JPH04358745A - Cooling device for internal combustion engine - Google Patents
Cooling device for internal combustion engineInfo
- Publication number
- JPH04358745A JPH04358745A JP13305191A JP13305191A JPH04358745A JP H04358745 A JPH04358745 A JP H04358745A JP 13305191 A JP13305191 A JP 13305191A JP 13305191 A JP13305191 A JP 13305191A JP H04358745 A JPH04358745 A JP H04358745A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- cylinder liner
- annular grooves
- internal combustion
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 23
- 238000001816 cooling Methods 0.000 title claims abstract description 15
- 239000003507 refrigerant Substances 0.000 claims abstract description 76
- 238000004891 communication Methods 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000005452 bending Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は内燃機関の冷却装置に係
り、特にシリンダライナ外周に環状溝を設けて冷媒を流
し、内燃機関の冷却を行なう冷却装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system for an internal combustion engine, and more particularly to a cooling system that cools an internal combustion engine by providing an annular groove on the outer periphery of a cylinder liner to allow a refrigerant to flow therethrough.
【0002】0002
【従来の技術】数個のシリンダが配置されたシリンダブ
ロックと、そのシリンダブロック上面に位置し、下面に
へこみを有するシンリダヘッドとは、内燃機関の燃焼室
を形造っている。また、シリンダブロックのボア部内周
面にシリンダライナ外周面が嵌装される。従って、機関
作動により燃焼室で発生した高温の熱はシリンダブロッ
クやシリンダヘッドを通じてシリンダライナ等へ伝達さ
れる。2. Description of the Related Art A cylinder block in which several cylinders are arranged and a cylinder head located on the upper surface of the cylinder block and having a recess on the lower surface form a combustion chamber of an internal combustion engine. Further, the outer circumferential surface of the cylinder liner is fitted onto the inner circumferential surface of the bore portion of the cylinder block. Therefore, high-temperature heat generated in the combustion chamber due to engine operation is transferred to the cylinder liner and the like through the cylinder block and cylinder head.
【0003】そこで、シリンダライナの壁面を冷却する
と共に、冷媒の沸騰を防止するために、シリンダブロッ
クのボア部内周面とシリンダライナ外周面との間に冷媒
通路を形成し、その冷媒通路に冷媒を流すようにした所
謂グルーブクーリングによる内燃機関の冷却装置が従来
より知られており、その種の冷却装置として本出願人は
先に図3に示す如き構成のものを提案した(特願平3−
51701号)。Therefore, in order to cool the wall surface of the cylinder liner and prevent the refrigerant from boiling, a refrigerant passage is formed between the inner peripheral surface of the cylinder block bore and the outer peripheral surface of the cylinder liner, and the refrigerant is inserted into the refrigerant passage. Cooling devices for internal combustion engines using so-called groove cooling have been known in the past, and the present applicant previously proposed a cooling device of this type as shown in FIG. −
No. 51701).
【0004】図3において、シリンダブロック1に嵌装
されるシリンダライナ2の外周面には、断面矩形状の環
状溝3がシリンダライナ2の軸方向に複数個,等間隔で
形成されている。この環状溝3はシリンダライナ2をシ
リンダブロック1のボア部内に嵌装したとき、ボア部の
内周面4との間で環状の冷媒通路を形成する。In FIG. 3, a plurality of annular grooves 3 having a rectangular cross section are formed at equal intervals in the axial direction of the cylinder liner 2 on the outer peripheral surface of the cylinder liner 2 fitted into the cylinder block 1. When the cylinder liner 2 is fitted into the bore of the cylinder block 1, the annular groove 3 forms an annular refrigerant passage with the inner peripheral surface 4 of the bore.
【0005】また、シリンダライナ2とシリンダブロッ
ク1の互いに対向する位置で、かつ、シリンダライナ2
の軸方向(縦方向)に、上記の複数の環状溝3を連通す
るように縦溝5aと5b,6aと6bが形成されている
。また、シリンダブロック1には縦溝5a,5bに夫々
連通した流入口7a,7bが形成され、縦溝6a,6b
に夫々連通した流出口8a,8bが形成されている。[0005] Furthermore, at positions where the cylinder liner 2 and the cylinder block 1 face each other, and where the cylinder liner 2 and the cylinder block 1
Vertical grooves 5a and 5b, 6a and 6b are formed in the axial direction (vertical direction) so as to communicate the plurality of annular grooves 3. Further, the cylinder block 1 is formed with inflow ports 7a and 7b that communicate with the vertical grooves 5a and 5b, respectively, and the vertical grooves 6a and 6b.
