p型シ
リコン積層を厚さ1.5μm形成し、その上面に砒素
イオン注入などでn+層を形成することも可能で
あることは当然である。第3図cの状態は、第2
図でいえばd図とe図の中間の状態に相当する。
従つて、以下の工程は前記本願第2の発明の実施
例の後半部分を用いうる。この実施例では第3図
cで明らかなようにp型シリコン積層322、
n+型シリコン積層306を、ともに柱状構造上
面の全体に形成した。しかしこの2つの積層を柱
状構造上面の一部分にだけ形成してもよい。ただ
しp型シリコン積層322は柱状構造上面のp型
部分に少なくとも一部分で接して電気的に接続さ
れていなければならない。この実施例においても
トランジスタにリークが生じる恐れがある場合は
前記実施例のようにボロンをドープすればよい。
First, a p-type single crystal silicon substrate 301 with an impurity concentration of about 5×10 16 cm -3 is used, and a thickness of
Anisotropic etching such as reactive ion etching (RIE) using a mask pattern consisting of a thin SiO 2 film of about 200 Å, a Si 3 N 4 film of about 1000 Å thick, and a thick SiO 2 film on top of that. A region of the substrate where a memory cell is to be formed is dug to a depth of about 6 μm to form a prismatic pattern having the same dimension in the plane direction as in the above embodiment. After this, an n-type impurity doped layer 303 is formed on the side surface of the columnar structure by a thermal diffusion method of arsenic, etc.
A thin insulating film 304 serving as a MIS capacitor, such as a thermal oxide film or a laminated film of a thermal oxide film and a CVD nitride film, is formed on its surface. (FIG. 3a) Next, the insulating film deposited also on the bottom surface of the silicon trench and the n-type impurity doped layer covered therewith are selectively removed by anisotropic etching, and then the trench is etched as described above. Similar to the embodiment, a p-type silicon layer 305 is buried to a depth of about 5 μm by selective epitaxial growth using SiH 2 Cl 2 and HCl as source gases, and the surface of the buried layer is further thermally oxidized to form a silicon oxide film 3.
Cover with 07. (Figure 3b) Next, the top surface of the columnar structure is exposed, and a p-type silicon stack 322 with a thickness of 1 μm and an n + type silicon stack 306 with a thickness of 0.5 μm are successively formed by selective epitaxial growth. (Figure 3c). At this time, it is of course possible to form a p-type silicon stack with a thickness of 1.5 μm and form an n + layer on the top surface by implanting arsenic ions or the like. The state in Figure 3c is the second
In terms of the figure, this corresponds to an intermediate state between figure d and figure e.
Therefore, the latter part of the embodiment of the second invention of the present application can be used for the following steps. In this embodiment, as shown in FIG. 3c, a p-type silicon stack 322,
An n + type silicon laminated layer 306 was formed on the entire upper surface of the columnar structure. However, these two laminated layers may be formed only on a portion of the upper surface of the columnar structure. However, the p-type silicon stack 322 must be electrically connected to at least a portion of the p-type portion on the upper surface of the columnar structure. Even in this embodiment, if there is a risk of leakage occurring in the transistor, boron can be doped as in the previous embodiment.

以上本発明を1つの実施例にもとづいて説明し
たが実施例のp型とn型とを入れ替えても同様の
効果が得られる。
Although the present invention has been described above based on one embodiment, the same effect can be obtained even if the p-type and n-type of the embodiment are replaced.

また、ゲート電極108には結晶シリコンの代
わりにタングステン、モリブデン、チタン等の高
融点金属、もしくはそれらの硅化物、更にはそれ
らの多層構造を用いることが可能である。ふつう
はゲート電極の仕事関数φMがチヤネル上で一定
であることが望ましいので、ゲート電極のうちチ
ヤネルにかかる部分、とそれ以外の部分とをそれ
ぞれ一定の材料にするように多層にするとよい。
Furthermore, instead of crystalline silicon, the gate electrode 108 can be made of a high melting point metal such as tungsten, molybdenum, or titanium, or a silicide thereof, or a multilayer structure thereof. Since it is normally desirable that the work function φ M of the gate electrode be constant over the channel, it is preferable to form multiple layers so that the portion of the gate electrode that spans the channel and the other portions are made of a constant material.

