JPH0435751A - Superfine powder classifier - Google Patents

Superfine powder classifier

Info

Publication number
JPH0435751A
JPH0435751A JP14226090A JP14226090A JPH0435751A JP H0435751 A JPH0435751 A JP H0435751A JP 14226090 A JP14226090 A JP 14226090A JP 14226090 A JP14226090 A JP 14226090A JP H0435751 A JPH0435751 A JP H0435751A
Authority
JP
Japan
Prior art keywords
fine powder
axis
powder
pipe
opened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14226090A
Other languages
Japanese (ja)
Other versions
JP2946229B2 (en
Inventor
Kantaro Kaneko
貫太郎 金子
Mutsuyasu Kawashima
睦泰 河島
Chiaki Cho
趙 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP14226090A priority Critical patent/JP2946229B2/en
Publication of JPH0435751A publication Critical patent/JPH0435751A/en
Application granted granted Critical
Publication of JP2946229B2 publication Critical patent/JP2946229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

PURPOSE:To continuously carry out the classification of superfine powder with high preciseness and to facilitate the maintenance by opening a supply port of material to be classified and providing the flow passage having annular cross-section or plural pipe ways having same cross-section disposed on the same circumference symmetrical to the axis so as to be freely rotatable. CONSTITUTION:The material S to be classified in the mixed state of coarse powder and fine powder is sent in the classifier from the supply port 2, and receives the centrifugal force in the pipe ways 3 rotated in high speed, and the classifying action works by the difference of centrifugal force due to the difference of particle size. Moreover, the pipe ways 3 are forwardly spread in the shape of unfolded fan so that the material receives stronger centrifugal force and advancing action in the pipe ways and smoothly reaches the terminal end. Projecting separation plates 5 are protruded to the flow passage so that the coarse powder and fine powder which are already separated respectively to the outside and to the inside of the pipe ways and flow forward, are clearly separated from their advancing ways, and only coarse powder G is separated to the outside through coarse powder discharge ports 4. The remained fine powder separated by the separation plates 5 is introduced to pipe ways 6 of fine powder, and advances to be recovered from a discharge port 7 of fine powder as fine powder F. By this method, only the fine powder of uniform particle size in high preciseness is always separated and recovered.

Description

【発明の詳細な説明】 「産業上の利用分野1 本願発明は、ニューセラミックスをはじめ最新の微粉材
料を取扱う上で必須の超微粉分級機に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to an ultrafine powder classifier that is essential for handling the latest fine powder materials including new ceramics.

従来の技術: 粒i子かまちまちの粗粒と微粉の入り混った混合粉粒体
を、粒径ごとに分離して所望の粒(¥のみの微粉を精度
高く取り出すことは、ニューセラミックスの製造をはじ
め、広範な分野において求められる技術である。
Conventional technology: Separating a mixed powder mixture of coarse particles and fine particles by particle size and extracting the desired particles (only ¥) with high precision is a new ceramics technology. This technology is required in a wide range of fields, including manufacturing.

このため粉粒体のふくまれる固液混合のスラリーヤ、含
塵気流を処理して固体分のみを分離回収するために数多
くの研究や開発が進められてきた。
For this reason, much research and development has been carried out to treat solid-liquid slurry containing powder and granular materials and to separate and recover only the solid components by processing dust-containing airflow.

粉粒体を含む気流を急激に方向転換させ慣性力を利用し
て微粉を分級する方式を慣性分級と呼び、その−例とし
て特開昭55−167072号公報・第6図を説明する
A method of classifying fine powder by rapidly changing the direction of an air flow containing powder and granules and utilizing inertial force is called inertial classification, and FIG. 6 of JP-A-55-167072 will be described as an example thereof.

図において密閉容器10内において容器内の空気を吸引
して負圧とし、この中て固気混合の気流を通す管路11
を開口してノズル12を形成すると、微粉Faのみノズ
ルから吸引して管路外へ案内され、粗粒Ga<3慣性に
よってそのまま管路を通り扱けて行くことによって粗細
分級をしようとするものである。
In the figure, air inside the sealed container 10 is suctioned to create a negative pressure, and a pipe line 11 through which a solid-gas mixed air flow is passed.
When the nozzle 12 is formed by opening the nozzle 12, only the fine powder Fa is sucked through the nozzle and guided out of the pipe, and the coarse particles Ga<3 are allowed to pass through the pipe as they are due to inertia and are handled to achieve coarse classification. It is.