Outlets 8a and 8b are formed which communicate with each other, respectively.
【0006】冷媒圧送用のポンプ9は冷媒を2分岐して
送出し、一方は冷媒圧力を大としてフィルタ10を通し
て流入口7aに供給され、また他方は冷媒圧力を小とし
て直接流入口7bに供給される。流入口7aに供給され
る冷媒は縦溝5aを通ってシリンダ上部の環状溝3に分
配されてシリンダライナ2の外周を通った後、縦溝6a
を通って流出口8aから流出する。流入口7bに供給さ
れる冷媒は縦溝5bを通ってシリンダ下部の環状溝3に
分配されてシリンダライナ2の外周を通った後、縦溝6
bを通って流出口8bから流出する。流出口8a,8b
から流出した冷媒は合流されラジエータ(図示せず)を
通してポンプ9に循環される。The refrigerant pump 9 divides the refrigerant into two branches and sends out the refrigerant, one of which is supplied to the inlet 7a through the filter 10 with a high refrigerant pressure, and the other is supplied directly to the inlet 7b with a low refrigerant pressure. be done. The refrigerant supplied to the inlet 7a passes through the vertical groove 5a, is distributed to the annular groove 3 at the top of the cylinder, passes through the outer periphery of the cylinder liner 2, and then passes through the vertical groove 6a.
It flows out through the outlet 8a. The refrigerant supplied to the inlet 7b passes through the vertical groove 5b, is distributed to the annular groove 3 at the bottom of the cylinder, passes through the outer periphery of the cylinder liner 2, and then passes through the vertical groove 6.
b and flows out from the outlet 8b. Outlet 8a, 8b
The refrigerant flowing out is combined and circulated to the pump 9 through a radiator (not shown).
【0007】上記の提案装置によれば燃焼室で発生し、
シリンダヘッドからシリンダライナ2へ伝達される熱を
、シリンダライナ2の壁面を冷却することにより、冷却
することができる。ここで、シリンダライナ2の壁面は
、燃焼室に最も近い、図3の上部の温度が最も高く、下
部に行くに従って温度が低下する入熱分布を示す。According to the above-mentioned proposed device, the combustion chamber generates
The heat transferred from the cylinder head to the cylinder liner 2 can be cooled by cooling the wall surface of the cylinder liner 2. Here, the wall surface of the cylinder liner 2 shows a heat input distribution in which the temperature is highest in the upper part of FIG. 3, which is closest to the combustion chamber, and the temperature decreases as it goes to the lower part.
【0008】従って、冷媒の流量をこの入熱分布に見合
って図4にcで示す如く、複数の環状溝3のうち、燃焼
室に最も近い環状溝3の流量を最大とし、以下燃焼室か
ら遠ざかる程、環状溝3の流量を小とすることがシリン
ダライナ2の壁面を均一に冷却する上で必要とされる。Therefore, the flow rate of the refrigerant is adjusted to match this heat input distribution, and the flow rate of the annular groove 3 closest to the combustion chamber is set to be the maximum among the plurality of annular grooves 3, as shown by c in FIG. The further away from the cylinder liner 2, the smaller the flow rate in the annular groove 3 becomes necessary in order to uniformly cool the wall surface of the cylinder liner 2.
【0009】そこで、上記の提案装置では、縦溝5a,
5b,6a,6bの径を所定値以上に設定すると、図4
にaで示す如く複数の環状溝3間の冷媒流量分布は一定
であるが、縦溝5a,5b,6a,6bの径を絞ること
により、同図に破線bで示す如く複数の環状溝3のうち
上部にある環状溝3の流量を他より相対的に大とするこ
とかでき、前記入熱分布cにやや近似させることができ
る。Therefore, in the above proposed device, the vertical grooves 5a,
When the diameters of 5b, 6a, and 6b are set to a predetermined value or more, Fig. 4
Although the refrigerant flow rate distribution between the plurality of annular grooves 3 is constant as shown by a in FIG. The flow rate of the annular groove 3 in the upper part can be made relatively larger than that of the other parts, and the heat input distribution c can be approximated somewhat.
