JPH0435856B2 - - Google Patents

Info

Publication number
JPH0435856B2
JPH0435856B2 JP19239182A JP19239182A JPH0435856B2 JP H0435856 B2 JPH0435856 B2 JP H0435856B2 JP 19239182 A JP19239182 A JP 19239182A JP 19239182 A JP19239182 A JP 19239182A JP H0435856 B2 JPH0435856 B2 JP H0435856B2
Authority
JP
Japan
Prior art keywords
vacuum
disconnector
section
shield
puffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19239182A
Other languages
Japanese (ja)
Other versions
JPS5983310A (en
Inventor
Kenichi Natsui
Kunio Hirasawa
Yukio Kurosawa
Masanori Tsukushi
Minoru Sato
Shunji Tokuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19239182A priority Critical patent/JPS5983310A/en
Publication of JPS5983310A publication Critical patent/JPS5983310A/en
Publication of JPH0435856B2 publication Critical patent/JPH0435856B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、高電圧・大容量しや断器に関する。[Detailed description of the invention] TECHNICAL FIELD The present invention relates to a high-voltage, large-capacity shield disconnector.

電力系統の短絡容量は、電力需要増大と供給源
の集中偏在化が進む中で増大の一途である。これ
に伴ない、電力用しや断器に課せられる責務は、
しや断容量の増大と高電圧化である。近年、高電
圧・大容量しや断器は、絶縁性・消弧性のすぐれ
たSF6ガスを用いたパツフア型ガスしや断器が主
流となつている。そのすぐれた消弧特性によりユ
ニツトあたりのしや断容量は、300kV50kAに達
しており、このユニツトの組合せにより
500kV63kA2点切、1100kV63kA4点切可能にな
つている。しかし、パツフア型ガスしや断器は、
電流零点近傍における電流変化率(di/dt)と電
流しや断直後の再起電圧上昇率(dv/dt)によ
りそのしや断特性が著しい影響を受け、しや断電
流が大きくなり、di/dtが大きくなると近距離線
路故障(SLF)しや断責務や、しや断器のブス側
線路条件により発生する高い周波数成分の再起電
圧(ITRV)を含むしや断責務のようにdv/dtの
高い場合、電流しや断後数マイクロ秒以内に数
kVから数十kV以下の電圧で熱破壊に至り、しや
断不成功となる割合が多くなり、しや断特性の限
界がこの熱破壊により決定される特性を示す。こ
のため、定格しや断通流の大きい場合は、しや断
に並列にコンデンサを挿入し、dv/dtを若干ゆ
るやかにして熱破壊によるしや断特性を向上させ
ている例が少なくない。しかし、しや断部に並列
にコンデンサを挿入することは、その絶縁信頼性
の面で大きな欠点となり、並列コンデンサのない
状態、あるいは極力小さい値(たとえば多点切し
や断器における電圧分担率改善のための容量程
度)にすることが望まれる。
The short-circuit capacity of power systems continues to increase as demand for electricity increases and supply sources become more concentrated and unevenly distributed. Along with this, the responsibilities imposed on power switches and disconnectors are as follows:
These are an increase in the shearing capacity and a higher voltage. In recent years, the mainstream of high-voltage, large-capacity circuit breakers has been puffer-type gas circuit breakers that use SF6 gas, which has excellent insulation and arc-extinguishing properties. Due to its excellent arc extinguishing properties, the arc breaking capacity per unit reaches 300kV50kA, and the combination of this unit
500kV63kA 2-point disconnection, 1100kV63kA 4-point disconnection is possible. However, the Patshua type gas disconnector,
The shearing characteristics are significantly affected by the rate of change of current near the current zero point (di/dt) and the rate of increase in the re-EMF voltage immediately after the current shearing (dv/dt), and the shearing current increases, causing di/dt. When dt becomes large, dv/dt increases, such as short-range line fault (SLF) short-range fault (SLF) fault, and short-range fault fault (ITRV), which includes high frequency component restart voltage (ITRV) caused by the line conditions on the bus side of the fault break. If the current is high, the current will drop within several microseconds after the
Thermal breakdown occurs at voltages from kV to several tens of kV or less, and a high percentage of shearing failures occur, indicating that the limits of the shearing characteristics are determined by this thermal breakdown. For this reason, when the rated current is large, it is often the case that a capacitor is inserted in parallel to the shear to make the dv/dt a little gentler and improve the shear characteristics caused by thermal breakdown. However, inserting a capacitor in parallel to the sheath disconnection has a major drawback in terms of insulation reliability, and it is necessary to use a condition without a parallel capacitor or a value as small as possible (for example, the voltage sharing ratio in multi-point disconnections or disconnectors). It is desirable to improve the capacity to the extent necessary for improvement.