更に、本実施例では柱状構造の行列が、行方向
列方向共に直線上に並んでいるため列間に配置さ
れる二本のフード線は蛇行する形になつている
が、第4図に示すようにワード線対108a,1
08bを直線状に配し、柱の位置を奇数行、偶数
行でずらすように配置することも可能である。第
4図では5ビツト分の記憶素子を示している。
Furthermore, in this embodiment, the columnar structure matrix is arranged in a straight line in both the row and column directions, so the two hood lines arranged between the columns have a meandering shape, as shown in FIG. Word line pair 108a, 1
It is also possible to arrange the pillars 08b in a straight line and to shift the positions of the pillars between odd and even rows. FIG. 4 shows a memory element for 5 bits.

柱状構造の行列の行は一直線上に配置される
が、列は蛇行する(偶数行との交点と奇数行との
交点が隣接はしているが異なる二本の直線上にあ
る)ように配置されているので、隣接列間に2本
並行して配置されるゲート電極となる導体膜10
8a,108bはおのおの直線にすることが可能
でワード線として長さが蛇行するものより短縮で
き抵抗が小さくなりひいては高速化ができる利点
がある。
The rows of a matrix with a columnar structure are arranged in a straight line, but the columns are arranged in a meandering manner (the intersection with the even-numbered row and the intersection with the odd-numbered row are on two adjacent but different lines). Therefore, two conductor films 10 serving as gate electrodes are arranged in parallel between adjacent columns.
Each of 8a and 108b can be made straight, which has the advantage of being shorter than a meandering word line, resulting in lower resistance and higher speed.

第5図a,bは更に別の実施例を示す概略平面
図である。a,b図ともに柱状構造501は行方
向には一直線上に並び、列方向には柱状構造の径
の半分ずつ重なるように蛇行している。a図では
一方のゲート電極108aは直線、他方のゲート
電極108bは蛇行している。b図では両方のゲ
ート電極とも3行分は直線であるが全体としてみ
ると大きく蛇行している。
FIGS. 5a and 5b are schematic plan views showing still another embodiment. In both figures a and b, the columnar structures 501 are arranged in a straight line in the row direction, and meander in the column direction so as to overlap each other by half the diameter of the columnar structures. In figure a, one gate electrode 108a is straight, and the other gate electrode 108b is meandering. In figure b, the three rows of both gate electrodes are straight lines, but when viewed as a whole, they meander significantly.

(発明の効果) この結果、第1図の実施例では3μm×4.5μm、
第4図の実施例では3μm×3.75μmの小面積の中
に1.5μmの設計ルールでダイナミツク型MIS半導
体記憶素子を作製することができ、しかもなお蓄
電容量面積MIS容量部分だけでも30μm2と充分大
きくできる。pn接合容量も加えると更に大きく
なる。従つてα線エラー等のソフトエラーにも充
分耐えうることがわかつた。また制御用トランジ
スタの実効チヤネル長も1μm程度以上と充分に大
きいものにすることが可能であり、シヨートチヤ
ネル効果をおさえることができる。更に制御用ト
ランジスタのチヤネル部は柱状構造の中心部を介
して基板に電気的に接続されており、チヤネル部
が基板から浮いている場合に見られるチヤージポ
ンピング現象に伴うチヤネル部電位の振動、バイ
ポーラ動作の懸念はない。
(Effect of the invention) As a result, in the embodiment shown in FIG.
In the example shown in Fig. 4, a dynamic MIS semiconductor memory element can be fabricated in a small area of 3 μm x 3.75 μm with a design rule of 1.5 μm, and the storage capacitor area alone is sufficient at 30 μm2 . You can make it bigger. If the pn junction capacitance is also added, it becomes even larger. Therefore, it was found that it can sufficiently withstand soft errors such as α-ray errors. Furthermore, the effective channel length of the control transistor can be made sufficiently large, approximately 1 μm or more, and the short channel effect can be suppressed. Furthermore, the channel section of the control transistor is electrically connected to the substrate through the center of the columnar structure, and the channel section potential oscillates due to the charge pumping phenomenon that occurs when the channel section is floating from the substrate. There are no concerns about bipolar operation.