【0010】0010
【発明が解決しようとする課題】しかるに、上記の提案
装置では、図4に示す如く、最上部の環状溝3とそれよ
りやや下側の環状溝3との間の流量の差が大きすぎるた
め、流量分布を入熱分布cに合致させるのが困難である
。この原因は、冷媒流入口7aと縦溝5aとの連接部が
直交しているため、冷媒流入口7aの延長線上にある最
上部の環状溝3に対しては、冷媒流入口7aにより導入
された冷媒が流路を曲げられることなく直進して流入す
るのに対し、最上部より2番目以降の下側の環状溝3に
対しては冷媒流入口7aにより導入された冷媒が流路を
直角に曲げられる結果、曲げによる圧力損失が大きく、
冷媒が流れにくくなるからである。従って、上記の冷却
装置では、冷媒の流れの主流は図3中、矢印に示す如く
になる。However, in the above proposed device, as shown in FIG. 4, the difference in flow rate between the annular groove 3 at the top and the annular groove 3 slightly below it is too large. , it is difficult to match the flow rate distribution to the heat input distribution c. The reason for this is that the connecting part between the refrigerant inlet 7a and the vertical groove 5a is perpendicular to each other, so that the refrigerant is not introduced by the refrigerant inlet 7a to the annular groove 3 at the top, which is on the extension of the refrigerant inlet 7a. In contrast, the refrigerant introduced through the refrigerant inlet 7a flows through the flow path at right angles to the second and subsequent lower annular grooves 3 from the top. As a result, the pressure loss due to bending is large,
This is because the refrigerant becomes difficult to flow. Therefore, in the above cooling device, the main flow of the refrigerant is as shown by the arrow in FIG.
【0011】本発明は上記の点に鑑みなされたもので、
冷媒流入口の曲がりによる管路抵抗を小さくすることに
より、上記の課題を解決した内燃機関の冷却装置を提供
することを目的とする。The present invention has been made in view of the above points, and
It is an object of the present invention to provide a cooling device for an internal combustion engine that solves the above-mentioned problems by reducing pipe resistance due to bending of a refrigerant inlet.
【0012】0012
【課題を解決するための手段】シリンダライナの外周に
シリンダライナの周方向に沿って形成された環状溝を、
シリンダライナの軸方向に複数設け、前記複数の環状溝
の間を前記シリンダライナの軸方向に延在し、かつ、互
いに異なる位置に設けられた第1及び第2の縦溝により
夫々連通し、冷媒流入口及び冷媒流出口を前記第1及び
第2の縦溝に角度をもって連通されており、前記冷媒流
入口と前記第1の縦溝との連通接続部のうち、少なくと
も前記冷媒か進行する側の連接接続部をなだらかに形成
してなるものである。[Means for solving the problem] An annular groove formed along the circumferential direction of the cylinder liner on the outer periphery of the cylinder liner,
A plurality of annular grooves are provided in the axial direction of the cylinder liner, and each of the plurality of annular grooves extends in the axial direction of the cylinder liner and communicates with each other by first and second longitudinal grooves provided at different positions, A refrigerant inlet and a refrigerant outlet are communicated with the first and second longitudinal grooves at an angle, and at least the refrigerant flows through the communication connection between the refrigerant inlet and the first longitudinal groove. The side connecting portions are formed in a gentle manner.
【0013】[0013]
【作用】前記流入口と前記第1の縦溝との連通接続部の
うち、少なくとも前記冷媒が進行する側の連接接続部を
なだらかに形成してあるため、冷媒流入口より流出した
冷媒が第1の縦溝を通して前記複数の環状溝の夫々に分
配供給されるに際し、冷媒は流路を管路抵抗少なく曲げ
られて、燃焼室に最も近接した一の環状溝以外の各環状
溝にも夫々流入される。[Operation] Among the communication connection portions between the inflow port and the first vertical groove, at least the connection portion on the side where the refrigerant advances is formed smoothly, so that the refrigerant flowing out from the refrigerant inflow port flows into the first vertical groove. When the refrigerant is distributed and supplied to each of the plurality of annular grooves through the first vertical groove, the flow path is bent with less pipe resistance, and the refrigerant is also distributed to each of the annular grooves other than the first annular groove that is closest to the combustion chamber. There will be an influx.
