JPH0435883B2 - - Google Patents

Info

Publication number
JPH0435883B2
JPH0435883B2 JP62102542A JP10254287A JPH0435883B2 JP H0435883 B2 JPH0435883 B2 JP H0435883B2 JP 62102542 A JP62102542 A JP 62102542A JP 10254287 A JP10254287 A JP 10254287A JP H0435883 B2 JPH0435883 B2 JP H0435883B2
Authority
JP
Japan
Prior art keywords
varistor
porcelain
dielectric
ions
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62102542A
Other languages
Japanese (ja)
Other versions
JPS63268201A (en
Inventor
Masayuki Fujimoto
Shusaku Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP62102542A priority Critical patent/JPS63268201A/en
Publication of JPS63268201A publication Critical patent/JPS63268201A/en
Publication of JPH0435883B2 publication Critical patent/JPH0435883B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、誘電体としての特性と共にバリス
タとしての電圧非直線特性を備えた磁器とその製
造方法に関する。 [従来の技術] SrTiO3系の焼結体からなる磁器は、典型的な
粒界利用型の電子材料用セラミクスであり、見か
け上の高い誘電率と共に、電圧非直線特性、いわ
ゆるバリスタ特性を有している。 従来用いられていたこれらの磁器は、SrTiO3
系磁器材料にBi2O3,Cu2O,PbO,ZnO等の微
量な金属酸化物を添加して混合したものを、焼結
させたものである。この磁器は結晶粒界に上記金
属酸化物が析出し、N型半導体磁器としての構造
を呈している。 [発明が解決しようとする問題点] しかし、上記の静電容量を有するバリスタは、
誘電損失(tanδ)が大きく、また熱衝撃に対して
弱く、半田付けの際に結晶板にクラツクが生じや
すいという欠点がある。これは結晶粒界に拡散し
た金属或はそれらの酸化物が上記金属酸化物の層
と異質な第二の層を形成することが原因と考えら
れる。 この発明は上記従来の問題点を解決し、大きな
静電容量と低いバリスタ電圧が得られながら、熱
衝撃に強い磁器とその製造方法を提供することを
目的とする。 [問題を解決するための手段] 即ち、第一の発明による静電容量を有するバリ
スタ特性を有する誘電体磁器は、微量の金属酸化
物を添加して半導体化させたSrTiO3系磁器結晶
の粒界付近に、KイオンまたはAgイオンの少な
くとも何れか一方を拡散させたものである。 また、第二の発明による上記誘電体磁器の製造
方法は、微量の金属酸化物が添加されたSrTiO3
系磁器材料を焼結させて得られた焼結体の表面
に、KまたはAgの化合物を塗布し、熱処理する
ものである。 [実施例] 次に、この発明の具体的な実施例について説明
する。 (Sr1-XMX)(Ti1-YM′Y)O3(但し、M=Ca,
Mg,Pb,Ba,M′=Sn,Zr)のXおよびYがそ
れぞれ第1表の第一成分の各欄の値になるように
純度99.0%以上のSrCO3,TiO2および上記M,
M′の炭酸塩、シユウ酸塩、硝酸塩若しくは酸化
物をそれぞれ秤量配合した。そして、これをボー
ルミルに15時間かけて攪拌し、乾燥した後、粉砕
した。さらに、粉砕後の粉末を1200℃で3時間焼
成し、再び粉砕した。これにより、第一成分が得
られる。 この第一成分の100モル部(一定)に対し、純
度99.0%以上のNb2O5,Ta2O5,Nd2O3,Dy2O3
Y2O3,La2O3,CeO3から選択された一種以上の
金属酸化物(第二成分)の粉末と、純度99.0%以
上のSiO2,Al2O3,MnO2から選択された1種以
上の金属酸化物(第四成分)の粉末とを、それぞ
れ第1表に示す比率になるように秤量した。 次にこれらの粉末をボールミルにより20時間攪
拌し、混合した。さらに有機結合材として上記混
合物に対して10〜15重量%のポリビニルアルコー
ルを混入し、造粒した後、約1000Kg/cm2の圧力で
直径13mm、厚さ1.2mmの円板に加圧成型した。こ
れらの円板をN2ガス(95容積%)とH2ガス(5
容積%)とからなる還元雰囲気に於て、約1400℃
の温度で3時間焼成し、直径10mm、厚さ0.8mmの
半導体磁器を得た。 次にこの磁器の表面にKもしくはAgのフツ化
物あるいは酸化物を1.0mg/cm2の割合で塗布し、
大気中において、800〜1250℃の温度で30分間熱
処理し、AgもしくはKのイオンを半導体磁器の
中に拡散させた。 次に上記磁器の特性を調べるために、第1図で
示すように、磁器1の両主面に公知の銀ペースト
を塗布し、これを800℃の温度で焼き付け、直径
約7mmの銀電極2,2を形成し、バリスタを構成
した。そして、このバリスタについて、バリスタ
電圧V1、非直線係数α、バリスタ電圧V1の温度
変化率ΔV1、静電容量C及び誘電損失tanδをそれ
ぞれ測定し、さらにハンダ耐熱性の試験を実施し
た。その結果を第2表に示す。 バリスタ電圧V1は第2図に示す回路を使用し
て測定した。即ち直流定電流電源Eにバリスタ
VRを接続し、また直流定電流電源Eとバリスタ
VRとの間に電流計Aを接続し、バリスタVRに
並列に電圧計Vを接続した。そして、バリスタ
VRだけを20℃の温度に保たれた恒温槽Cに収納
してバリスタVRに1mAの電流I1を流し、その時
の電圧を測定してバリスタ電圧V1とした。 非直線係数αは上記第2図の装置を使用し、バ
リスタ電圧V1の他にバリスタVRに10mAの電流
I10を流した時の印加電圧V10を測定し次式により
求めた。 α=log(I0/I1)/log(V10/V1)=1/log(V10
/V1) 温度変化率ΔV1は第2図の装置に於て、恒温槽
C内の温度を−40℃〜+125℃の範囲で変化させ、
各温度T(℃)においてバリスタVRに1mAの電
流を流した時のバリスタ電圧VTを測定し、これ
が20℃のときのV1に対しどの程度変化したかを
次式で求めた。なお、各表には前記温度範囲に於
ける上記ΔV1の最大値を示した。 ΔV1V1T−V1/V1×100/1−20(%/℃) ハンダ耐熱試験は、上記バリスタを80℃の温度
で2分間予熱した後、これを270℃の共晶ハンダ
に3秒間浸漬し、クラツクの有無を目視検査する
することで行つた。 なお、第1表及び第2表において、試料番号55
以降は本実施例に対する比較例である。第1表の
各欄に示す通り、これら比較例では、上記実施例
で使用したKFやAgFに代えて、Bi2O3,CuO,
PbO等を使用した。
[Industrial Field of Application] The present invention relates to a porcelain having characteristics as a dielectric and voltage nonlinear characteristics as a varistor, and a method for manufacturing the same. [Prior art] Porcelain made of SrTiO 3 -based sintered body is a typical ceramic for electronic materials that utilizes grain boundaries, and has an apparent high dielectric constant as well as voltage nonlinear characteristics, so-called varistor characteristics. are doing. These conventionally used porcelains are made of SrTiO 3