一方、真空しや断器は、すぐれた絶縁回復特性
をもち、熱破壊によりしや断不成功に至る例は少
なく、電圧がある程度回復したあと絶縁破壊によ
りしや断不成功に至る特性を示す。しかし真空し
や断器は、ユニツトあたりの耐電圧を高くするこ
とが困難で、現在まで最高電圧として72kV級の
ものが知られている。
On the other hand, vacuum insulation disconnectors have excellent insulation recovery characteristics, and there are only a few cases where the insulation fails due to thermal breakdown.The vacuum insulation disconnector has a characteristic of failing to disconnect due to dielectric breakdown after the voltage has recovered to a certain extent. . However, it is difficult to increase the withstand voltage per unit of vacuum shield disconnectors, and to date, the highest voltage known is 72kV.

高電圧・大容量のしや断器を実現するに際し、
以上述べたように、ガスしや断器が熱破壊で性能
が決定される特性と、真空しや断器が絶縁破壊で
性能が決定される特性を相互に補なう形で、ガス
しや断器と真空しや断器を直列に用いることは従
来から知られている。
When realizing high-voltage, large-capacity shields and disconnectors,
As mentioned above, the characteristics of gas insulation and disconnectors whose performance is determined by thermal breakdown, and the characteristics of vacuum insulation and disconnectors whose performance is determined by dielectric breakdown, are complementary to each other. It has been known for a long time to use a disconnector and a vacuum disconnector in series.

たとえば、特開昭56−128527、特開昭57−
36733、特開昭56−76128に開示されるように、ガ
スしや断器と真空しや断器を直列に接続し、それ
ぞれに並列に抵抗やコンデンサをとりつけ、再起
電圧立上り初期部が真空しや断器に印加されるよ
うにし、初期部の熱破壊領域をクリアしたあとの
高電圧領域をガスしや断器に印加するようにした
ものがある。
For example, JP-A-56-128527, JP-A-57-
36733 and Japanese Patent Application Laid-open No. 56-76128, a gas shield breaker and a vacuum shield breaker are connected in series, and a resistor and a capacitor are attached to each in parallel, so that the initial stage of the rise of the restart voltage is caused by a vacuum. There is a system in which the high voltage region after the initial thermal breakdown region has been cleared is applied to the gas tank or the disconnector.

このように、しや断部に並列インピーダンスが
挿入されるものは、そのインピーダンス素子の大
きさのため、全体の形状が大きくなつたり、容器
内に収納する場合、その容器が大きくなるなどの
欠点があり、また、並列インピーダンス素子の絶
縁上の信頼性が問題となるなどの欠点がある。
In this way, devices in which a parallel impedance is inserted into the shingle section have disadvantages such as the overall shape becomes larger due to the size of the impedance element, and when stored in a container, the container becomes larger. There are also drawbacks such as problems with the reliability of the insulation of the parallel impedance elements.

また、真空しや断器のすぐれたしや断特性を応
用し、絶縁責務は他のしや断器、あるいは、断路
器で負担する方式のしや断装置は、たとえば、実
公昭46−16687に開示されるように、しや断器、
あるいは、断路器の開放後に真空しや断器を再び
閉路する方式が知られている。
In addition, by applying the excellent insulation characteristics of a vacuum insulation disconnector, insulation duties are borne by another insulation disconnector or a disconnecting switch. As disclosed in
Alternatively, a method is known in which the vacuum chamber or the disconnector is closed again after the disconnector is opened.

第1図は、実公昭46−16687に開示されたしや
断装置の概略を示したものである。真空開閉器1
は気中の並列開閉器2、および、それらに対して
直列に配置された開閉器3より構成されており、
真空開閉器1の一方の端板4は、端子6に接続さ
れ、真空開閉器の固定側の接触子7が端板4に接
続されている。端子6は、並列開閉器2の一方の
摺動接触子8に接続されている。真空開閉器の他
方の端板5は、摺動接触子9に電気的に接続され
ており、摺動接触子9は、並列開閉器2および直
列開閉器3それぞれの一端子として作用してい
る。真空開閉器1の可動側接触子11はベローズ
12により密封され軸方向に運動できるように端
板5にとりつけられ、ロツド13により気中から
駆動できるようになつている。
FIG. 1 schematically shows a shredder cutting device disclosed in Japanese Utility Model Publication No. 16687-1987. Vacuum switch 1
is composed of an aerial parallel switch 2 and a switch 3 arranged in series with them,
One end plate 4 of the vacuum switch 1 is connected to a terminal 6, and a contact 7 on the fixed side of the vacuum switch is connected to the end plate 4. The terminal 6 is connected to one sliding contact 8 of the parallel switch 2 . The other end plate 5 of the vacuum switch is electrically connected to a sliding contact 9, and the sliding contact 9 acts as one terminal for each of the parallel switch 2 and the series switch 3. . The movable contact 11 of the vacuum switch 1 is sealed by a bellows 12 and attached to the end plate 5 so as to be movable in the axial direction, and can be driven from the air by a rod 13.