【0014】[0014]
【実施例】図1は本発明になる内燃機関の冷却装置の一
実施例の概略構造図を示し、同図(A)は平面図、同図
(B)は同図(A)のB−B線に沿う断面図,同図(C
)は同図(A)のC−C線に沿う断面図である。図1(
A)〜(C)において、シリンダブロック11に嵌装さ
れるシリンダライナ12の外周面12aには、シリンダ
ライナ12の周方向に沿って形成された環状溝13が、
シリンダライナ12の軸方向に複数設けられている。ま
た、シリンダブロック11内周部とシリンダライナ12
の外周面には、図1(A),(B)に示す如く、複数の
環状溝13の間をシリンダライナ12の軸方向に延在し
、かつ、互いに対向する位置に縦溝14及び15が形成
されている。従って、この縦溝14及び15により、複
数の環状溝13が互いに連通される。また、前記環状溝
13とシリンダブロック12のボア部内周面16とによ
り、図1(C)に示す如く環状の冷媒通路が形成される
ことになる。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic structural diagram of an embodiment of a cooling system for an internal combustion engine according to the present invention, in which (A) is a plan view and (B) is a B- Cross-sectional view along line B, same figure (C
) is a sectional view taken along line CC in FIG. Figure 1 (
In A) to (C), an annular groove 13 formed along the circumferential direction of the cylinder liner 12 is formed on the outer peripheral surface 12a of the cylinder liner 12 fitted to the cylinder block 11.
A plurality of them are provided in the axial direction of the cylinder liner 12. In addition, the inner peripheral part of the cylinder block 11 and the cylinder liner 12
As shown in FIGS. 1A and 1B, vertical grooves 14 and 15 are formed on the outer circumferential surface of the cylinder liner 12, extending in the axial direction of the cylinder liner 12 between the plurality of annular grooves 13, and at positions facing each other. is formed. Therefore, the longitudinal grooves 14 and 15 allow the plurality of annular grooves 13 to communicate with each other. Further, the annular groove 13 and the inner circumferential surface 16 of the bore portion of the cylinder block 12 form an annular refrigerant passage as shown in FIG. 1(C).
【0015】また、冷媒流入口17は縦溝14に連通さ
れ、冷媒流出口18は縦溝15に連通されている。冷媒
流入口17と冷媒流出口18は、図1(B)に示す如く
それらの延長線上に、環状溝13のうち内燃機関の燃焼
室に最も近接した環状溝131 が位置するように配設
されている。Further, the refrigerant inlet 17 communicates with the vertical groove 14, and the refrigerant outlet 18 communicates with the vertical groove 15. The refrigerant inlet 17 and the refrigerant outlet 18 are arranged so that the annular groove 131 closest to the combustion chamber of the internal combustion engine is located on the extension line of the refrigerant inlet 17 and the refrigerant outlet 18, as shown in FIG. 1(B). ing.
【0016】更に本実施例では、冷媒流入口17と縦溝
14との連通接続部のうぢ、冷媒が進行する側の連接接
続部が、図1(B)に19で示す如く、円弧状に形成さ
れている。すなわち、従来はこの連通接続部が直角であ
ったのに対し、本実施例ではアールがつけられている。Furthermore, in this embodiment, the connecting portion between the refrigerant inlet 17 and the vertical groove 14 on the side where the refrigerant advances has an arc shape as shown at 19 in FIG. 1(B). is formed. That is, whereas in the past, this communication connection part was a right angle, in this embodiment it is rounded.
【0017】次に本実施例の作用について説明する。冷
媒流入口17に、ホンプ(図示せず)により圧送された
冷媒が流入する。この冷媒は図1(B)にXで示す如く
冷媒流入口17から縦溝14内を進む一方、環状溝13
の夫々に分岐して流入される。冷媒は環状溝13内を図
1(B)にYで示す方向へ夫々進み、シリンダライナ1
2の外周面に沿って流れた後縦溝15に流入し、ここで
合流する。縦溝15で合流した冷媒は図1(B)にZで
示す如く、まず上方向に進み、その後冷媒流出口18に
導かれて流出する。Next, the operation of this embodiment will be explained. A refrigerant pumped by a pump (not shown) flows into the refrigerant inlet 17 . This refrigerant flows from the refrigerant inlet 17 into the vertical groove 14 as shown by X in FIG.
The water is branched into each of the following. The refrigerant travels inside the annular groove 13 in the direction indicated by Y in FIG.
After flowing along the outer circumferential surface of 2, it flows into the vertical groove 15, where it merges. The refrigerant that merges in the vertical groove 15 first advances upward, as shown by Z in FIG. 1(B), and then is guided to the refrigerant outlet 18 and flows out.