It is made by sintering a mixture of ceramic materials with trace amounts of metal oxides such as Bi 2 O 3 , Cu 2 O, PbO, and ZnO added. This porcelain has the structure of N-type semiconductor porcelain, with the metal oxide precipitated at the grain boundaries. [Problems to be solved by the invention] However, the varistor having the above capacitance,
Disadvantages include large dielectric loss (tan δ), vulnerability to thermal shock, and the tendency for cracks to occur in the crystal plate during soldering. This is considered to be because the metals or their oxides diffused into the grain boundaries form a second layer that is different from the metal oxide layer. It is an object of the present invention to solve the above-mentioned conventional problems and to provide a porcelain that is resistant to thermal shock while providing a large capacitance and a low varistor voltage, and a method for manufacturing the same. [Means for Solving the Problem] That is, the dielectric ceramic having varistor characteristics with capacitance according to the first invention is made of SrTiO 3 ceramic crystal grains made into a semiconductor by adding a trace amount of metal oxide. At least either K ions or Ag ions are diffused near the field. Further, the method for manufacturing the dielectric ceramic according to the second invention includes SrTiO 3 to which a trace amount of metal oxide is added.
A K or Ag compound is applied to the surface of a sintered body obtained by sintering ceramic materials, and then heat treated. [Example] Next, a specific example of the present invention will be described. (Sr 1-X M X ) (Ti 1-Y M′ Y ) O 3 (M=Ca,
SrCO 3 , TiO 2 with a purity of 99.0% or more and the above M,
The carbonate, oxalate, nitrate, or oxide of M' was weighed and blended. This was then stirred in a ball mill for 15 hours, dried, and then ground. Furthermore, the powder after pulverization was calcined at 1200°C for 3 hours and pulverized again. This yields the first component. For 100 mole parts (constant) of this first component, Nb 2 O 5 , Ta 2 O 5 , Nd 2 O 3 , Dy 2 O 3 , with a purity of 99.0% or more,
Powder of one or more metal oxides (second component) selected from Y 2 O 3 , La 2 O 3 , CeO 3 and SiO 2 , Al 2 O 3 , MnO 2 with a purity of 99.0% or more and powder of one or more metal oxides (fourth component) were weighed so as to have the ratios shown in Table 1. Next, these powders were stirred and mixed using a ball mill for 20 hours. Further, 10 to 15% by weight of polyvinyl alcohol was mixed into the above mixture as an organic binder, and after granulation, the mixture was pressure-molded into a disk with a diameter of 13 mm and a thickness of 1.2 mm at a pressure of approximately 1000 Kg/ cm2. . These discs were heated with N2 gas (95% by volume) and H2 gas (5% by volume).
1400℃ in a reducing atmosphere consisting of
Semiconductor porcelain with a diameter of 10 mm and a thickness of 0.8 mm was obtained by firing at a temperature of 3 hours. Next, a fluoride or oxide of K or Ag is applied to the surface of this porcelain at a rate of 1.0 mg/cm 2 .
Heat treatment was performed in the air at a temperature of 800 to 1250°C for 30 minutes to diffuse Ag or K ions into the semiconductor ceramic. Next, in order to investigate the characteristics of the above-mentioned porcelain, as shown in Fig. 1, a known silver paste was applied to both main surfaces of the porcelain 1 and baked at a temperature of 800°C, and a silver electrode 2 with a diameter of about 7 mm was applied. , 2 were formed to constitute a varistor. Then, for this varistor, the varistor voltage V 1 , the nonlinear coefficient α, the temperature change rate ΔV 1 of the varistor voltage V 1 , the capacitance C, and the dielectric loss tan δ were measured, and a solder heat resistance test was conducted. The results are shown in Table 2. The varistor voltage V 1 was measured using the circuit shown in FIG. In other words, a varistor is connected to the DC constant current power source E.