クランク腕14は、支点である軸15を中心に
回転可能で、図示しない駆動機構により、このク
ランク腕14を回転させることにより、ピン16
および17でクランク腕14に係合されたリンク
18,19でそれぞれ真空開閉器および並列開閉
器2,3を駆動する。このとき、ピン16の位置
はピン17の位置より軸15に近いので、クラン
ク腕14の回転角に対して、真空開閉器の可動接
触子の行程は短かい。また、リーク18には、突
起20,21が形成され、このリーク18が所定
の行程だけ変位したあと、突起20がロツド13
にとりつけられたローラ22に係合して、はじめ
て接触子11を駆動し、真空開閉器を開放する。
この時、クランク腕14にピン17で係合された
リンク19により駆動される開閉器2,3の可動
接触子23は、24の位置にあり、摺動接触子8
と可動接触子23は真空開閉器1が閉路状態にあ
る時点で開放するので無電弧で開放される。次
に、可動接触子23が摺動接触子9と接触してい
る間に、真空開閉器1の接触子7と11を開放
し、電流をしや断し、電流がしや断した状態で、
開閉器3を無電弧で開放し、可動接触子23が2
5の位置に達した時に、リンク18の突起部21
が、固定位置にあるローラ26に係合してリンク
18を持ち上げることにより、突起20と真空開
閉器のロツド13にとりつけられたローラ22の
係合がはずれ、真空開閉器1を閉路する。この方
式によれば、電流しや断直後の再起電圧は、すべ
て、真空開閉器によつて耐圧するが、定常的な電
圧および絶縁仕様は開閉器3の極間で耐圧するこ
とになる。この実施例では、電流しや断直後に発
生する開閉サージが高く真空開閉器の耐電圧を超
えるような場合は採用できないので高電圧用しや
断装置として応用できない欠点があつた。
The crank arm 14 is rotatable around a shaft 15 that is a fulcrum, and by rotating the crank arm 14 by a drive mechanism (not shown), the pin 16 is rotated.
Links 18 and 19 engaged with the crank arm 14 at 17 drive the vacuum switch and the parallel switches 2 and 3, respectively. At this time, since the position of the pin 16 is closer to the shaft 15 than the position of the pin 17, the stroke of the movable contact of the vacuum switch is shorter than the rotation angle of the crank arm 14. Further, protrusions 20 and 21 are formed on the leak 18, and after the leak 18 is displaced by a predetermined distance, the protrusion 20 is attached to the rod 13.
When the contactor 11 is engaged with the roller 22 attached to the roller 22, the contactor 11 is driven for the first time, and the vacuum switch is opened.
At this time, the movable contacts 23 of the switches 2 and 3 driven by the link 19 engaged with the crank arm 14 by the pin 17 are at the position 24, and the sliding contact 8
Since the movable contactor 23 is opened when the vacuum switch 1 is in a closed circuit state, it is opened without arcing. Next, while the movable contact 23 is in contact with the sliding contact 9, the contacts 7 and 11 of the vacuum switch 1 are opened, and the current is briefly cut off. ,
The switch 3 is opened without an electric arc, and the movable contact 23 is
When the position 5 is reached, the protrusion 21 of the link 18
However, by engaging the roller 26 in the fixed position and lifting the link 18, the protrusion 20 and the roller 22 attached to the rod 13 of the vacuum switch are disengaged, and the vacuum switch 1 is closed. According to this method, all the re-electromotive voltage immediately after the current is interrupted is withstandable by the vacuum switch, but the steady voltage and insulation specifications are withstandable between the poles of the switch 3. This embodiment has a drawback that it cannot be used as a high-voltage shedding device because it cannot be used when the switching surge that occurs immediately after the current is cut off is high and exceeds the withstand voltage of the vacuum switch.