【0018】ここで、本実施例によれば、冷媒流入口1
7に流入した冷媒は、燃焼室に最も近い位置にある環状
溝131 に流入すると共に、図1(B)に19で示し
た円弧部により、従来に比べて大幅に管路抵抗少なく燃
焼室から2番目以降の環状溝にも流れるため、2番目以
降の環状溝に流れる流量が従来より増加する。According to this embodiment, the refrigerant inlet 1
The refrigerant flowing into 7 flows into the annular groove 131 located closest to the combustion chamber, and due to the circular arc section 19 shown in Fig. 1(B), the refrigerant flows from the combustion chamber with significantly less pipe resistance than in the past. Since it also flows into the second and subsequent annular grooves, the flow rate flowing into the second and subsequent annular grooves increases compared to the conventional method.
【0019】従って、本実施例によれば、複数の環状溝
13に流れる冷媒の流量分布を、図4にcで示した入熱
分布に略一致させることができ、従来に比べて均一な冷
却ができる。Therefore, according to this embodiment, the flow rate distribution of the refrigerant flowing through the plurality of annular grooves 13 can be made to substantially match the heat input distribution shown by c in FIG. Can be done.
【0020】図2は本発明装置の他の実施例の概略断面
図を示す。同図中、図1と同一構成部分には同一符号を
付し、その説明を省略する。図2において、冷媒流入口
21は縦溝22と連通する一方、その延長線上に最も燃
焼室に近接した環状溝が位置する高さに配設される点、
並びに複数の環状溝の間を縦溝22が連通する点は前記
実施例と同一であるが、冷媒流入口21と縦溝22との
連通接続部の形状が前記実施例と異なる。FIG. 2 shows a schematic sectional view of another embodiment of the device according to the invention. In the figure, the same components as those in FIG. In FIG. 2, the refrigerant inlet 21 communicates with the vertical groove 22, and is arranged at a height where the annular groove closest to the combustion chamber is located on the extension line thereof;
Also, the point that the vertical grooves 22 communicate between the plurality of annular grooves is the same as in the previous embodiment, but the shape of the communication connection between the refrigerant inlet 21 and the vertical grooves 22 is different from the previous embodiment.
【0021】すなわち、本実施例では、冷媒流入口21
と縦溝22との連通接続部のうち、冷媒が進行する側(
図中、下側)の連通接続部に傾斜部23を形成し、かつ
、反対側(図中、上側)の連通接続部にも同様の傾斜部
24を形成したものである。これにより、本実施例の場
合も、冷媒流入口21と縦溝22との連通接続部での流
路の曲げによる圧力降下を防止することができ、環状溝
間の冷媒流量分配の適正化を図ることができる。That is, in this embodiment, the refrigerant inlet 21
Of the communication connection between the vertical groove 22 and the vertical groove 22, the side where the refrigerant advances (
A sloped portion 23 is formed at the communication connection portion on the lower side in the figure, and a similar sloped portion 24 is formed at the communication connection portion on the opposite side (upper side in the figure). As a result, in the case of this embodiment as well, it is possible to prevent a pressure drop due to bending of the flow path at the communication connection between the refrigerant inlet 21 and the vertical groove 22, and to optimize the refrigerant flow distribution between the annular grooves. can be achieved.
【0022】なお、縦溝14,15は互いに対向した位
置になくともよい。Note that the vertical grooves 14 and 15 do not have to be located opposite each other.
【0023】[0023]
【発明の効果】上述の如く、本発明によれば、冷媒を冷
媒流入口から流路を管路抵抗少なく曲げられて、燃焼室
に最も近接した一の環状溝以外の各環状溝にも流入でき
るようにしたため、従来に比べて燃焼室に最も近接した
一の環状溝以外の各環状溝の流量を増加させることがで
き、よって従来に比べてよりシリンダライナの入熱分布
に適合した冷媒流量分布を得ることができ、より均一に
シリンダライナ壁面を冷却することができる等の特長を
有するものである。As described above, according to the present invention, the flow path of the refrigerant from the refrigerant inlet can be bent with less pipe resistance, and the refrigerant can flow into each annular groove other than the one closest to the combustion chamber. As a result, the flow rate of each annular groove other than the one closest to the combustion chamber can be increased compared to the conventional method, which allows the refrigerant flow rate to match the heat input distribution of the cylinder liner more than before. It has features such as being able to obtain a uniform cooling distribution and cooling the cylinder liner wall surface more uniformly.
【図1】本発明装置の一実施例の概略部構成図である。FIG. 1 is a schematic block diagram of an embodiment of the device of the present invention.
