JPH04358726A - Gas turbine for vehicle - Google Patents
Gas turbine for vehicleInfo
- Publication number
- JPH04358726A JPH04358726A JP23026291A JP23026291A JPH04358726A JP H04358726 A JPH04358726 A JP H04358726A JP 23026291 A JP23026291 A JP 23026291A JP 23026291 A JP23026291 A JP 23026291A JP H04358726 A JPH04358726 A JP H04358726A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- turbine
- exhaust gas
- gas
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract 2
- 241000937413 Axia Species 0.000 abstract 1
- 238000005192 partition Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
Landscapes
- Supercharger (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は車両に搭載されるガスタ
ービンの改良に関するものであるが、船舶用,定置用そ
の他のガスタービン全般にも適用できる。FIELD OF INDUSTRIAL APPLICATION This invention relates to the improvement of gas turbines mounted on vehicles, but can also be applied to general gas turbines such as marine, stationary, and other gas turbines.
【0002】0002
【従来の技術】図8は従来の車両用ガスタービンの一例
を示す斜視図、図9は図8中の熱交換器の詳細斜視図で
ある。2. Description of the Related Art FIG. 8 is a perspective view showing an example of a conventional gas turbine for a vehicle, and FIG. 9 is a detailed perspective view of a heat exchanger shown in FIG.
【0003】まず図8において、燃焼用空気はコンプレ
ッサ(01)で圧縮され熱交換器(02)で加熱された
後、燃焼器(03)へ導かれて、ここで別途供給された
燃料を燃焼させる。燃焼によって生じた高温ガスはコン
プレッサ駆動用のタービン(04)、車両駆動用のター
ビン(05)に導かれてこれらを回転させ、その排ガス
は上記熱交換器(02)で燃焼用空気を加熱し、自らは
冷却されて系外に排出される。First, in FIG. 8, combustion air is compressed by a compressor (01), heated by a heat exchanger (02), and then led to a combustor (03), where separately supplied fuel is combusted. let The high-temperature gas generated by combustion is guided to the compressor drive turbine (04) and the vehicle drive turbine (05) to rotate them, and the exhaust gas heats the combustion air in the heat exchanger (02). , itself is cooled and discharged from the system.
【0004】上記熱交換器(02)は、図9に示される
ように、プレート(020)を重ね合わせて低温空気と
高温排ガスの通路を構成し、プレート(020)を介し
て熱交換を行なう形式のものである。As shown in FIG. 9, the heat exchanger (02) comprises overlapping plates (020) to form a passage for low temperature air and high temperature exhaust gas, and performs heat exchange through the plates (020). It is of the form.
【0005】[0005]
【発明が解決しようとする課題】前記した従来の車両用
ガスタービンの熱交換器においては、プレート側方の空
気入口部から入った空気は直角に曲ってプレート間に入
り、プレートに沿って流れて加熱された後、再び直角に
曲ってプレート側方の空気出口部へ流出する。したがっ
て空気の円滑な流れが阻害されて損失を生じ、性能が低
下する。また空気出入口部の通路は熱交換に寄与しない
ので、伝熱面積を確保するためには容積を大きくする必
要があった。[Problems to be Solved by the Invention] In the conventional vehicle gas turbine heat exchanger described above, air enters from the air inlet on the side of the plate, bends at a right angle, enters between the plates, and flows along the plate. After being heated, it bends at right angles again and flows out to the air outlet on the side of the plate. Therefore, the smooth flow of air is obstructed, resulting in loss and reduced performance. Furthermore, since the air inlet/outlet passage does not contribute to heat exchange, it is necessary to increase the volume in order to ensure a heat transfer area.
【0006】従来の車両用ガスタービンの例としては、
この他にメカニカルエンジニアリング誌(Mechan
ical Engineering)1986年6月
号に紹介されたものがあるが、この例も熱交換器の空気
入口および出口の通路構成が複雑な構造となり、製造上
コスト高となる。また円環構造で周囲に排ガスを排出す
るので、排ガスを導く外筒を必要とし、構造的に大きく
なるという欠点があった。Examples of conventional gas turbines for vehicles include:
In addition, mechanical engineering magazine (Mechan
There is an example introduced in the June 1986 issue of ical Engineering), but this example also has a complicated passage structure for the air inlet and outlet of the heat exchanger, resulting in high manufacturing costs. Furthermore, since the exhaust gas is discharged around the annular structure, an outer cylinder is required to guide the exhaust gas, which has the disadvantage of increasing the size of the structure.