本発明の目的は、しや断器に挿入される並列イ
ンピーダンス素子をなくすかあるいは極力小さく
できる構成とした高電圧・大容量しや断装置を提
供するにある。
An object of the present invention is to provide a high-voltage, large-capacity shield breaker having a structure in which the parallel impedance element inserted in the shield breaker can be eliminated or minimized.

本発明の特徴はパツフア型ガスしや断器がある
程度開離して電流しや断後の再起電圧の波高値に
耐えられる状態になつたところで、真空しや断器
を開離し、電流しや断後完了後に真空しや断器を
閉路して真空しや断器には高電圧を印加しないよ
うにしたことにある。
The feature of the present invention is that when the puffer-type gas shield is opened to a certain extent and the current is able to withstand the peak value of the re-electromotive voltage after the current is cut off, the vacuum shield is opened and the current is cut off. The reason is that the vacuum shield and disconnector are closed after the completion of the process, so that high voltage is not applied to the vacuum shield and disconnector.

以下、本発明の一実施例を第2図により説明す
る。本実施例は、接地電位のタンク31内に真空
しや断器32、およびパツフア型ガスしや断器3
3が配置され、タンク内空間34にはSF6ガスが
充填されている。電流は端子35からプツシング
36内の導体37を通つて真空しや断器32内の
接触子38,39を通り、パツフア型しや断器の
シリンダ40から固定接触子41を通つて他の端
子35へ流れるもので、真空しや断器とパツフア
型しや断器は電気的に直列に接続されている。
An embodiment of the present invention will be described below with reference to FIG. In this embodiment, a vacuum shield breaker 32 and a puffer-type gas shield breaker 3 are installed in a tank 31 at ground potential.
3 is arranged, and the tank interior space 34 is filled with SF 6 gas. The current flows from the terminal 35 through the conductor 37 in the pushing 36, through the contacts 38 and 39 in the vacuum shield breaker 32, and from the cylinder 40 of the puffer type shield breaker through the fixed contact 41 to other terminals. 35, and the vacuum shield disconnector and puffer type shield disconnector are electrically connected in series.

本実施例に示したしや断装置の動作は、図示し
ない操作装置により、ガス気密構造のロツド42
を駆動し、絶縁操作ロツド43を介して、ピン4
4で絶縁操作ロツド43に連結されたリンク4
5,46に駆動力を分割伝達し、それぞれのリン
クは、レバー47,48をそれぞれの固定軸4
9,50を中心として回転動作させ、駆動力方向
を変換したあと、真空しや断器を駆動するための
リンク51およびパツフアしや断器を駆動するた
めのリンク52を駆動する。
The operation of the shear cutting device shown in this embodiment is controlled by an operating device (not shown) that connects the gas-tight rod 42.
and pin 4 via the insulated operating rod 43.
Link 4 connected to insulated operating rod 43 at 4
5 and 46, each link connects the lever 47 and 48 to the respective fixed shaft 4.
9 and 50 to change the driving force direction, the link 51 for driving the vacuum shield and disconnector and the link 52 for driving the puffer and disconnector are driven.

パツフア型ガスしや断器が十分なしや断特性を
示すのは、パツフア室をある程度圧縮し、固定接
触子がノズルを抜け出した後で、それ以降電流し
や断可能な条件を最小でも0.5サイクル持続する
ことが必要である。そのため、パツフア型しや断
器のストロークは比較的長いことが必要となる。
一方、真空しや断器は、電流しや断に関してある
範囲の最適極間距離があり、この長さはパツフア
型しや断器のストロークに比較して小さなもので
ある。したがつて、同一の操作装置で真空しや断
器とパツフア型ガスしや断器を駆動する場合、そ
れぞれのしや断部のストロークを変化させるため
の工夫が必要であり、本実施例では、レバー4
7,48の腕の長さを変えることにより、しや断
部のストロークを変えるようにしている。つま
り、レバー47は、リンク45に連結される側の
腕の長さに対して、リンク51に連結される側の
腕の長さを小さくして、真空しや断器側のストロ
ークを短縮し、逆に、レバー48では、リンク5
2に連結したほうの腕を長くして、パツフア型し
や断器側ストロークを長くしている。
The reason why a puffer-type gas chamber disconnector exhibits sufficient disconnection characteristics is to compress the puffer chamber to a certain extent, and after the fixed contact exits the nozzle, the conditions under which the current can be cut off are maintained for at least 0.5 cycles. It is necessary to persist. Therefore, the stroke of the puffer type cutter is required to be relatively long.
On the other hand, vacuum sheath breakers have a range of optimum distances between poles for current sheathing, and this length is small compared to the stroke of puffer type sheath breakers. Therefore, when driving a vacuum shield disconnector and a puffer-type gas shield disconnector with the same operating device, it is necessary to devise a way to change the stroke of each shield. , lever 4
By changing the lengths of arms 7 and 48, the stroke of the spine section is changed. In other words, the lever 47 makes the length of the arm connected to the link 51 smaller than the length of the arm connected to the link 45, thereby shortening the stroke of the vacuum chamber and disconnector side. , conversely, in the lever 48, the link 5
The arm connected to 2 is made longer to lengthen the stroke on the side of the blower and disconnector.