気流を旋回させて遠心力を動かせ粉体のみを分離回収す
る自由渦型は、集塵機のサイクロンとして広く慣用され
、分離の効果を向上するために多くの提案もある(例え
ば特開昭59−49817号公報・第7図)。
The free-vortex type, which swirls airflow to move centrifugal force to separate and collect only powder, is widely used as a cyclone in dust collectors, and many proposals have been made to improve the separation effect (for example, Japanese Patent Application Laid-Open No. 59-49817 Figure 7).

一方、固液混合のスラリーを処理して遠心力の場におい
て所望のri1¥以下の微粉だけを回収しようとする回
分式遠心分離機もある(例えば特開昭63−22475
2号公報・第8図)。
On the other hand, there is also a batch centrifuge that processes solid-liquid mixed slurry and collects only fine powder with a desired rI of less than 1 yen in a field of centrifugal force (for example, Japanese Patent Laid-Open No. 63-22475
Publication No. 2, Figure 8).

図において固定ケーシング13内に回転軸14に保持さ
れた円筒形回転ボウル15を高速回転する構成になって
いる。材料のスラリーは回転ボウルの内側下方部の供給
口16から供給され、回転による遠心力によって分級さ
れて、微粉と液のみか回転ボウルの上方にある取出口1
7より取出して回収される。この発明の要旨は供給され
たスラリーが余りに早く取出口へ達して分級作用かきわ
めて不十分なので、スラリーの流れ方向に交差する様に
もぐり堰18も設けたことを特徴に謳っている。
In the figure, a cylindrical rotating bowl 15 held on a rotating shaft 14 within a fixed casing 13 is rotated at high speed. The slurry of material is supplied from the supply port 16 at the lower part of the inner side of the rotating bowl, and is classified by the centrifugal force caused by the rotation, and is divided into only fine powder and liquid from the take-out port 1 at the upper part of the rotating bowl.
7 and collected. The gist of this invention is that since the supplied slurry reaches the outlet too quickly and the classification effect is extremely insufficient, a submerged weir 18 is also provided to cross the flow direction of the slurry.

1発明か解決しようとする課題1 最初に掲げた従来技術である慣性力方式は分離力か弱く
、密閉器内の開口部(ノズル)においてのみ瞬間的に作
用するものであるから、余程強力な吸引力を以ってして
も効率的にはきわめて低いレベルにあると言わざるを得
ない。
1. Invention or problem to be solved 1. The inertial force method, which is the prior art listed first, has a weak separation force and only acts instantaneously at the opening (nozzle) inside the seal. Even with the suction power, it must be said that the efficiency is at an extremely low level.

旋回流による遠心力を利用する方式は本来固体(粉塵)
と気体とを分離するのか使命であり、粉粒体をざらに粒
径別に分離回収するためには、強力な気流速度と広大な
分離室とを必要とするであろうから、設備面積やその費
用から見て到底採用し難いと考えられる。
The method that uses centrifugal force due to swirling flow is originally a solid (dust)
The mission is to separate the powder from the gas, and in order to roughly separate and recover the powder and granules by particle size, a powerful airflow velocity and a vast separation chamber are required, so the equipment area and space are limited. Considering the cost, it is considered difficult to adopt this method.

