JPH04358119A - Optical attenuator - Google Patents

Optical attenuator

Info

Publication number
JPH04358119A
JPH04358119A JP15950091A JP15950091A JPH04358119A JP H04358119 A JPH04358119 A JP H04358119A JP 15950091 A JP15950091 A JP 15950091A JP 15950091 A JP15950091 A JP 15950091A JP H04358119 A JPH04358119 A JP H04358119A
Authority
JP
Japan
Prior art keywords
magnetic field
optical
magneto
light
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15950091A
Other languages
Japanese (ja)
Inventor
Shinji Iwatsuka
信治 岩塚
Yoshikazu Narumiya
成宮 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP15950091A priority Critical patent/JPH04358119A/en
Priority to US07/892,468 priority patent/US5477376A/en
Publication of JPH04358119A publication Critical patent/JPH04358119A/en
Priority to US08/526,336 priority patent/US5619367A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the structure and to easily vary the attenuation quantity by varying an external magnetic field by using a perpendicularly magnetized magnetooptic material in the variable impressed magnetic field. CONSTITUTION:This optical attenuator attenuates transmitted light by diffracting incident light by impressing the variable magnetic field from an electromagnet 2, etc., to a magnetooptic element 1 which has multiple magnetic domain structure in the absence of the impressed magnetic field and generate mutually different mgnetism components parallel to the incident light in adjacent magnetic domains. This optical attenuator functions as an optical modulator by using a means which can impress a modulating magnetic field. This magnetooptic element 1 preferably uses bismuth substituted rare earth iron garnet, etc. In general, diffraction loss is maximum when no magnetic field is pressed and decreases by the movement of a magnetic wall as the impressed magnetic field increases. The multiple magnetic domain structure of the element turns into single magnetic domain structure above a saturated magnetic field, so no diffraction is caused. In this case, the intensity of direct light is adjusted with the diffraction loss by the magnetooptic element 1, so a polarizer can be omitted, which is advantageous in structure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁気光学素子を用いた
新規な光減衰器及び光変調器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel optical attenuator and optical modulator using magneto-optical elements.

【0002】0002

【従来の技術及び発明が解決しようとする課題】光減衰
器は、受光素子や撮影素子に入る光強度を最適な値に調
節するためのデバイスである。光通信においては、伝送
路に入るスプライシング、コネクション、中継、分岐な
どによる損失の変動が大きく、また光ファイバ自体の損
失による受光装置に入る光強度も大きく変動するため、
これらの光強度を受信装置のダイナミックレンジに追い
込む目的で光減衰器が非常に頻繁に使われている。また
、光減衰器は、他の通信機器や光測定器の性能や信頼性
の評価、校正などの目的で用いられることも多い。
2. Description of the Related Art An optical attenuator is a device for adjusting the intensity of light entering a light receiving element or a photographing element to an optimum value. In optical communications, the loss that enters the transmission path varies greatly due to splicing, connections, relays, branches, etc., and the light intensity that enters the light receiving device also fluctuates greatly due to loss in the optical fiber itself.
Optical attenuators are very often used to bring these optical intensities into the dynamic range of a receiving device. Furthermore, optical attenuators are often used for purposes such as evaluating and calibrating the performance and reliability of other communication equipment and optical measuring instruments.

【0003】従来、光減衰器として、NDフィルターが
用いられており、減衰量が一定の固定減衰器と可変の可
変減衰器が知られている。図2に、一般に用いられてい
る可動構造の減衰部5とコリメータ部3とからなる可変
減衰器を示す。かかる可変減衰器の減衰部は、図3に示
したように、ステップ可変減衰板6及び連続可変減衰板
7からなり、一般に、前者は10dBおきのNDフィル
ターを回転して切換えられるように配置し、後者はこの
ステップ巾より多めのレンジ(例えば、0〜15dB)
をカバーできるように回転角より減衰量が連続的に変化
するNDフィルターを配置している。
Conventionally, ND filters have been used as optical attenuators, and fixed attenuators with a constant amount of attenuation and variable attenuators with variable attenuation are known. FIG. 2 shows a generally used variable attenuator consisting of a movable damping section 5 and a collimator section 3. The attenuation section of such a variable attenuator consists of a step variable attenuation plate 6 and a continuous variable attenuation plate 7, as shown in FIG. , the latter has a range larger than this step width (for example, 0 to 15 dB)
An ND filter whose attenuation amount changes continuously depending on the rotation angle is installed to cover the following.