真空しや断器のすぐれた絶縁回復特性を生かす
ためには、パツフア型ガスしや断器が、電流しや
断後の再起電圧波高値に耐圧するのに十分な状態
で真空しや断器の絶縁回復特性のすぐれた状態を
迎えるように接触子開離時刻を調整することが必
要となる。本実施例では、真空しや断器を駆動す
るためのリンク51に、第1図に開示したと同様
の突起20,21をもつたリンク18を連結し、
真空しや断器32の可動側接触子39を駆動する
ロツド13に設けたローラ22と突起20があそ
びを持つて係合するように構成し、さらに、所定
の変位になつたとき突起21が固定部分に設けた
ローラ26に当接してヒンジ18を上方に押し上
げることにより、突起20とローラ22の係合を
解除し、ばね53の力で可動側接触子を閉路位置
にもどすよう構成してものである。
In order to take advantage of the excellent insulation recovery characteristics of a vacuum insulation circuit breaker, a puffer-type gas insulation circuit breaker must be installed in a vacuum state sufficient to withstand the peak value of the re-EMF voltage after a current interruption. It is necessary to adjust the contact opening time so that the insulation recovery characteristics of the contactor reach a state with excellent insulation recovery characteristics. In this embodiment, a link 18 having protrusions 20, 21 similar to those disclosed in FIG. 1 is connected to a link 51 for driving the vacuum shield and disconnector.
The roller 22 provided on the rod 13 that drives the movable contact 39 of the vacuum shield disconnector 32 and the protrusion 20 are configured to engage with each other with a clearance, and furthermore, when a predetermined displacement is achieved, the protrusion 21 By abutting against a roller 26 provided on the fixed part and pushing up the hinge 18, the engagement between the protrusion 20 and the roller 22 is released, and the movable side contactor is returned to the circuit closing position by the force of the spring 53. It is something.

真空しや断器をしや断動作後再閉路することの
効果は、先ず、第一に、真空しや断器により大電
流を投入すると接触部の溶着が発生し、しや断特
性を低下させるためで、閉路は無電弧の状態で行
なうのが好ましいこと、第二は、一般に、ガスし
や断器の閉路速度が真空しや断器より速いため、
同時に閉路するような構成とすると真空しや断器
の信頼性を低下させることになるためである。
The effect of re-closing a vacuum shield circuit breaker after the circuit breaking operation is that, first of all, when a large current is applied to a vacuum shield circuit breaker, welding occurs at the contact part, which deteriorates the circuit breaking characteristics. The second reason is that it is preferable to close the circuit in an arc-free state, and the second reason is that the closing speed of a gas cylinder or disconnector is generally faster than that of a vacuum circuit or disconnector.
This is because if the circuits are configured to close at the same time, the reliability of the vacuum breaker and disconnector will be reduced.

真空しや断器の開離時刻および再閉路時刻は、
パツフア型しや断器のしや断特性と密接な関係が
ある。前述のように、パツフア型ガスしや断器の
絶縁特性が十分に確立された時点で真空しや断器
のしや断特性が得られる状態になるようにするの
が好ましい。一般に、パツフア型ガスしや断器で
絶縁耐圧が向上するのは、固定接触子がノズルを
抜け出した後であり、仮にこれを以前に真空しや
断器を開離して再起電圧上昇率の高い初期部分を
クリアしたとしても、再起電圧の波高値が印加さ
れるとパツフア型ガスしや断器も耐圧することが
できず、しや断装置全体として絶縁破壊に至りし
や断不成功を招くことになる。したがつて、真空
しや断器の開離時刻は、パツフア型ガスしや断器
の開離時刻とほぼ同時に選定することが好まし
い。こうすることにより、真空しや断器が十分な
絶縁回復特性を得るまでの時間にほぼ等しい時間
で、パツフア型ガスしや断器の絶縁特性が所要の
性能に達することが可能となる。
The opening time and re-closing time of the vacuum circuit breaker are as follows:
There is a close relationship between the shearing characteristics of the patchworker and the shearing characteristics of the disconnector. As mentioned above, it is preferable to set the state in such a way that the insulating characteristics of the vacuum type gas insulator or breaker can be obtained once the insulating characteristics of the puffer-type gas insulator or breaker have been sufficiently established. In general, the dielectric strength of a vacuum type gas disconnector improves after the fixed contact leaves the nozzle. Even if the initial part is cleared, when the peak value of the re-electromotive voltage is applied, the puffer type gas shield or disconnector will not be able to withstand the voltage, leading to dielectric breakdown of the entire disconnection device and failure to disconnect. It turns out. Therefore, it is preferable that the opening time of the vacuum shield and disconnector be selected to be approximately the same as the opening time of the puffer-type gas shield and disconnector. By doing so, it is possible for the insulation properties of the puffer-type gas cylinder and circuit breaker to reach the required performance in a time approximately equal to the time required for the vacuum cylinder and circuit breaker to obtain sufficient insulation recovery characteristics.