スラリーの湿式分級は回転ボウル中の遠心力の差を利用
するもので、遠心分離機の典型的な方式である。この方
式については所定の粒径以上の粒子の沈降速度を遠心力
で高めて短時間に沈澱物層Gbへ沈積させ、微粒子層ス
ラリーFbを分級回収するのであるか、沈澱物層へ行か
ず微粒子層スラIノー内に残るのはストークスの抵抗式
によって理論上決定できるが、この式か適用できるのは
きわめて濃度の小さなスラリーに留まるので非工業的で
あり、実際の生産レベルにあっては回転ホウル内のスラ
リーは操作中tごプツトストックとして滞留して了うの
で、後から供給されても、スラリーの平衡液面上を上滑
りに短絡して分級の余地かきわめて小さいと考えられる
。このような短絡を防止するために、もぐり堰1Bを設
けて供給スラリーの回転ボウル内で滞留時間を延長して
遠心力の場に留め、分級精度を高めて行こうとするので
あるか、連続的に操作をする限り、回転ボウルの内壁に
添着する沈澱層の層厚は肥大するばかりだから、遠心力
の強さは減退する方向にあり、分級の精度は次第に低下
すると言っても差支えないいのではないか。その他回転
体中の遠心力の場を利用する方式では常に分級の継続か
精度の劣化を誘発するという課題かつきまとう。
Wet classification of slurry utilizes the difference in centrifugal force in a rotating bowl, and is a typical method for centrifugal separators. Regarding this method, the sedimentation speed of particles larger than a predetermined particle size is increased by centrifugal force to deposit them in the sediment layer Gb in a short time, and the fine particle layer slurry Fb is classified and collected, or the fine particles do not go to the sediment layer and are The amount remaining in the layer slurry can be determined theoretically using Stokes' resistance equation, but this equation can only be applied to slurries with extremely small concentrations, so it is non-industrial, and at an actual production level, rotation Since the slurry in the hole stays as a put stock during operation, even if it is supplied later, it is thought that there is very little room for classification due to short-circuiting due to upward slipping on the equilibrium liquid level of the slurry. In order to prevent such short circuits, the slurry 1B is installed to extend the residence time of the supplied slurry in the rotating bowl, keeping it in the field of centrifugal force, and improving the classification accuracy. As long as the operation is continued, the thickness of the precipitate layer adhering to the inner wall of the rotating bowl will only increase, so it is safe to say that the strength of the centrifugal force will decrease and the accuracy of classification will gradually decrease. Isn't it? Other methods that utilize the centrifugal force field in a rotating body always have the problem of continuing classification or inducing deterioration in accuracy.

本願発明は以上の課題を解決するために乾式(気流)、
湿式(スラリー〉を問わず、精度の高い超微粉分級を常
に持続でき、かつ構成も簡単で保全の容易な超微粉分級
機の提供を目的とする。
In order to solve the above problems, the present invention uses a dry method (airflow),
The purpose of the present invention is to provide an ultrafine powder classifier that can always maintain highly accurate ultrafine powder classification regardless of wet type (slurry), has a simple configuration, and is easy to maintain.

;課題を解決するための手段1 本願発明に係る超微粉分@機は、回転軸線上に被分級材
料の供給口を開口し、軸線より対称的に角度を以って末
拡がり、断面が環状又は軸線に対して対称的な同一円周
上に均等割り付けされて配置されている複数個の同一断
面形状の管路を回転自在に設け、末拡がりの終端または
これに加えてその途中においても管路の上流側へ向けて
突出した分離板を伴う環状又は前記同一断面形状の管路
に各々取付けた管状の粗粉排出口を開口し、両排出口を
短絡する微粉の管路が軸線上で微粉排出口を開口するこ
とによって前記の課題を解決した。
Means for Solving the Problems 1 The ultrafine powder separation @ machine according to the present invention has a feed port for the material to be classified that is opened on the axis of rotation, spreads out at an angle symmetrically from the axis, and has an annular cross section. Alternatively, a plurality of conduits with the same cross-sectional shape arranged evenly on the same circumference symmetrical to the axis are rotatably provided, and the conduit can be installed at the end of the distal expansion or in addition to this, in the middle of the conduit. A tubular coarse powder discharge port attached to each pipe having a ring shape or the same cross-sectional shape with a separating plate protruding toward the upstream side of the pipe is opened, and a fine powder pipe that short-circuits both discharge ports is arranged on the axis. The above problem was solved by opening the fine powder discharge port.