本発明を1.5μm設計ルールで適用し1メガビツ
トの記憶回路を作製すれば第1図の実施例では記
憶素子部分のみの領域が14.1mm2(3.07mm×4.61
mm)、第4図の実施例では11.6mm2(3.04×3.80mm)
1μm設計ルールで4メガビツトの場合は第1図の
実施例では25.2mm2(4.10mm×6.14mm)、第4図の実
施例では20.6mm2(4.06×5.07mm)となり、周辺回
路を含めても現用の64K DRAMパツケージと同
程度の大きさのものに収容可能であることが判明
した。
If the present invention is applied to the 1.5 μm design rule and a 1 megabit memory circuit is manufactured, the area of only the memory element portion in the embodiment shown in FIG. 1 is 14.1 mm 2 (3.07 mm x 4.61
mm), 11.6mm 2 (3.04×3.80mm) in the example shown in Figure 4.
In the case of 4 megabits using the 1 μm design rule, the area is 25.2 mm 2 (4.10 mm x 6.14 mm) in the example shown in Figure 1, and 20.6 mm 2 (4.06 x 5.07 mm) in the example shown in Figure 4, including peripheral circuits. It was also found that the 64K DRAM package can be accommodated in a cage about the same size as the current 64K DRAM package.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第4図は本発明の記憶素子の構造の実
施例を示す一部切り欠き斜視図、第2図a−g、
第3図a−cはそれぞれ本発明の記憶素子の製造
方法の実施例を示す一部切り欠き斜視図である。
第5図a,bは本発明の記憶素子の構造の実施例
を示す概略平面図。 図において、101,201,301……p型
シリコン基板、102,202……p型シリコン
柱状構造、103,203,303……n型不純
物ドープ層、102,202……p型シリコン柱
状構造、103,203……n型不純物ドープ
層、104,204……絶縁薄膜、105,20
5……p型シリコン埋め込み層、106……n型
不純物ドープ層、107……絶縁膜、108……
多結晶シリコン或いは高融点金属または高融点金
属珪化物などの導体膜、109……絶縁薄膜、1
10……金属、211……絶縁膜、212……絶
縁膜に掘り込まれた溝、104,204,304
……絶縁薄膜、105,205,305……p型
シリコン層、106……n型不純物ドープ層、3
06……n型シリコン積層、107,307……
絶縁膜、108……多結晶シリコン或いは高融点
金属または高融点金属珪化物などの導体膜、10
9……絶縁薄膜、110……金属、211……絶
縁膜、212……絶縁膜に掘り込まれた溝、32
2……p型シリコン積層。
1 and 4 are partially cutaway perspective views showing embodiments of the structure of the memory element of the present invention, and FIGS. 2a-g,
FIGS. 3a to 3c are partially cutaway perspective views showing embodiments of the method for manufacturing a memory element of the present invention, respectively.
FIGS. 5a and 5b are schematic plan views showing an embodiment of the structure of a memory element according to the present invention. In the figure, 101, 201, 301... p-type silicon substrate, 102, 202... p-type silicon columnar structure, 103, 203, 303... n-type impurity doped layer, 102, 202... p-type silicon columnar structure, 103,203...N-type impurity doped layer, 104,204...Insulating thin film, 105,20
5...P-type silicon buried layer, 106...N-type impurity doped layer, 107...Insulating film, 108...
Conductor film such as polycrystalline silicon, refractory metal or refractory metal silicide, 109... Insulating thin film, 1
10... Metal, 211... Insulating film, 212... Groove dug in insulating film, 104, 204, 304
...Insulating thin film, 105, 205, 305...p-type silicon layer, 106...n-type impurity doped layer, 3
06...N-type silicon stack, 107,307...
Insulating film, 108... Conductor film, such as polycrystalline silicon, refractory metal, or refractory metal silicide, 10
9... Insulating thin film, 110... Metal, 211... Insulating film, 212... Groove dug into insulating film, 32
2...P-type silicon stack.