また、再閉路時刻については、真空しや断器が
十分な絶縁回復特性を確立した後、少くとも、
0.0.5サイクルはその特性を持続する必要があり、
本実施例では突起21がローラ26に当接して突
起20をローラ22からはずすのは、真空しや断
器の接触子開離後0.5サイクル以降、パツフア型
しや断器が全ストローク動作する以前にすること
が必要である。
Regarding the re-closing time, at least after the vacuum breaker has established sufficient insulation recovery characteristics,
0.0.5 cycles should sustain its characteristics,
In this embodiment, the protrusion 21 comes into contact with the roller 26 and the protrusion 20 is removed from the roller 22 after 0.5 cycles after the contact of the vacuum shear disconnector is opened, and before the puffer-type sheath disconnector completes its stroke. It is necessary to do so.

本実施例によれば、接地タンク型ガス絶縁方式
のしや断装置で熱破壊特性がすぐれ、かつ、高電
圧に耐えるしや断装置を実現できる。
According to this embodiment, it is possible to realize a grounded tank-type gas-insulated shearing device that has excellent thermal breakdown characteristics and can withstand high voltage.

第3図は、本発明になる他の好適な実施例の一
つで、碍子型しや断器に応用したものである。真
空しや断器32、パツフア型ガスしや断器33が
SF6ガスを封入した碍管61内に収納されてい
る。本実施例においても、レバー47,48の腕
の長さを変え、パツフア芸ガスしや断器のストロ
ークに対して真空しや断器のストロークを短かく
し、さらに真空しや断器の開極時刻を遅延させ、
パツフア型ガスしや断器が十分な絶縁耐力を確保
し、電流しや断後の再起電圧波高値をクリアでき
る状態で真空しや断器の絶縁回復特性のすぐれた
状態になるようにしている。そのため、本実施例
では、レバー47にフツク機能を設け、真空しや
断器の可動接触子39の駆動ロツド13にヒンジ
62を結合し、ヒンジ62に突起63を設け、突
起63とレバーのフツク部64を係合した状態で
駆動し、所定の変位だけストロークした時点でフ
ツク部を解放し、バネ53の力で真空しや断器を
閉路させる。真空しや断器の開離時刻の遅延は、
固定側接触子38をバネ65で所定の距離だけ可
動側接触子に追従させることにより行なう。
FIG. 3 shows another preferred embodiment of the present invention, which is applied to an insulator type breaker. Vacuum shield disconnector 32, puffer type gas shield disconnector 33
It is housed in an insulator tube 61 filled with SF 6 gas. In this embodiment as well, the lengths of the arms of the levers 47 and 48 are changed to shorten the stroke of the vacuum shield and disconnector compared to the stroke of the vacuum shield and disconnector, and furthermore, the stroke of the vacuum shield and disconnector is opened. delay the time,
The vacuum type gas shield disconnector ensures sufficient dielectric strength, and the vacuum shield disconnector has excellent insulation recovery characteristics in a state that can clear the peak value of the re-electromotive voltage after the current disconnection. . Therefore, in this embodiment, the lever 47 is provided with a hook function, the hinge 62 is coupled to the drive rod 13 of the movable contact 39 of the vacuum shield disconnector, the hinge 62 is provided with a protrusion 63, and the protrusion 63 and the lever hook are connected. The hook part 64 is driven in an engaged state, and when the hook part has been stroked by a predetermined displacement, the hook part is released and the vacuum shield and disconnector are closed by the force of the spring 53. The delay in the opening time of the vacuum shield and disconnector is
This is done by causing the fixed contact 38 to follow the movable contact by a predetermined distance using the spring 65.