【0007】ガスタービンは多量の空気を吸入・排出す
るので、熱交換器およびダクトはガスタービンの全体構
造上、大きな比重を占める。したがって、特に車両用に
おいては、全体の大きさができる限り小さくなるような
、熱交換器の構造および配置が、重要な技術課題である
。この点で、従来の車両用ガスタービンは、いずれも満
足できるものではなかった。[0007] Since gas turbines take in and discharge large amounts of air, heat exchangers and ducts occupy a large proportion of the overall structure of the gas turbine. Therefore, especially for vehicles, the structure and arrangement of heat exchangers such that the overall size is as small as possible is an important technical issue. In this respect, none of the conventional gas turbines for vehicles has been satisfactory.
【0008】[0008]
【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、コンプレッサと車両駆動用のター
ビンとが同一軸線上に配置されるとともに、上記タービ
ンの排ガスにより燃焼用空気を加熱する対向流形プレー
トタイプの熱交換器が上記軸線を含む鉛直面に沿って上
方に配置され、かつ上記コンプレッサの吐出方向と上記
熱交換器の空気取入口方向とのなす角および上記タービ
ンの吐出方向と上記熱交換器の排ガス取入口方向とのな
す角がいずれもほぼ直角であることを特徴とする車両用
ガスタービンを提案するものである。[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the present invention provides that a compressor and a turbine for driving a vehicle are arranged on the same axis, and that combustion air is generated by the exhaust gas of the turbine. A counterflow plate type heat exchanger for heating is disposed above along a vertical plane including the axis, and the angle between the discharge direction of the compressor and the air intake direction of the heat exchanger and the angle of the turbine The present invention proposes a gas turbine for a vehicle, characterized in that the angles formed between the discharge direction and the exhaust gas intake direction of the heat exchanger are substantially right angles.
【0009】[0009]
【作用】本発明は上記のように構成されているので、燃
焼用空気や排ガスを最短距離で流せるような熱交換器構
造と熱交換器およびダクトの配置となり、全体の構造が
簡単で、且つ小型に設計できる。[Operation] Since the present invention is constructed as described above, the heat exchanger structure and the arrangement of the heat exchanger and ducts are such that combustion air and exhaust gas can flow through the shortest distance, and the overall structure is simple. Can be designed to be small.
【0010】0010
【実施例】図1ないし図3は本発明の一実施例を示すも
ので、図1は全体の縦断側面図、図2は図1と異なる平
面で切断した熱交換器部の縦断側面図、図3は熱交換器
部の斜視図である。[Embodiment] FIGS. 1 to 3 show an embodiment of the present invention, in which FIG. 1 is a longitudinal sectional side view of the whole, FIG. 2 is a longitudinal sectional side view of a heat exchanger portion cut on a plane different from that in FIG. FIG. 3 is a perspective view of the heat exchanger section.
【0011】まず図1において、空気入口部(6)から
吸込まれた燃焼用空気は、コンプレッサ(1)で圧縮さ
れ、低温空気ダクト(7)を経て、熱交換器(2)で高
温の排ガスで予熱された後、燃焼器(3)に導かれ、こ
こで別途供給された燃料の燃焼により更に高温のガスと
なり、タービン(4),(5)を駆動する。タービン(
4)はコンプレッサ(1)を駆動し、タービン(5)は
出力軸(10)を介して車両等を駆動する。タービンを
駆動した後の高温の排ガスは、高温ガスダクト(8)を
経て熱交換器(2)で低温空気を予熱し低温ガスとなっ
た後、ガス出口部(9)から大気中に放出される。燃焼
器(3)に導かれる前の低温空気が熱交換器(2)で予
熱されることにより、燃料の消費量を少くできる効果が
ある。First, in FIG. 1, combustion air sucked in from the air inlet (6) is compressed by the compressor (1), passes through the low temperature air duct (7), and is converted into high temperature exhaust gas by the heat exchanger (2). After being preheated, the gas is led to the combustor (3), where the separately supplied fuel is combusted to generate even higher temperature gas, which drives the turbines (4) and (5). Turbine (
4) drives a compressor (1), and a turbine (5) drives a vehicle etc. via an output shaft (10). After driving the turbine, the high-temperature exhaust gas passes through the high-temperature gas duct (8) and preheats the low-temperature air in the heat exchanger (2) to become low-temperature gas, and then is released into the atmosphere from the gas outlet (9). . By preheating the low-temperature air in the heat exchanger (2) before being led to the combustor (3), there is an effect that fuel consumption can be reduced.