Claims (1)

【特許請求の範囲】 1 第1導電型シリコン単結晶基板上に側面の一
部に第2導電型の第1の不純物ドープ層を有しか
つ上面に前記第2導電型の不純物ドープ層とは連
続していない第2導電型の第2の不純物ドープ層
を有する第1導電型の単結晶シリコン層で構成さ
れた柱状構造を有し、更にその柱状構造の周囲が
基板単結晶シリコンと電気的に接続された第1導
電型シリコンで第1の不純物ドープ層が途中まで
埋まつており、この埋め込み層上面に絶縁膜が形
成され、当該埋め込み層で覆われていない柱状構
造側面にゲート絶縁膜が形成されており、このゲ
ート絶縁膜に接しかつ第2導電型の第1及び第2
の不純物ドープ層にまたがりゲート電極となる導
体層を有し、当該導体層は柱状構造列間に2本並
行して相互に絶縁された形で配置され、かつおの
おのは柱状構造に1つおきにゲート絶縁膜を介し
て接することを特徴とする半導体記憶素子。 2 第1導電型の単結晶シリコン基板上に第
2導電型の単結晶シリコン層が形成されたもの
に対して、エツチングを施して所望の領域をこ
のシリコン層より深く柱状に残し、 露出されたシリコン面を絶縁膜で覆い、エツ
チングされて堀り込まれた底面上に堆積した絶
縁膜のみを選択的にエツチング除去し、 前記基板を更に深くエツチングし、 工程において形成された絶縁膜をマスクと
して露出シリコン表面に第2導電型の不純物を
ドープし、その表面を薄い絶縁膜で覆い、 柱状構造周囲の堀りこまれたシリコン基板の
底面上にも形成される薄い絶縁膜と第2導電型
の不純物ドープ層を選択的にエツチング除去
し、 該溝部に第1導電型のシリコンを前記柱状構
造の側面下部に設けられた第2導電型の不純物
ドープ層の上端を残す所まで埋め込み、 該埋め込み層表面に絶縁膜を形成し、 柱状構造の行列のうち奇数番目の行について
は第1の側面の、また偶数番目の行については
第1の側面の反対側の側面の絶縁膜を表面から
前記第2導電型の不純物ドープ層の上端までエ
ツチング除去してシリコン表面を露出しそこに
ゲート絶縁膜を形成し、 該ゲート絶縁膜に接し前記第2導電型不純物
ドープ層の上端と前記柱状構造上部に設けた第
2導電型の不純物ドープ層側面とにまたがりゲ
ート電極となる導体層を柱状構造行間に2本ず
つ形成する、 ことを特徴とする半導体記憶素子の製造方法。 3 所望の領域を柱状に残して第1導電型の
単結晶シリコン基板をエツチングし、 柱状構造シリコン側面に第2導電型の不純物
をドープし、その表面を薄い絶縁膜で覆い、 柱状構造周囲の堀り込まれたシリコン基板の
底面上にも形成される薄い絶縁膜と第2導電型
の不純物ドープ層とを選択的にエツチング除去
し、 該溝部に第1導電型のシリコンを前記柱状構
造側面に設けられた第2導電型の不純物ドープ
層の上端を残す所まで埋め込み、 該埋め込み層表面に絶縁膜を形成し、 前記柱状構造上面に第1導電型の単結晶シリ
コン層を、更にその上面に第2導電型の単結晶
シリコン層を選択的に形成し、 前記埋め込み層上に少くとも前記第2導電型
の単結晶シリコン層と同じ高さまで絶縁膜を形
成し、 柱状構造の行列のうち奇数番目の行について
は第1の側面の、また偶数番目の行については
第1の側面の反対側の側面の絶縁膜を表面から
前記第2導電型の不純物ドープ層の上端までエ
ツチング除去してシリコン表面を露出しそこに
ゲート絶縁膜を形成し、 該ゲート絶縁膜に接し前記第2導電型不純物
ドープ層の上端と前記柱状構造上部に設けた第
2導電型の不純物ドープ層側面とにまたがりゲ
ート電極となる導体層を柱状構造行間に2本ず
つ形成する、 ことを特徴とする半導体記憶素子の製造方法。
[Claims] 1. A silicon single crystal substrate of a first conductivity type, having a first impurity doped layer of a second conductivity type on a part of a side surface, and a layer doped with an impurity of a second conductivity type on an upper surface. It has a columnar structure composed of a first conductivity type single crystal silicon layer having a second conductivity type second impurity doped layer that is not continuous, and the periphery of the columnar structure is electrically connected to the substrate single crystal silicon. The first impurity doped layer is buried halfway with silicon of the first conductivity type connected to the silicon, an insulating film is formed on the top surface of this buried layer, and a gate insulating film is formed on the side surface of the columnar structure that is not covered with the buried layer. is formed, and first and second conductive layers of the second conductivity type are in contact with the gate insulating film.
It has a conductor layer that serves as a gate electrode spanning the impurity-doped layer, and two of the conductor layers are arranged in parallel between the columns of the columnar structure in a mutually insulated manner, and each bonito is placed in the columnar structure every other column. A semiconductor memory element characterized by being in contact with each other through a gate insulating film. 2 A monocrystalline silicon layer of a second conductivity type is formed on a single-crystal silicon substrate of a first conductivity type, and is etched to leave a desired region deeper than the silicon layer in the form of a column and exposed. Covering the silicon surface with an insulating film, selectively etching away only the insulating film deposited on the etched and dug bottom surface, etching the substrate even more deeply, and using the insulating film formed in the process as a mask. The exposed silicon surface is doped with impurities of the second conductivity type, and the surface is covered with a thin insulating film. selectively etching and removing the impurity doped layer, burying silicon of