【図2】本発明装置の他の実施例の概略断面図である。FIG. 2 is a schematic cross-sectional view of another embodiment of the device according to the invention.
【図3】従来装置の一例の断面図である。FIG. 3 is a sectional view of an example of a conventional device.
【図4】シリンダブロック入熱分布及び縦溝径に応じた
冷媒流量分布の説明図である。FIG. 4 is an explanatory diagram of the cylinder block heat input distribution and the refrigerant flow rate distribution according to the longitudinal groove diameter.
11 シリンダブロック 12 シリンダライナ 13 環状溝 14,15,22 縦溝 17,21 冷媒流入口 18 冷媒流出口 19 円弧部 23,24 傾斜部 11 Cylinder block 12 Cylinder liner 13 Annular groove 14, 15, 22 Vertical groove 17, 21 Refrigerant inlet 18 Refrigerant outlet 19 Arc part 23, 24 Slope part
Claims (1)
イナの周方向に沿って形成された環状溝を、該シリンダ
ライナの軸方向に複数設け、該複数の環状溝の間を前記
シリンダライナの軸方向に延在し、かつ、互いに異なる
位置に設けられた第1及び第2の縦溝により夫々連通し
、冷媒流入口及び冷媒流出口を前記第1及び第2の縦溝
に角度をもって連通されており、前記冷媒流入口と前記
第1の縦溝との連通接続部のうち、少なくとも前記冷媒
か進行する側の連接接続部をなだらかに形成してなるこ
とを特徴とする内燃機関の冷却装置。1. A plurality of annular grooves are provided in the axial direction of the cylinder liner on the outer periphery of the cylinder liner, and a plurality of annular grooves are formed along the circumferential direction of the cylinder liner in the axial direction of the cylinder liner. and communicated by first and second longitudinal grooves provided at different positions, respectively, and a refrigerant inlet and a refrigerant outlet are communicated with the first and second longitudinal grooves at an angle. A cooling device for an internal combustion engine, characterized in that, among the communication connection portions between the refrigerant inlet and the first vertical groove, at least the connection portion on the side where the refrigerant advances is formed in a gentle manner.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13305191A JPH04358745A (en) | 1991-06-04 | 1991-06-04 | Cooling device for internal combustion engine |
US07/888,653 US5251578A (en) | 1991-06-04 | 1992-05-27 | Cooling system for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13305191A JPH04358745A (en) | 1991-06-04 | 1991-06-04 | Cooling device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04358745A true JPH04358745A (en) | 1992-12-11 |
Family
ID=15095673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13305191A Pending JPH04358745A (en) | 1991-06-04 | 1991-06-04 | Cooling device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04358745A (en) |
-
1991
- 1991-06-04 JP JP13305191A patent/JPH04358745A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60190646A (en) | Cooling device for engine cylinder block | |
US3385273A (en) | Cooling system for internal combustion engine | |
US4493294A (en) | Cooling system of V-type internal combustion engine | |
US20030056738A1 (en) | Water cooling device of vertical multi-cylinder engine | |
JP3096090B2 (en) | Engine cooling device | |
US5251578A (en) | Cooling system for internal combustion engine | |
KR20180039777A (en) | Water jacket of cylinder head | |
JPH04358745A (en) | Cooling device for internal combustion engine | |
JPH10196449A (en) | Cylinder block of internal combustion engine | |
JPH04358746A (en) | Cooling device for internal combustion engine | |
JP2780518B2 (en) | Internal combustion engine cooling system | |
JPH05312037A (en) | Cylinder block of internal combustion engine | |
JPH0518318A (en) | Cooler of internal combustion engine | |
JPH05149134A (en) | Cooling device for internal combustion engine | |
JP2009127577A (en) | Cooling structure of piston for internal combustion engine | |
JPH0248658Y2 (en) | ||
JPH0128290Y2 (en) | ||
JP2789834B2 (en) | Internal combustion engine cooling system | |
JP2550436Y2 (en) | Engine cooling system | |
JP2982396B2 (en) | Internal combustion engine cooling system | |
JP2778371B2 (en) | Internal combustion engine cooling system | |
JP2893305B2 (en) | Internal combustion engine cooling system | |
JP3574060B2 (en) | Multi-cylinder engine cooling system | |
JPH0510204A (en) | Cooling device for internal combustion engine | |
JPH05288049A (en) | Piston cooling device for internal combustion engine |