【0012】本実施例においては、コンプレッサ(1)
およびタービン(4),(5)は同一軸線上に配置され
ている。また熱交換器(2)は上記軸線を含む鉛直面に
沿って上方に配置されている。そしてこの熱交換器(2
)は、図2および図3にも示されるように、プレートタ
イプすなわち、複数のプレート(20)(隔壁)を互い
に間隔をへだてて重ね合わせ、低温の空気と高温の排ガ
スの流路を多層に交互に構成して、プレート(20)を
介して熱交換を行なう形式で、かつ対向流形すなわち、
上記低温空気と高温排ガスが互いに逆向きに流れるよう
になっているものである。In this embodiment, the compressor (1)
The turbines (4) and (5) are arranged on the same axis. Further, the heat exchanger (2) is arranged upward along a vertical plane including the above-mentioned axis. And this heat exchanger (2
), as shown in Figures 2 and 3, is a plate type, in which multiple plates (20) (partition walls) are overlapped at intervals, creating a multilayer flow path for low-temperature air and high-temperature exhaust gas. in an alternating arrangement, with heat exchange through the plates (20), and in counter-current form, i.e.
The low-temperature air and high-temperature exhaust gas flow in opposite directions.
【0013】図1に示された熱交換器(2)の断面には
低温空気流路部(24)の断面が表われている。(23
)は低温空気入口部であって、低温空気ダクト(7)と
接続されている。(21),(22)は熱交換器側壁で
あり、(25),(26)は低温空気流路を形成する盲
板である。The cross section of the heat exchanger (2) shown in FIG. 1 shows the cross section of the low temperature air passage section (24). (23
) is a cold air inlet section, which is connected to the cold air duct (7). (21) and (22) are side walls of the heat exchanger, and (25) and (26) are blind plates forming a low temperature air flow path.
【0014】図2は熱交換器(2)の高温ガス流路部(
28)の断面を示す。(27)は高温ガス入口部であっ
て、高温ガスダクト(8)と接続されている。(29)
,(30)は高温ガス流路を形成する盲板である。FIG. 2 shows the high temperature gas flow path section (2) of the heat exchanger (2).
28) is shown. (27) is a high temperature gas inlet section, which is connected to the high temperature gas duct (8). (29)
, (30) are blind plates forming a high temperature gas flow path.
【0015】低温空気と高温排ガスとは、隔壁(プレー
ト)(20)により仕切られていて互いに混合されるこ
となく、隔壁(20)の熱伝達により熱交換が行なわれ
る。The low-temperature air and the high-temperature exhaust gas are separated by a partition wall (plate) (20) and are not mixed with each other, but instead undergo heat exchange through heat transfer through the partition wall (20).
【0016】本実施例ではまた、コンプレッサ(1)の
吐出方向と熱交換器(2)の空気取入口方向とのなす角
、およびタービン(5)の吐出方向と熱交換器(2)の
排ガス取入口方向とのなす角が、いずれもほぼ直角であ
る。すなわち、図1に示されるように、コンプレッサ(
1)の出口はほぼ鉛直上向きに低温空気ダクト(7)に
接続され、その低温空気ダクト(7)はほぼ直角に横に
折れ曲って、熱交換器(2)の低温空気入口部(23)
に接続される。またタービン(5)の吐出方向はほぼ水
平であるが、これが高温ガスダクト(8)によりほぼ直
角に上方へ曲げられて、熱交換器(2)の高温ガス入口
部(27)に接続される。In this embodiment, the angle formed between the discharge direction of the compressor (1) and the air intake direction of the heat exchanger (2), and the angle formed between the discharge direction of the turbine (5) and the exhaust gas of the heat exchanger (2) are The angles formed with the intake direction are almost right angles. That is, as shown in Figure 1, the compressor (
The outlet of 1) is connected almost vertically upward to a low temperature air duct (7), and the low temperature air duct (7) is bent horizontally at almost a right angle to connect to the low temperature air inlet section (23) of the heat exchanger (2).
connected to. Although the discharge direction of the turbine (5) is substantially horizontal, it is bent upward at a substantially right angle by the hot gas duct (8) and connected to the hot gas inlet (27) of the heat exchanger (2).