【0004】しかしながら、上記のようなNDフィルタ
ーを用いた光減衰器ではフィルターを機械的に回転させ
て減衰量の設定を行っているため構造が複雑となる。さ
らに、光学系に可動部が存在するため信頼性に問題があ
った。
However, the optical attenuator using the above-mentioned ND filter has a complicated structure because the attenuation amount is set by mechanically rotating the filter. Furthermore, since there are moving parts in the optical system, there is a problem with reliability.

【0005】別のタイプの光減衰器として、磁気光学効
果を用いた可変減衰器が知られている(実開昭63−1
28522)。この可変減衰器では、外部磁界により減
衰量を調節するため可動部がないという利点がある。し
かしながら、特定の偏光成分を取り出すことにより光強
度を調節するため磁気光学素子の両側に偏光プリズムを
配置する必要があり構造が複雑であるという問題があっ
た。
As another type of optical attenuator, a variable attenuator using magneto-optic effect is known (Utility Model Application No. 63-1).
28522). This variable attenuator has the advantage that there are no moving parts because the amount of attenuation is adjusted by an external magnetic field. However, in order to adjust the light intensity by extracting a specific polarized light component, it is necessary to arrange polarizing prisms on both sides of the magneto-optical element, resulting in a complicated structure.

【0006】本発明の目的は、可動部品を要せずに減衰
量を容易に調節でき、且つ減衰器全体の構造を簡単にす
ることができる新規な光減衰器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel optical attenuator in which the amount of attenuation can be easily adjusted without the need for moving parts, and the structure of the entire attenuator can be simplified.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討・研究した結果、垂直磁化の磁
気光学材料を可変の印加磁界中で用いることで、回折現
象に基づき該材料を通過した光量を適宜調節できること
を見出し、本発明の本光減衰器を完成するに至った。
[Means for Solving the Problems] As a result of intensive study and research in order to solve the above problems, the present inventors have found that by using a magneto-optical material with perpendicular magnetization in a variable applied magnetic field, a magnetic field can be detected based on the diffraction phenomenon. We have discovered that the amount of light passing through the material can be adjusted appropriately, and have completed the optical attenuator of the present invention.

【0008】すなわち、本発明は、磁界を印加しない状
態では多磁区構造を有し且つ磁区内の光の進行方向と平
行な磁化成分が隣接する磁区で互いに異なる磁気光学素
子と、該磁気光学素子に可変強度の磁界を印加できる手
段とを備える光減衰器を提供するものである。
That is, the present invention provides a magneto-optical element which has a multi-domain structure when no magnetic field is applied, and in which magnetization components parallel to the direction of propagation of light in the magnetic domains differ from each other in adjacent magnetic domains, and the magneto-optical element. The present invention provides an optical attenuator comprising means for applying a magnetic field of variable strength to the optical attenuator.

【0009】本発明に用いる磁気光学素子は、磁界を印
加しないときに、多磁区構造を有する材料であって、入
射光の進行方向に対する磁化ベクトル成分が隣接する磁
区で互いに異なるように入射光に対して配置される。磁
気光学素子の入射光に対する配置は、図1に示すように
、隣接する磁区内の磁化方向が入射光と平行であり且つ
互いに平行であることが好ましいが、図5及び図6に示
すように、垂直磁化を有する磁気光学素子自体を入射光
に対して斜めの配置にすることもできる。また、光減衰
量の調節等の目的で磁気光学素子を複数枚重ね合わせて
使用することもできる。
The magneto-optical element used in the present invention is a material that has a multi-domain structure when no magnetic field is applied, and the magneto-optical element is made of a material that has a multi-domain structure, and the magneto-optical element absorbs the incident light so that adjacent magnetic domains have different magnetization vector components in the traveling direction of the incident light. placed against. Regarding the arrangement of the magneto-optical element with respect to the incident light, as shown in FIG. 1, it is preferable that the magnetization directions in adjacent magnetic domains are parallel to the incident light and parallel to each other, but as shown in FIGS. 5 and 6. The magneto-optical element itself having perpendicular magnetization can also be arranged obliquely with respect to the incident light. Furthermore, a plurality of magneto-optical elements can be stacked and used for purposes such as adjusting the amount of optical attenuation.