the first conductivity type in the groove portion until the upper end of the impurity dope layer of the second conductivity type provided at the lower side surface of the columnar structure remains; and the buried layer. An insulating film is formed on the surface, and the insulating film on the first side surface for odd rows of the matrix of the columnar structure, and on the side surface opposite to the first side surface for the even rows, is coated from the surface to the first side surface. Etching and removing the second conductivity type impurity doped layer to the upper end of the second conductivity type impurity doped layer to expose the silicon surface and forming a gate insulating film there; A method for manufacturing a semiconductor memory element, comprising: forming two conductor layers to serve as gate electrodes between rows of a columnar structure so as to straddle side surfaces of a second conductivity type impurity doped layer. 3. Etching the single crystal silicon substrate of the first conductivity type while leaving a desired region in the form of a column, doping the side surface of the silicon columnar structure with an impurity of the second conductivity type, covering the surface with a thin insulating film, and etching the area around the columnar structure. The thin insulating film and the impurity doped layer of the second conductivity type, which are also formed on the bottom surface of the trenched silicon substrate, are selectively etched away, and the silicon of the first conductivity type is deposited in the groove on the side surface of the columnar structure. burying the impurity doped layer of the second conductivity type provided on the columnar structure until the upper end thereof is left, forming an insulating film on the surface of the buried layer, forming a single crystal silicon layer of the first conductivity type on the upper surface of the columnar structure, and further forming a single crystal silicon layer on the upper surface of the columnar structure. selectively forming a single crystal silicon layer of a second conductivity type, forming an insulating film on the buried layer to at least the same height as the single crystal silicon layer of the second conductivity type; For odd-numbered rows, the insulating film on the first side surface, and for even-numbered rows, the insulating film on the side surface opposite to the first side surface is etched away from the surface to the top of the second conductivity type impurity doped layer. exposing the silicon surface and forming a gate insulating film thereon, the gate insulating film being in contact with the gate insulating film and extending over the upper end of the second conductive type impurity doped layer and the side surface of the second conductive type impurity doped layer provided on the top of the columnar structure; A method for manufacturing a semiconductor memory element, comprising: forming two conductor layers to serve as gate electrodes between rows of a columnar structure.
JP60209474A 1985-03-28 1985-09-20 Semiconductor memory element and manufacture thereof Granted JPS6269549A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60209474A JPS6269549A (en) 1985-09-20 1985-09-20 Semiconductor memory element and manufacture thereof
US06/845,297 US4737829A (en) 1985-03-28 1986-03-28 Dynamic random access memory device having a plurality of one-transistor type memory cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60209474A JPS6269549A (en) 1985-09-20 1985-09-20 Semiconductor memory element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6269549A JPS6269549A (en) 1987-03-30
JPH0435913B2 true JPH0435913B2 (en) 1992-06-12