Connect VR, and also connect DC constant current power supply E and varistor.
An ammeter A was connected between VR and a voltmeter V was connected in parallel to the varistor VR. And the barista
Only the VR was stored in a thermostatic chamber C maintained at a temperature of 20°C, a current I1 of 1 mA was passed through the varistor VR, and the voltage at that time was measured and defined as the varistor voltage V1 . To calculate the nonlinear coefficient α, use the device shown in Figure 2 above, and in addition to the varistor voltage V 1, apply a current of 10 mA to the varistor VR.
The applied voltage V 10 when I 10 was applied was measured and calculated using the following formula. α=log(I 0 /I 1 )/log(V 10 /V 1 )=1/log(V 10
/V 1 ) The temperature change rate ΔV 1 is determined by changing the temperature in the constant temperature chamber C in the range of -40℃ to +125℃ in the apparatus shown in Fig. 2.
The varistor voltage V T was measured when a current of 1 mA was passed through the varistor VR at each temperature T (°C), and the extent to which this changed from V 1 at 20°C was calculated using the following equation. Note that each table shows the maximum value of ΔV 1 in the above temperature range. ΔV 1 V1T-V1/V1×100/1-20 (%/℃) For the solder heat resistance test, the above varistor was preheated at 80℃ for 2 minutes, and then immersed in eutectic solder at 270℃ for 3 seconds. This was done by visually inspecting for the presence of cracks. In addition, in Tables 1 and 2, sample number 55
The following are comparative examples for this example. As shown in each column of Table 1, in these comparative examples, Bi 2 O 3 , CuO,
PbO etc. were used.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 以上の結果が示すように、上記各表において試
料NO.1〜54で示すこの発明の実施例によるバリ
スタは、試料NO.55以降の比較例と同等或はそれ
以下のバリスタ電圧V1が得られ、かつバリスタ
電圧V1の温度変化率ΔV1,静電容量C、誘電損
失tanδ及びハンダ耐熱性では顕著な特性の改善が
認められる。 [発明の効果] 以上のことから、この発明による磁器を用いて
構成されたバリスタは、従来のものと同等或はそ
れ以下のバリスタ電圧V1が得られながら、バリ
スタ電圧V1の温度変化率ΔV1,静電容量C、誘
電損失tanδ及びハンダ耐熱性について、より優れ
た特性が得られる。
[Table] As shown by the above results, the varistors according to the embodiments of the present invention shown as samples No. 1 to 54 in the above tables have a varistor voltage V equal to or lower than that of the comparative examples after sample No. 55. 1 was obtained, and remarkable improvements in characteristics were observed in the temperature change rate ΔV 1 of the varistor voltage V 1 , capacitance C, dielectric loss tan δ, and solder heat resistance. [Effects of the Invention] From the above, the varistor constructed using the porcelain according to the present invention can obtain a varistor voltage V 1 that is equal to or lower than that of the conventional varistor, while the temperature change rate of the varistor voltage V 1 is lower than that of the conventional varistor. More excellent characteristics can be obtained in terms of ΔV 1 , capacitance C, dielectric loss tan δ, and solder heat resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に於て試験に供した
バリスタの構造を示す半断面斜視図、第2図は同
バリスタの電気特性試験を行つた装置の回路図で
ある。
FIG. 1 is a half-sectional perspective view showing the structure of a varistor tested in an embodiment of the present invention, and FIG. 2 is a circuit diagram of an apparatus used to test the electrical characteristics of the varistor.