【0010】上記のような磁界を印加しない状態で多磁
区構造を有する材料としては、例えば、LPE法等によ
り作製したBi置換稀土類鉄ガーネット材料、稀土類鉄
ガーネット、オルソフェライト等を挙げることができる
が、特にこれらに限定されず、本発明の目的を達成でき
る範囲内で多磁区構造を有する種々の材料を用いること
ができる。これらの材料を、磁化容易軸が面と垂直な方
向となるように切り出すことによって、一般に、垂直磁
化の薄膜状が得られ、本発明の素子として用いることが
できる。特に、LPE法により作製したBi置換稀土類
鉄ガーネット膜の場合は、成長誘導磁気異方性により特
別の処理をしなくてもそのままで垂直磁化性を有してお
り、本発明の目的を達成する上で好ましい。しかも、こ
のBi置換稀土類鉄ガーネット材料はファラデー回転能
が大きいため、薄い厚さで大きな回転損失が得られると
いう点からも好適である。
[0010] Examples of materials that have a multi-domain structure without applying a magnetic field as described above include Bi-substituted rare earth iron garnet materials, rare earth iron garnets, orthoferrites produced by the LPE method, etc. However, the material is not particularly limited to these materials, and various materials having a multi-domain structure can be used within the range that can achieve the purpose of the present invention. By cutting these materials so that the axis of easy magnetization is perpendicular to the surface, a thin film with perpendicular magnetization can generally be obtained, which can be used as the element of the present invention. In particular, in the case of the Bi-substituted rare earth iron garnet film produced by the LPE method, it has perpendicular magnetization as it is without any special treatment due to growth-induced magnetic anisotropy, achieving the objective of the present invention. It is preferable to do so. In addition, this Bi-substituted rare earth iron garnet material has a large Faraday rotation ability, so it is suitable from the viewpoint that a large rotation loss can be obtained with a small thickness.

【0011】上記のような磁気光学材料に光を透過させ
ると、透過光の偏光面はそれぞれの磁区の磁化成分に応
じてファラデー回転角を異にするため、該材料は回折格
子として作用して一部の光は回折される。この回折光は
、図1に示すような光学系では、受光側光ファイバに受
光されず、その結果、光ファイバに入射する光は減衰す
ることになる。
When light is transmitted through the above magneto-optical material, the polarization plane of the transmitted light has a different Faraday rotation angle depending on the magnetization component of each magnetic domain, so the material acts as a diffraction grating. Some light is diffracted. In the optical system shown in FIG. 1, this diffracted light is not received by the receiving optical fiber, and as a result, the light incident on the optical fiber is attenuated.

【0012】本発明で用いる磁気光学素子に可変強度の
磁界を印加することができる手段として、電気的に光の
減衰量を制御する場合には電磁石を、また手軽なものと
して位置を可動にした永久磁石を使用することができる
が、特にこれらに限定されない。かかる磁界印加手段は
、図1に示すように、磁界が磁化成分と平行に印加され
るように配置するのが好ましい。
As a means for applying a magnetic field of variable strength to the magneto-optical element used in the present invention, an electromagnet is used to electrically control the amount of attenuation of light, and as a simple means, an electromagnet whose position is movable is used. Permanent magnets can be used, but are not particularly limited thereto. The magnetic field applying means is preferably arranged so that the magnetic field is applied parallel to the magnetization component, as shown in FIG.

【0013】また、本発明の光減衰器に、上記磁界印加
手段の代わりに、変調された磁界を印加できる手段を用
いて光変調器として用いることができる。更に、可変の
変調周波数で磁界を印加できる手段を用いて可変変調周
波数の光変調器として用いることもできる。
Furthermore, the optical attenuator of the present invention can be used as an optical modulator by using means capable of applying a modulated magnetic field in place of the above magnetic field applying means. Furthermore, it can also be used as a variable modulation frequency optical modulator by using means that can apply a magnetic field at a variable modulation frequency.

【0014】本発明の減衰器は、上記のように配置した
磁界印加手段による磁界強度を適宜調節して磁気光学素
子から射出光強度を自由に減衰できる。本発明の減衰器
の光源に対する配置は、実施例に示したように、種々の
配置が考えられるが、特にそれらに限定されない。また
入出力は、特に、光減衰器の用途から光ファイバが好適
であるが、特にそれらに限定されず、種々の用途に使用
できる。
The attenuator of the present invention can freely attenuate the intensity of the light emitted from the magneto-optical element by appropriately adjusting the magnetic field intensity by the magnetic field applying means arranged as described above. The arrangement of the attenuator of the present invention with respect to the light source may be various as shown in the embodiments, but is not particularly limited thereto. Further, for input/output, optical fibers are particularly suitable for use as optical attenuators, but the present invention is not limited thereto and can be used for various purposes.