Family

ID=16573449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60209474A Granted JPS6269549A (en) 1985-03-28 1985-09-20 Semiconductor memory element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6269549A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366963A (en) * 1986-09-08 1988-03-25 Nippon Telegr & Teleph Corp <Ntt> Groove-buried semiconductor device and manufacture thereof
JPH01260854A (en) * 1988-04-12 1989-10-18 Fujitsu Ltd Semiconductor storage device

Also Published As

Publication number Publication date
JPS6269549A (en) 1987-03-30

Similar Documents

Publication Publication Date Title
US5460994A (en) Semiconductor device having vertical conduction transistors and cylindrical cell gates
KR910009786B1 (en) Semiconductor memory device and fabricating method therefor
US5798544A (en) Semiconductor memory device having trench isolation regions and bit lines formed thereover
US4920389A (en) Memory call array structure and process for producing the same
US4845539A (en) Semiconductor memory device
US5316962A (en) Method of producing a semiconductor device having trench capacitors and vertical switching transistors
KR950009890B1 (en) Semiconductor memory device
JPH0653435A (en) Integrated circuit cell
KR100509210B1 (en) Dram cell arrangement and method for its production
JPH04233272A (en) Dluble-trench semiconductor memory structure and its manufacture
US5428236A (en) Semiconductor memory device having trenched capicitor
JP2581654B2 (en) One-transistor cell device for dynamic semiconductor memory and manufacturing method thereof
JP3633873B2 (en) Integrated circuit assembly and manufacturing method thereof
EP0177066A2 (en) Semiconductor memory device with information storage vertical trench capacitor and method of manufacturing the same
US5292679A (en) Process for producing a semiconductor memory device having memory cells including transistors and capacitors
KR0140044B1 (en) Semiconductor memory device having improved isolation structure among memory cells
US5214496A (en) Semiconductor memory
KR100435076B1 (en) Method for fabricating a DRAM cell having a trench capacitor
JPH03268462A (en) Formation of memory cell
KR19990006541A (en) DRAM cell device with dynamic gain memory cell and method of manufacturing the same
US7135735B2 (en) Semiconductor device
JPH0365664B2 (en)
JPS6350056A (en) Semiconductor storage device
JPH0435913B2 (en)
JPH07109877B2 (en) Semiconductor memory device and manufacturing method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term