また別態様の手段としては回転軸線上に被分級材料の供
給口を開口し、軸線より線対称的に角度を以って末拡が
り、断面か環状又は軸線に対して対称的な同一形状の管
路が同一円周上に均等割り付けされて配置されている複
数個の管路を回転自在に設け、末拡がりの終端において
管路の上流側へ突出した少くとも各1枚の分離板によっ
て仕切られた粗粉と微粉の排出口をそれぞれ開口したこ
とによっても同様に目的を達成することを示したつまた
、別態様の手段としては、回転軸線上に被分級材料の供
給口を開口し、軸線より対称的に角度を以て末拡がり、
断面か環状管路又は軸線に対して対称的な同一円周上に
均等割り付けされて配置されている複数個の同一断面形
状の管路を回転自在に設け、末拡がりの途中に管路の上
流側に向けて突出した分離板を伴う少なくとも1組以上
の環状又は前記同一断面形状に各々取付けた管状の粗粉
排出口及び末拡がりの終端部に、同一形状の微粉排出口
を開口したことによっても同様に目的を達成することを
示した。
Another method is to open the supply port for the material to be classified on the axis of rotation, expand at an angle symmetrically with respect to the axis, and have a circular cross section or a tube of the same shape symmetrical with respect to the axis. A plurality of conduits are rotatably arranged in such a manner that the conduits are equally distributed on the same circumference, and each of the conduits is partitioned by at least one separation plate that protrudes toward the upstream side of the conduit at the end of the divergent end. It has been shown that the same purpose can be achieved by opening respective discharge ports for the coarse powder and fine powder, and as another means, the supply port for the material to be classified is opened on the axis of rotation, and the discharge port for the material to be classified is opened on the axis of rotation. Spread out symmetrically at an angle,
An annular pipe or a plurality of pipes with the same cross-sectional shape arranged evenly on the same circumference that is symmetrical with respect to the axis are rotatably provided, and a pipe is installed upstream of the pipe in the middle of expansion. By opening at least one or more sets of annular or tubular coarse powder discharge ports each having a sideward protruding separation plate and having the same cross-sectional shape and a fine powder discharge port having the same shape at the end of the expanding end. was also shown to achieve the objective.

[作用・実施例] 第1図イ1口は本願発明実施例の垂直断面図であり、第
2図イ2口、ハは第1図におけるA−A断面の3態様を
示す。この実施例に基いて本願発明の詳細な説明する。
[Operation/Example] Figure 1A1 is a vertical sectional view of an embodiment of the present invention, and Figure 2A2 and C show three aspects of the AA cross section in Figure 1. The present invention will be explained in detail based on this example.

超微粉分@機1の回転軸線Cの一端に被分級材料Sの供
給口2を開口し、軸線Cより対称的に角度を常に保って
末拡がる管路3は、軸と直角に切つた断面か第2図イの
ように全長に日って環状を形成しているか、又は同図口
、ハのように軸線に対して対称的に同一断面形状の管路
が同一円周上に均等削り付けされて配置されている。す
なわち図イにおいては大径小径の2ケの漏斗を一定間隔
を置いて重ね合せた中空円錐体からなり、メロは軸に対
称なその一部だけを切り取った2ケの傾斜帯状体を根元
で繋ぎ合せた形である。
The supply port 2 for the material S to be classified is opened at one end of the rotational axis C of the ultrafine powder @ machine 1, and the conduit 3, which always expands symmetrically at an angle from the axis C, has a cross section cut at right angles to the axis. Or, as shown in Figure 2 A, the pipes form an annular shape along the entire length, or pipes with the same cross-sectional shape symmetrically with respect to the axis are machined evenly on the same circumference as shown in Figure 2 and C. attached and placed. In other words, in Figure A, the hollow cone consists of two large and small diameter funnels stacked one on top of the other at a regular interval, while Mello has two inclined belt-like bodies with only a portion cut out, symmetrical to the axis, at the base. It is a connected form.

この管路3は被分級材料の流れの下流側に末拡がりに軸
線から離れて行き、最も遠く離れた端部て環状の粗粉の
排出口4を開口し、この開口端から管路の上流側(入口
側)へ向けて突出した分離板5を突設している。このた
め、供給口2から粗細と微粉の混合状態で機内へ送り込
まれた被分級材料Sは高速に回転する管路3の中で遠心
力を受け、粗粉はど管路の外周側へ押しやられて、粒度
の差による遠心力の差によって分級作用が発現する。
This pipe line 3 widens away from the axis on the downstream side of the flow of the material to be classified, opens an annular coarse powder discharge port 4 at the farthest end, and from this open end upstream of the pipe line. A separating plate 5 is provided to protrude toward the side (inlet side). Therefore, the material S to be classified, which is fed into the machine from the supply port 2 in a mixed state of coarse and fine powder, is subjected to centrifugal force in the rapidly rotating pipe 3, and the coarse powder is pushed toward the outer circumference of the pipe. When crushed, the difference in centrifugal force due to the difference in particle size causes a classification effect.