【0015】[0015]

【作用】前記のような多磁区構造を有する磁気光学素子
からの回折損失は、印加磁界により磁壁の移動を介して
変化するので、印加磁界の強度を変化することにより光
の減衰量を可変に調節できる。一般に回折損失は印加磁
界が0のとき最大になり、印加磁界が増すと磁壁の移動
により回折損失が減少する。そして飽和磁界以上では、
該素子の多磁区構造は単磁区構造に変化するので回折は
生じなくなる。また、飽和のファラデー回転角が90°
で、印加磁界が0の場合に計算上すべての光が回折され
ることになる。減衰量を大きくするには、回転角を90
°に近づける以外に、素子を多数枚重ねることによって
も実現できる。このように本発明では、磁気光学素子に
よる回折損失によって直接光の強度を調節しているので
、偏光子を省略でき、構造上の有利になる。
[Operation] Diffraction loss from a magneto-optical element having a multi-domain structure as described above changes through the movement of domain walls due to the applied magnetic field, so the amount of attenuation of light can be varied by changing the intensity of the applied magnetic field. Can be adjusted. Generally, the diffraction loss is maximum when the applied magnetic field is 0, and as the applied magnetic field increases, the diffraction loss decreases due to the movement of the domain walls. And above the saturation magnetic field,
Since the multi-domain structure of the element changes to a single-domain structure, diffraction no longer occurs. In addition, the Faraday rotation angle of saturation is 90°
Therefore, when the applied magnetic field is 0, all light is calculated to be diffracted. To increase the amount of attenuation, set the rotation angle to 90
In addition to making it close to °, it can also be achieved by stacking a large number of elements. As described above, in the present invention, since the intensity of light is directly adjusted by the diffraction loss caused by the magneto-optical element, a polarizer can be omitted, which is advantageous in terms of structure.

【0016】以下に本発明の実施例を示すが、本発明は
それらに限定されるものではない。
Examples of the present invention are shown below, but the present invention is not limited thereto.

【0017】[0017]

【実施例】【Example】

実施例1 図1に、本発明の光減衰器の一具体例を用いた光学系を
示す。光学系は、印加磁界がないときに多磁区構造を有
する磁気光学材料1、磁界印加手段2、コリメータレン
ズ3及び3’並びに光ファイバ4及び4’から構成され
ている。上記系において、磁界印加手段2は位置を可動
にした円筒形状の永久磁石であり、磁界印加手段2は磁
気光学材料1の磁化の向きと平行な磁界を印加する。コ
リメータレンズ3及び3’は、光ファイバの光軸上にて
素子1の両側に配置されて、レンズ3はファイバ4から
射出する光を平行ビームに変換し、レンズ3’は平行ビ
ームをファイバ4’へ集光するように働く。磁気光学材
料1として、LPE法により作製したBi1.4 Y1
.6 Fe5 O12  の材料を用いた。この材料は
垂直磁化性を有していた。この材料の厚さを400μm
とした。この系において、磁界強度を0から徐々に大き
くすることによって磁気光学材料1からの回折損失が低
下し、光ファイバ4’への入射光が増加する。磁界を印
加しない状態での光減衰器の損失は12dBであった。 徐々に磁界を印加すると、損失は徐々に減少し、約1.
5kOeの磁界の下で損失は2dBとなった。これ以上
の磁界を印加しても、損失は2dBのまま変化しなかっ
た。
Example 1 FIG. 1 shows an optical system using a specific example of the optical attenuator of the present invention. The optical system is composed of a magneto-optical material 1 which has a multi-domain structure when no magnetic field is applied, a magnetic field applying means 2, collimator lenses 3 and 3', and optical fibers 4 and 4'. In the above system, the magnetic field applying means 2 is a cylindrical permanent magnet whose position is movable, and the magnetic field applying means 2 applies a magnetic field parallel to the direction of magnetization of the magneto-optical material 1. Collimator lenses 3 and 3' are arranged on both sides of the element 1 on the optical axis of the optical fiber, so that the lens 3 converts the light emerging from the fiber 4 into a parallel beam, and the lens 3' converts the parallel beam into the fiber 4. It works to focus light on '. Bi1.4 Y1 produced by LPE method as magneto-optical material 1
.. A material of 6 Fe5 O12 was used. This material had perpendicular magnetization. The thickness of this material is 400μm
And so. In this system, by gradually increasing the magnetic field strength from 0, the diffraction loss from the magneto-optic material 1 decreases, and the amount of light incident on the optical fiber 4' increases. The loss of the optical attenuator without applying a magnetic field was 12 dB. When the magnetic field is gradually applied, the loss gradually decreases to about 1.
The loss was 2 dB under a magnetic field of 5 kOe. Even if a larger magnetic field was applied, the loss remained at 2 dB.