本実施例によれば、熱破壊特性がすぐれ、か
つ、高電圧に耐える碍子型でガス絶縁方式のしや
断装置を実現できる。
According to this embodiment, it is possible to realize an insulator-type, gas-insulated sintering device that has excellent thermal breakdown characteristics and can withstand high voltage.

第4図は、本発明になる他の実施例で、パツフ
ア型ガスしや断器が2点直列に構成され、かつ、
真空しや断器がさらに1点直列に配置された構造
のものである。本実施例にも、真空しや断器の接
触子開離時刻をパツフア型ガスしや断器より遅延
させ、パツフア型ガスしや断器が絶縁特性を十分
に確保し、電流しや断後の再起電圧波高値をクリ
アできる状態になつた時点で、真空しや断器の絶
縁回復特性のすぐれた状態が実現できるようにし
ている。また、真空しや断器のストロークは、パ
ツフア型しや断器のストロークより短かくなるよ
うにレバー71で調整する。さらに、真空しや断
器は、所定の変位ストロークした時点で再閉路動
作に移行することは、第2図に示したメカニズム
を応用することにより可能である。
FIG. 4 shows another embodiment of the present invention, in which two puffer-type gas shields and disconnectors are configured in series, and
It has a structure in which one vacuum shield and disconnector are further arranged in series. In this embodiment as well, the contact opening time of the vacuum shield and disconnector is delayed compared to the puffer type gas shield and disconnector, so that the puffer type gas shield and disconnector can ensure sufficient insulation properties and When a state is reached where the peak value of the re-electromotive voltage can be cleared, a state with excellent insulation recovery characteristics of the vacuum shield and disconnector can be realized. Further, the stroke of the vacuum shield and disconnector is adjusted by the lever 71 so that it is shorter than the stroke of the puffer-type shield and disconnector. Further, it is possible to shift the vacuum shield breaker to a re-closing operation at the time of a predetermined displacement stroke by applying the mechanism shown in FIG. 2.

なお、本実施例では、絶縁操作ロツド43に係
合されたパツフア型しや断部を駆動するためのヒ
ンジ72,73は絶縁物で構成することが必要で
ある。
In this embodiment, it is necessary that the hinges 72 and 73 for driving the puffer-shaped sheath section engaged with the insulating operating rod 43 be made of an insulating material.

本実施例によれば、パツフア型しや断器が2点
直列に接続された高電圧しや断器で、熱破壊特性
のすぐれた大容量しや断装置を実現できる。な
お、本発明は、パツフア型しや断器が3点以上の
多点切しや断器にも応用できる。
According to this embodiment, a high-voltage shear breaker having two puffer-type sheath breakers connected in series can realize a large-capacity sheath breaker with excellent thermal breakdown characteristics. In addition, the present invention can also be applied to multi-point cutting or cutting with three or more points of the puffer type cutting device.

本発明によれば、パツフア型しや断器の高い絶
縁特性と真空しや断器のすぐれた絶縁回復特性を
利用して、高電圧・大容量しや断装置を小型で信
頼性高く実現できる。
According to the present invention, by utilizing the high insulation properties of a puffer-type shield breaker and the excellent insulation recovery characteristics of a vacuum shield breaker, a high voltage, large capacity shield breaker can be realized in a small size and with high reliability. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の部分断面図、第2図は本発明の
一実施例の部分断面図、第3図は本発明の他の実
施例の縦断面図、第4図は本発明のさらに他の実
施例の原理構造図である。 31…ガス容器、32…真空しや断器、33…
パツフア型ガスしや断器、47,48…レバー、
18…リンク、20,21…突起、22,26…
ローラ、53…ばね。
FIG. 1 is a partial sectional view of a conventional device, FIG. 2 is a partial sectional view of an embodiment of the present invention, FIG. 3 is a vertical sectional view of another embodiment of the present invention, and FIG. 4 is a further embodiment of the present invention. It is a principle structure diagram of an example. 31...Gas container, 32...Vacuum shield disconnector, 33...
Patshua type gas shield disconnector, 47, 48...lever,
18... Link, 20, 21... Protrusion, 22, 26...
Roller, 53...spring.