Claims (1)

【特許請求の範囲】 1 微量の金属酸化物を添加して半導体化させた
SrTiO3系焼結体からなるバリスタ特性を有する
誘電体磁器に於て、磁器結晶の粒界付近にKイオ
ンまたはAgイオンの少なくとも何れか一方を拡
散させたことを特徴とするバリスタ特性を有する
誘電体磁器。 2 KイオンまたはAgイオンが結晶粒子の粒界
付近に約100Åの厚さの層状に拡散している特許
請求の範囲第1項記載の誘電体磁器。 3 微量の金属酸化物が添加され、半導体化され
たSrTiO3系磁器材料を焼結させてバリスタ特性
を有する半導体磁器を製造する方法に於て、焼結
体の表面にKまたはAgの化合物を塗布し、熱処
理することを特徴とするバリスタ特性を有する誘
電体磁器の製造方法。 4 KまたはAgの化合物がこれらの弗化物であ
る特許請求の範囲第3項に記載の誘電体磁器の製
造方法。 5 KまたはAgの化合物を塗布した後の熱処理
温度が800〜1200℃である特許請求の範囲第3項
または第4項記載の誘電体磁器の製造方法。
[Claims] 1 Made into a semiconductor by adding a trace amount of metal oxide
In a dielectric ceramic having varistor characteristics made of a SrTiO 3 -based sintered body, the dielectric material having varistor characteristics is characterized in that at least either K ions or Ag ions are diffused near the grain boundaries of the ceramic crystal. Body porcelain. 2. The dielectric ceramic according to claim 1, wherein K ions or Ag ions are diffused in a layer with a thickness of about 100 Å near the grain boundaries of crystal grains. 3. In a method for manufacturing semiconductor porcelain having varistor characteristics by sintering SrTiO 3 ceramic material which has been made into a semiconductor by adding a trace amount of metal oxide, a compound of K or Ag is added to the surface of the sintered body. A method for manufacturing dielectric porcelain having varistor properties, which comprises coating and heat-treating. 4. The method for producing dielectric ceramics according to claim 3, wherein the compound of 4 K or Ag is a fluoride thereof. 5. The method for producing dielectric ceramic according to claim 3 or 4, wherein the heat treatment temperature after applying the 5 K or Ag compound is 800 to 1200°C.
JP62102542A 1987-04-25 1987-04-25 Dielectric porcelain having varistor characteristic and manufacture thereof Granted JPS63268201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62102542A JPS63268201A (en) 1987-04-25 1987-04-25 Dielectric porcelain having varistor characteristic and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62102542A JPS63268201A (en) 1987-04-25 1987-04-25 Dielectric porcelain having varistor characteristic and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS63268201A JPS63268201A (en) 1988-11-04
JPH0435883B2 true JPH0435883B2 (en) 1992-06-12

Family

ID=14330141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62102542A Granted JPS63268201A (en) 1987-04-25 1987-04-25 Dielectric porcelain having varistor characteristic and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63268201A (en)

Also Published As

Publication number Publication date
JPS63268201A (en) 1988-11-04

Similar Documents

Publication Publication Date Title
EP0169636B1 (en) Low-temperature-fired dielectric ceramic composition with a flat temperature characteristic
JPS6257245B2 (en)
US5166759A (en) Semiconductor-type laminated ceramic capacitor with a grain boundary-insulated structure
JPH02155115A (en) Nonreductive dielectric porcelain composition
JPS5935402A (en) Semiconductor porcelain substance having voltage dependent nonlinear resistance property
JPH0226775B2 (en)
US4308571A (en) Low temperature-sinterable dielectric composition and thick film capacitor using the same
JPH07309661A (en) Ceramic composition, sintering method, sintering ceramic body and multilayer capacitor
JPH0435884B2 (en)
GB2027008A (en) Ceramic Dielectrics
JPH0435883B2 (en)
EP0200484B1 (en) Ultralow fire ceramic composition
JPS6257241B2 (en)
JPH0547589A (en) Intergranular insulation type semiconductor ceramic capacitor
JP2616372B2 (en) Method for manufacturing semiconductor porcelain element
JP2725357B2 (en) Ceramic capacitor and method of manufacturing the same
JP2707706B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JP4183100B2 (en) Voltage Nonlinear Resistor Porcelain Composition
JP2990627B2 (en) Varistor manufacturing method
JP2555791B2 (en) Porcelain composition and method for producing the same
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JPH0142606B2 (en)
JP2630156B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPS61251561A (en) Dielectric ceramic composition and manufacture