しかも管路3は前進するほど末拡がりとなってより強い
遠心力を受けるから、材料は分級されつ)管路内をさら
に前進しようとする作用に乗せられ円滑に終端に達する
。ここで突出した分離板5は流路に向って突出して既に
管路内の外周側と内周側とに分離して進行してきた粗粉
と微粉とをここで明確にその進路を分断し、粗粉Gのみ
は遠心力によってその頂端に開口した粗粉の排出口4か
ら外部へ分離する。
Furthermore, as the pipe 3 moves forward, it becomes wider and receives a stronger centrifugal force, so that the material is classified and moved further in the pipe, smoothly reaching the end. The protruding separation plate 5 here protrudes toward the flow path and clearly divides the course of the coarse powder and fine powder that have already separated into the outer circumferential side and the inner circumferential side of the conduit and progressed, Only the coarse powder G is separated to the outside through a coarse powder discharge port 4 opened at the top end by centrifugal force.

分離板5によって分l!I′iされた残りの微粉は両排
出口を短絡する微粉の管路6へ誘導されて進み、軸線上
に開口した微粉の排出ロアから機料Fとして分離回収さ
れる。
Separation plate 5 separates 1! The remaining fine powder I'i is guided to a fine powder conduit 6 that short-circuits both discharge ports, and is separated and recovered as a material F from a fine powder discharge lower that is opened on the axis.

第1図イ2口の管路では進行方向への末広がりの態様が
一定の角度による直線を形成しているか、これは二段、
三段に折曲した複数の角度変化を付けてもよく、または
曲面であってよい。要するに遠心力か進行とともに増勢
する管路の末広がりと言う要件を満たすことが必要であ
る。
Figure 1 A: In the case of a two-port conduit, does the way it spreads out in the direction of travel form a straight line at a certain angle?
It may have a plurality of angle changes, such as three-stage bends, or it may have a curved surface. In short, it is necessary to satisfy the requirement that the centrifugal force increases at the end of the conduit as it progresses.

なお分離板として実施上は図示のようなナイフエッチが
望ましく、また微粉の誘導のため微粉の排出ロアの外部
を負圧にして吸引作用を発生させるなと公知の手段と相
合せることかより望ましい機能を発揮することは言うま
でもない。
In practice, as a separating plate, knife etching as shown in the figure is preferable, and it is more preferable to use known means to induce the fine powder by applying negative pressure to the outside of the fine powder discharge lower to avoid generating a suction effect. Needless to say, it is functional.

第1図口は別の実施例を示し、軸線Cの周囲に高速回転
する末広がりの管路3へ一端の供給口2より供給された
被分級材料Sに遠心力を加えて、外周側へ粗粉Gを内周
側に微粉Fを分離して行くか、最初の排出口4て最も粗
い粗粉Gを排出し、さらに進みつつ強い遠心力を受けて
、最終端で中間粒度の粉体Mを排出口8から排出し、残
った微粉Fのみを微粉の流路6を経て軸線上の微粉排出
ロアから回収する。
The port in Figure 1 shows another embodiment, in which a centrifugal force is applied to the material S to be classified, which is supplied from the supply port 2 at one end to the conduit 3 which rotates at high speed around the axis C and widens toward the end, to coarsely move the material S to the outer circumferential side. Either the fine powder F is separated from the powder G toward the inner circumference, or the coarsest coarse powder G is discharged from the first discharge port 4, and as it continues, it is subjected to a strong centrifugal force, and at the final end, it becomes powder M of intermediate particle size. is discharged from the discharge port 8, and only the remaining fine powder F is collected from the fine powder discharge lower on the axis through the fine powder flow path 6.

第3図、第4図、第5図は本願発明の目的を別の構成に
よって解決するものであって、第3図の超微°扮分級機
101ては、供給口102から末広がりの管路103内
へ進入した被分級材料Sが遠心力によって粗粉Gと微粉
Fとに分級されて進み、末広がりの頂点において少くと
も1枚(図では2枚)の分離板105A、105Bによ
って進路を層別に分断され、粗粉Gは供給口102に最
も近い排出口104から、また微粉Fは供給口2より最
も遠い排出0107からそれぞれ別に排出し回収される
。なお図の例では流路を仕切って三分割し、粗粉G、微
扮Fの間にある中間粒度の粉体\1を分離回収する排出
口108を設けている。
3, 4, and 5 show that the object of the present invention is solved by a different configuration, and the ultrafine classifier 101 in FIG. The material S to be classified that has entered 103 is classified into coarse powder G and fine powder F by centrifugal force and advances, and at the apex of the spread, the course is layered by at least one (two in the figure) separation plates 105A and 105B. Separately, the coarse powder G is discharged and collected from the discharge port 104 closest to the supply port 102, and the fine powder F is discharged and collected from the discharge port 0107 furthest from the supply port 2. In the illustrated example, the flow path is partitioned into three parts, and an outlet 108 is provided to separate and collect the powder \1 of intermediate particle size between the coarse powder G and the fine powder F.