Claims (1)

【特許請求の範囲】 1 絶縁・消弧性ガスを封入した容器内に、パツ
フア方式によるしや断部と、このしや断部と電気
的に直列に接続した真空中でのしや断部と、前記
しや断部を開閉路駆動する駆動機構とを備えたし
や断部装置において、前記真空中でのしや断部の
動作工程が前記パツフア方式によるしや断部の動
作工程より短かく、開路動作時、前記真空中での
しや断部の接触子開離時刻が、前記パツフア方式
によるしや断部の接触子開離時刻より遅らされ、
前記真空中でのしや断部が、しや断動作工程完了
以前に閉路動作に移行し、しや断動作完了後に
は、閉路状態にあるように前記駆動機構を構成し
たことを特徴とするしや断装置。 2 特許請求の範囲第1項記載のしや断装置にお
いて、前記真空中でのしや断部の接触子開離時刻
が前記パツフア方式によるしや断部において固定
接触子がノズルを抜け出す時刻とほぼ一致するよ
うに前記駆動機構を構成したことを特徴とするし
や断装置。 3 特許請求の範囲第1項および第2項記載のし
や断装置において、前記真空中でのしや断部の閉
路動作に移行する時刻が、接触子開離後、電流周
波数0.5サイクル以降であるように前記駆動機構
を構成したことを特徴とするしや断装置。
[Scope of Claims] 1. In a container filled with an insulating/arc-extinguishing gas, a fiber-cut section using a puffer method, and a wire-cut section in vacuum that is electrically connected in series with the fiber-cut section. and a drive mechanism for driving the shear cutting section to open and close the path, wherein the operation process of the sheath cutting section in a vacuum is faster than the operation process of the sheath cutting section using the puffer method. Briefly, during the circuit opening operation, the contact opening time of the shingle break in the vacuum is delayed from the contact opening time of the shingle break in the puffer method,
The driving mechanism is configured so that the shearing section in vacuum shifts to a closed circuit operation before the shearing operation step is completed, and is in a closed circuit state after the shearing operation is completed. Shrinking device. 2. In the crinkle cutting device according to claim 1, the contact opening time of the crinkle breakage section in the vacuum is the time at which the fixed contact leaves the nozzle at the crinkle breakage section using the puffer method. A shear cutting device characterized in that the drive mechanisms are configured to substantially match each other. 3. In the shear breaker device according to claims 1 and 2, the time at which the shear breaker shifts to the closing operation in vacuum is 0.5 cycle of current frequency or later after the contact is opened. A shear cutting device characterized in that the drive mechanism is configured as follows.
JP19239182A 1982-11-04 1982-11-04 Breaking device Granted JPS5983310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19239182A JPS5983310A (en) 1982-11-04 1982-11-04 Breaking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19239182A JPS5983310A (en) 1982-11-04 1982-11-04 Breaking device

Publications (2)

Publication Number Publication Date
JPS5983310A JPS5983310A (en) 1984-05-14
JPH0435856B2 true JPH0435856B2 (en) 1992-06-12

Family

ID=16290517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19239182A Granted JPS5983310A (en) 1982-11-04 1982-11-04 Breaking device

Country Status (1)

Country Link
JP (1) JPS5983310A (en)

Also Published As

Publication number Publication date
JPS5983310A (en) 1984-05-14

Similar Documents

Publication Publication Date Title
US8081407B2 (en) Compact disconnector circuit-breaker for an alternator
US4814559A (en) Electrical switching device for high switching voltages
US7186942B1 (en) Three-position vacuum interrupter disconnect switch providing current interruption, disconnection and grounding
US4087664A (en) Hybrid power circuit breaker
US4617435A (en) Hybrid circuit breaker
US4499350A (en) Circuit breaker with overvoltage suppression
EP2927926B1 (en) Medium voltage switchgear comprising two switches per phase
JP4714527B2 (en) High voltage high capacity circuit breaker
JPH0435856B2 (en)
JP3891680B2 (en) Switchgear
EP3843117B1 (en) Load-break switch without sf6 gas having a vacuum circuit interrupter for medium-voltage switching systems
KR100370103B1 (en) Disconnecting switch of Gas Insulator Switchgear
CN113314359A (en) Improved switching device
JPH0474813B2 (en)
JP2609652B2 (en) Puffer type gas circuit breaker
JPS61121222A (en) Compound type switchgear
JP3369228B2 (en) High-speed reclosable earthing switch
KR20180087745A (en) Gas-insulated switch gear using dual motion with multi rever
US4249049A (en) High voltage plain break circuit interrupter
JP2874917B2 (en) Puffer type gas circuit breaker
JP2670279B2 (en) Breaker
JPH0520984A (en) Resistance interrupting type circuit breaker
JP2670375B2 (en) Puffer type gas circuit breaker
CN114765099A (en) Medium voltage switchgear
KR20180129738A (en) Gas-insulated switch gear using dual motion with multi rever