【0017】なお、プレート(隔壁)(20)の熱伝達
を向上させるために、伝熱フインを装着することも可能
である。図4および図5はプレート(20)に針状フイ
ン(31)を接着した実施例であり、図6および図7は
同じくプレートフイン(32)を接着した実施例である
。[0017] In order to improve the heat transfer of the plate (partition wall) (20), it is also possible to install heat transfer fins. 4 and 5 show an embodiment in which a needle fin (31) is bonded to a plate (20), and FIG. 6 and FIG. 7 show an embodiment in which a plate fin (32) is bonded to the plate (20).
【0018】[0018]
【発明の効果】本発明によれば、低温空気および高温排
ガスのダクトを最短距離に設計することができるので、
ガスタービン全体の構造が簡単かつ小型になり、熱交換
器付き車両用ガスタービンとして実用性が高くなる。[Effects of the Invention] According to the present invention, the ducts for low-temperature air and high-temperature exhaust gas can be designed to have the shortest distance.
The overall structure of the gas turbine becomes simple and compact, making it more practical as a gas turbine for vehicles equipped with a heat exchanger.
【図1】図1は本発明の一実施例を示す全体縦断側面図
である。FIG. 1 is an overall longitudinal sectional side view showing one embodiment of the present invention.
【図2】図2は上記実施例において図1と異なる平面で
切断した熱交換器部の縦断側面図である。FIG. 2 is a longitudinal sectional side view of the heat exchanger section taken along a different plane from FIG. 1 in the above embodiment.
【図3】図3は上記実施例の熱交換器部を示す斜視図で
ある。FIG. 3 is a perspective view showing the heat exchanger section of the above embodiment.
【図4】図4は本発明の第2の実施例の熱交換器を示す
縦断側面図である。FIG. 4 is a longitudinal sectional side view showing a heat exchanger according to a second embodiment of the present invention.
【図5】図5は図4のV−V矢視図である。FIG. 5 is a view taken along the line V-V in FIG. 4;
【図6】図6は本発明の第3の実施例の熱交換器を示す
縦断側面図である。FIG. 6 is a longitudinal sectional side view showing a heat exchanger according to a third embodiment of the present invention.
【図7】図7は図6の VII−VII 矢視図である
。FIG. 7 is a view taken along the VII-VII arrow in FIG. 6;
【図8】図8は従来の車両用ガスタービンの一例を示す
斜視図である。FIG. 8 is a perspective view showing an example of a conventional gas turbine for a vehicle.