【0018】実施例2 図2は、本発明の光減衰器の別の具体例を用いた光学系
を示す図である。磁気光学材料1がファイバ端部間に直
接挿入されており、コリメータレンズがない以外は、実
施例1の光学系と同様の構成である。この態様は、レン
ズを特に必要としない系に好適であり、一層簡略な構造
にすることができる。
Embodiment 2 FIG. 2 is a diagram showing an optical system using another specific example of the optical attenuator of the present invention. The structure is similar to that of the optical system of Example 1, except that the magneto-optic material 1 is inserted directly between the fiber ends and there is no collimator lens. This aspect is suitable for a system that does not particularly require a lens, and allows for a simpler structure.

【0019】実施例3 図3は、図2に示した具体例において光ファイバの端面
及び磁気光学素子を斜め配置にすることにより、ファイ
バ端面からの戻り反射を防止することができる光学系配
置を示す。
Embodiment 3 FIG. 3 shows an optical system arrangement that can prevent return reflection from the fiber end surface by arranging the end surface of the optical fiber and the magneto-optical element obliquely in the specific example shown in FIG. show.

【0020】実施例4 図4は、図3の配置において、磁気光学材料を複数枚重
ねて配置した態様であって、減衰量を一層大きくしたい
ときに好適な配置である。
Embodiment 4 FIG. 4 shows an embodiment in which a plurality of magneto-optical materials are stacked in the arrangement shown in FIG. 3, and is a suitable arrangement when it is desired to further increase the amount of attenuation.

【0021】[0021]

【発明の効果】本発明の光減衰器は、構造が極めて簡単
であり、外部磁界を変化させることにより容易に減衰量
を可変にできる。更に、光学系に可動部を持たないため
に、装置の信頼性が高い。
The optical attenuator of the present invention has an extremely simple structure, and the amount of attenuation can be easily varied by changing the external magnetic field. Furthermore, since the optical system does not have any moving parts, the reliability of the device is high.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の光減衰器の一具体例を用いた光学
系を示す図である。
FIG. 1 is a diagram showing an optical system using a specific example of an optical attenuator of the present invention.

【図2】  従来型の可動構造の減衰部5とコリメータ
部3とからなる可変減衰器を示す。
FIG. 2 shows a variable attenuator consisting of a conventional movable damping part 5 and a collimator part 3;

【図3】  図2に示した光減衰器の減衰部を拡大した
図である。
3 is an enlarged view of the attenuation section of the optical attenuator shown in FIG. 2. FIG.

【図4】  磁気光学材料がファイバ間に直接挿入され
た本発明の別の光減衰器の一具体例を用いた光学系を示
す図である。
FIG. 4 is a diagram illustrating an optical system using another embodiment of the optical attenuator of the present invention in which a magneto-optic material is inserted directly between fibers.

【図5】  光ファイバ端面及び磁気光学素子を斜め配
置にした本発明の光減衰器の一具体例を用いた光学系を
示す図である。
FIG. 5 is a diagram showing an optical system using a specific example of the optical attenuator of the present invention in which an optical fiber end face and a magneto-optical element are arranged obliquely.

【図6】  磁気光学材料を光軸上に複数枚重ねて配置
した本発明の光減衰器の一具体例を用いた光学系を示す
図である。
FIG. 6 is a diagram showing an optical system using a specific example of the optical attenuator of the present invention in which a plurality of magneto-optic materials are stacked on the optical axis.