第4図の超微粉分級機201も第二例とほぼ似た構成で
おるか、末広がりの管路203か球面状に形成されてい
る点か異なる。
The ultrafine powder classifier 201 in FIG. 4 has a configuration similar to that of the second example, but differs in that the conduit 203 widens at the end and is formed in a spherical shape.

なお以上で見てきたように分離板5,105゜205は
いずれもナイフェツジ状か望ましいか管路の末広がりの
態様やその終端の開口形状に合せ、最も分離が効果的な
角度で突出することが望まれる。
As we have seen above, the separation plates 5, 105 and 205 may all be knife-shaped or preferably protruded at an angle that provides the most effective separation depending on the shape of the conduit and the shape of the opening at its end. desired.

第5図の超微粉分級機は、第1図に示すものとほぼ似た
構成であるが、微粉の排出口を末広がりの管路307の
終端に設けた点が異なる。
The ultrafine powder classifier shown in FIG. 5 has a configuration similar to that shown in FIG. 1, except that a fine powder discharge port is provided at the end of a conduit 307 that widens at the end.

1発明の効果] 本願発明に係る超微粉分級機は以上に述べた作用に基き
、比較的簡単な構造であるため製作、運転、保全か容易
であるにも拘らず、粗粒を分別して効果的に排出し、常
に精度の高い粒径の揃った微粉だけを分級回収できる。
1. Effects of the invention] Based on the above-mentioned functions, the ultrafine powder classifier according to the present invention has a relatively simple structure and is easy to manufacture, operate, and maintain. It is possible to classify and collect only fine powder with a uniform particle size at all times.

とく(こ管路内での進行に伴って分級作用か強化され続
け、大きい遠心力の及ぶ場所て粗粉のみを選別排出する
効果は群を汰くものかある。
(The classification effect continues to be strengthened as it progresses through the pipe, and the effect of separating and discharging only coarse powder in areas where large centrifugal force is exerted is unique.)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ1口は本願発明の異なる実施例を示す垂直断面
図、第2図イ1口、ハは第1図イのA−A′凹断面おけ
る3態様を示す断面図、第3図。 第4区、第5図はそれぞれ異なる実施例を示す垂直断面
図、第6図から第8図まではそれぞれ別の従来技術を示
す垂直断面図。 1・・・・・・超微粉分級機  2・・・・・・供給口
3・・・・・・管路      4・・・・・・粗粉の
排出口5・・・・・・分離板     6・・・・・・
微粉の管路7・・・・・・微粉の排出口 8・・・・・・中間粒度の粉体の排出口C・・・・・・
回転軸線 F・・・・・・微粉      G・・・・・・粗粉〜
1・・・・・・中間粒度の粉体 S・・・・・・被分級
材料第21 (イ) (ロ) (ハ) 第 図 第 図
FIG. 1A is a vertical sectional view showing a different embodiment of the present invention, FIG. . Section 4 and FIG. 5 are vertical sectional views showing different embodiments, and FIGS. 6 to 8 are vertical sectional views showing different conventional techniques. 1... Ultrafine powder classifier 2... Supply port 3... Piping 4... Coarse powder outlet 5... Separation plate 6...
Pipe line 7 for fine powder...Discharge port 8 for fine powder...Discharge port C for intermediate particle size powder...
Rotation axis F...Fine powder G...Coarse powder~
1...Powder with intermediate particle size S...Material to be classified 21 (A) (B) (C) Figure Figure

Claims (3)