【図9】図9は図8中の熱交換器の詳細斜視図である。FIG. 9 is a detailed perspective view of the heat exchanger in FIG. 8;
(01),(1) コンプレッサ(02),
(2) 熱交換器(03),(3)
燃焼器
(04),(4) タービン(コンプレッサ
駆動用)
(05),(5) タービン(車両駆動用)
(6) 空気入口部(
7) 低温空気ダクト
(8) 高温ガスダク
ト(9) ガス出口部
(10) 出力軸(020
),(20) プレート(隔壁)(21),(22)
熱交換器側壁(23)
低温空気入口部(24)
低温空気流路部(25),(26) 盲板
(27) 高温ガス入口部
(28) 高温化ガス流路
部(29),(30) 盲板(01), (1) Compressor (02),
(2) Heat exchanger (03), (3)
Combustor (04), (4) Turbine (for compressor drive) (05), (5) Turbine (for vehicle drive)
(6) Air inlet section (
7) Low temperature air duct (8) High temperature gas duct (9) Gas outlet (10) Output shaft (020
), (20) Plate (partition) (21), (22)
Heat exchanger side wall (23)
Low temperature air inlet (24)
Low temperature air flow path section (25), (26) Blind plate (27) High temperature gas inlet section (28) High temperature gas flow path section (29), (30) Blind plate
Claims (1)
とが同一軸線上に配置されるとともに、上記タービンの
排ガスにより燃焼用空気を加熱する対向流形プレートタ
イプの熱交換器が上記軸線を含む鉛直面に沿って上方に
配置され、かつ上記コンプレッサの吐出方向と上記熱交
換器の空気取入口方向とのなす角および上記タービンの
吐出方向と上記熱交換器の排ガス取入口方向とのなす角
がいずれもほぼ直角であることを特徴とする車両用ガス
タービン。Claim 1: A compressor and a turbine for driving a vehicle are arranged on the same axis, and a counterflow plate type heat exchanger that heats combustion air with the exhaust gas of the turbine is arranged on a vertical plane including the axis. , and the angle between the discharge direction of the compressor and the air intake direction of the heat exchanger and the angle between the discharge direction of the turbine and the exhaust gas intake direction of the heat exchanger are A gas turbine for a vehicle that is characterized by having a substantially right angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23026291A JPH04358726A (en) | 1991-09-10 | 1991-09-10 | Gas turbine for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23026291A JPH04358726A (en) | 1991-09-10 | 1991-09-10 | Gas turbine for vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04358726A true JPH04358726A (en) | 1992-12-11 |
Family
ID=16905048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23026291A Pending JPH04358726A (en) | 1991-09-10 | 1991-09-10 | Gas turbine for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04358726A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07286533A (en) * | 1994-04-15 | 1995-10-31 | Kawasaki Heavy Ind Ltd | Gas turbine generating device |
JP2007162707A (en) * | 2002-02-28 | 2007-06-28 | Ebara Corp | Gas turbine device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5946326A (en) * | 1982-08-11 | 1984-03-15 | ロ−ルス・ロイス・リミテツド | Gas turbine engine power apparatus |
-
1991
- 1991-09-10 JP JP23026291A patent/JPH04358726A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5946326A (en) * | 1982-08-11 | 1984-03-15 | ロ−ルス・ロイス・リミテツド | Gas turbine engine power apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07286533A (en) * | 1994-04-15 | 1995-10-31 | Kawasaki Heavy Ind Ltd | Gas turbine generating device |
JP2007162707A (en) * | 2002-02-28 | 2007-06-28 | Ebara Corp | Gas turbine device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1761736B1 (en) | Heat exchanger with header tubes | |
US3759323A (en) | C-flow stacked plate heat exchanger | |
CN207622589U (en) | Heat exchanger | |
US3507115A (en) | Recuperative heat exchanger for gas turbines | |
US8186159B2 (en) | Intake air cooler for dual-state turbocharging turbocompressed heat engine and corresponding air circuit | |
JP2002534627A (en) | Recuperator for gas turbine engine | |
EP0866299B1 (en) | Heat exchanger | |
WO2002052214A1 (en) | Heat exchanger | |
US3741293A (en) | Plate type heat exchanger | |
US6966173B2 (en) | Heat transfer apparatus | |
JP2009068809A (en) | Hybrid heat exchanger | |
US20040003916A1 (en) | Unit cell U-plate-fin crossflow heat exchanger | |
US6216774B1 (en) | Heat exchanger | |
JPS62293086A (en) | Laminated type heat exchanger | |
US2814181A (en) | Regenerative heat exchangers for paired gas turbines | |
JPH04358726A (en) | Gas turbine for vehicle | |
US4137706A (en) | Engine in which fuel is reacted in a plurality of stages | |
JP3406896B2 (en) | Heat exchanger and gas turbine device using the same | |
JP2002195785A (en) | Heat exchanger | |
JP3378850B2 (en) | Heat exchanger and gas turbine device using the same | |
US6209630B1 (en) | Heat exchanger | |
WO2004013557A1 (en) | Heat exchanger and use thereof | |
JPH02213694A (en) | Fin tube type heat exchanger | |
EP3671092B1 (en) | Charge air cooler | |
JPH1113556A (en) | Egr gas cooling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19951003 |