【符号の説明】[Explanation of symbols]

1  磁気光学材料 2  磁界印加手段 3、3’  コリメータレンズ 4、4’  光ファイバ 5  減衰部 6  ステップ可変減衰板 7  連続可変減衰板 1 Magneto-optical materials 2 Magnetic field application means 3, 3’ collimator lens 4, 4’ optical fiber 5 Attenuation section 6. Step variable damping plate 7 Continuously variable damping plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  磁界を印加しない状態では多磁区構造
を有し且つ磁区内の光の進行方向と平行な磁化成分が隣
接する磁区で互いに異なる磁気光学素子と、該磁気光学
素子に可変強度の磁界を印加できる手段とを備える光減
衰器。
1. A magneto-optical element which has a multi-domain structure when no magnetic field is applied, and in which magnetization components parallel to the traveling direction of light in the magnetic domains differ from each other in adjacent magnetic domains, and a magneto-optical element having a variable intensity. and means capable of applying a magnetic field.
【請求項2】  磁界を印加しない状態では多磁区構造
を有し且つ磁区内の光の進行方向と平行な磁化成分が隣
接する磁区で互いに異なる磁気光学素子と、該磁気光学
素子に変調された磁界を印加できる手段とを備える光変
調器。
2. A magneto-optical element that has a multi-domain structure when no magnetic field is applied, and in which magnetization components parallel to the traveling direction of light in the magnetic domains are different from each other in adjacent magnetic domains; and means capable of applying a magnetic field.
【請求項3】  複数枚の上記磁気光学素子を光の進行
方向に重ねて備える請求項1の光減衰器。
3. The optical attenuator according to claim 1, further comprising a plurality of said magneto-optical elements stacked in the direction of propagation of light.
【請求項4】  請求項1の光減衰器を光ファイバ間に
用いる光ファイバ用光減衰器。
4. An optical attenuator for optical fibers using the optical attenuator according to claim 1 between optical fibers.
【請求項5】  磁気光学素子としてLPE法により作
製したBi置換した稀土類鉄ガーネット膜を用いる請求
項1〜4のいずれか一項の光減衰器または光変調器。
5. The optical attenuator or optical modulator according to claim 1, wherein a Bi-substituted rare earth iron garnet film produced by the LPE method is used as the magneto-optical element.
JP15950091A 1991-06-04 1991-06-04 Optical attenuator Withdrawn JPH04358119A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15950091A JPH04358119A (en) 1991-06-04 1991-06-04 Optical attenuator
US07/892,468 US5477376A (en) 1991-06-04 1992-06-02 Optical attenuators and optical modulators employing magneto-optic element
US08/526,336 US5619367A (en) 1991-06-04 1995-09-11 Apparatus and method for measuring magnetic fields employing magneto-optic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15950091A JPH04358119A (en) 1991-06-04 1991-06-04 Optical attenuator

Publications (1)

Publication Number Publication Date
JPH04358119A true JPH04358119A (en) 1992-12-11

Family

ID=15695127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15950091A Withdrawn JPH04358119A (en) 1991-06-04 1991-06-04 Optical attenuator

Country Status (1)

Country Link
JP (1) JPH04358119A (en)

Similar Documents

Publication Publication Date Title
US6275323B1 (en) Optical attenuator
JP2815509B2 (en) Optical attenuator
JP3779054B2 (en) Variable optical filter
KR970066614A (en) Optical Variable Attenuator
TW408528B (en) Optical attenuator using isolator and optical communications system including the same
US6018411A (en) Optical device utilizing magneto-optical effect
US5477376A (en) Optical attenuators and optical modulators employing magneto-optic element
US7006273B2 (en) Faraday rotation device and optical device using same
JP3408738B2 (en) Faraday rotator
US8854716B2 (en) Reflection type variable optical attenuator
US3870397A (en) Thin film magneto-optic switch
US20040027639A1 (en) Magneto-optic optical device
US4236782A (en) Device for modulating optical radiation by a variable magnetic field
US7379226B2 (en) Variable optical attenuator
JPH04358119A (en) Optical attenuator
JP3583515B2 (en) Polarization scrambler device
US3515457A (en) Magnetically-controlled beam deflector
JPS60200225A (en) Faraday rotator
JPH05119290A (en) Light attenuator and light modulator
JPH04128715A (en) Optical modulator
WO1981002932A1 (en) Electro-optic devices using stark-induced birefringence and dichroism
JP2001249313A (en) Variable optical attenuator utilizing faraday effect
JP3936451B2 (en) Optical attenuator module
JP2015034900A (en) Optical device
JP3065142B2 (en) Optical magnetic field sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903