【特許請求の範囲】[Claims] (1)回転軸線上に被分級材料の供給口を開口し、軸線
より線対称的に角度を以って末拡がり、断面が環状又は
軸線に対して対称的な同一円周上に均等割り付けされて
配置されている複数個の同一断面の管路を回転自在に設
け、末拡がりの終端又はこれに加えてその途中において
も管路の上流側へ向けて突出した分離板を伴う環状又は
前記同一断面形状の管路に各々取付けた管状の粗粉排出
口を開口し、両排出口を短絡する微粉の管路が軸線上で
微粉排出口を開口することを特徴とする超微粉分級機。
(1) A supply port for the material to be classified is opened on the axis of rotation, and spreads out at an angle symmetrically from the axis, and the cross section is annular or evenly distributed on the same circumference symmetrical to the axis. A plurality of conduits having the same cross section are arranged in a rotatable manner, and an annular or identical pipe with a separating plate protruding toward the upstream side of the conduit at the end of the divergent end or in addition thereto, or in the middle thereof, is provided. An ultrafine powder classifier characterized in that a tubular coarse powder discharge port attached to each cross-sectional pipe is opened, and a fine powder pipe that short-circuits both discharge ports opens the fine powder discharge port on the axis.
(2)回転軸線上に被分級材料の供給口を開口し、軸線
より線対称的に角度を以って末拡がり、断面が環状又は
軸線に対して対称的な同一円周上に均等割り付けされて
配置されている複数個の同一断面の管路を回転自在に設
け、末拡がりの終端において管路の上流側へ突出した少
くとも各1組の分離板によって仕切られた粗粉と微粉の
排出口をそれぞれ開口したことを特徴とする超微粉分級
機。
(2) A supply port for the material to be classified is opened on the rotation axis, and spreads out at an angle symmetrically from the axis, and the cross section is annular or evenly distributed on the same circumference symmetrical to the axis. A plurality of pipes having the same cross section are rotatably arranged, and coarse powder and fine powder are discharged at each end of the pipe separated by at least one set of separating plates protruding toward the upstream side of the pipe. An ultrafine powder classifier characterized by having each outlet opened.
(3)回転軸線上に被分級材料の供給口を開口し、軸線
より対称的に角度を以て末拡がり、断面が環状管路又は
軸線に対して対称的な同一円周上に均等割り付けされて
配置されている複数個の同一断面形状の管路を回転自在
に設け、末拡がりの途中に管路の上流側に向けて突出し
た分離板を伴う1ヶ以上の粗粉の排出口を開口し、末拡
がりの終端部に微粉の排出口を開口し、各々の排出口形
状が環状又は前記同一断面形状に各々取付けた管状であ
ることを特徴とする超微粉分級機。
(3) A supply port for the material to be classified is opened on the axis of rotation, and is spread out at an angle symmetrically from the axis, and the cross section is arranged in a circular pipe or evenly distributed on the same circumference symmetrical to the axis. A plurality of pipes having the same cross-sectional shape are rotatably provided, and one or more coarse powder discharge ports are opened in the middle of expansion with a separating plate protruding toward the upstream side of the pipes, An ultrafine powder classifier characterized in that a fine powder discharge port is opened at the end of the widening end, and each discharge port has a ring shape or a tube shape each attached to the same cross-sectional shape.
JP14226090A 1990-05-31 1990-05-31 Ultra fine powder classifier Expired - Lifetime JP2946229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14226090A JP2946229B2 (en) 1990-05-31 1990-05-31 Ultra fine powder classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14226090A JP2946229B2 (en) 1990-05-31 1990-05-31 Ultra fine powder classifier

Publications (2)

Publication Number Publication Date
JPH0435751A true JPH0435751A (en) 1992-02-06
JP2946229B2 JP2946229B2 (en) 1999-09-06

Family

ID=15311199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14226090A Expired - Lifetime JP2946229B2 (en) 1990-05-31 1990-05-31 Ultra fine powder classifier

Country Status (1)

Country Link
JP (1) JP2946229B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063476U (en) * 1991-02-12 1994-01-18 宇佐美 守一 Dry classifier
WO2015115918A1 (en) * 2014-01-30 2015-08-06 Ong Josephine Vermiculate centrifuge device for separating oil from water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063476U (en) * 1991-02-12 1994-01-18 宇佐美 守一 Dry classifier
WO2015115918A1 (en) * 2014-01-30 2015-08-06 Ong Josephine Vermiculate centrifuge device for separating oil from water

Also Published As

Publication number Publication date
JP2946229B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
US6312594B1 (en) Insert for a cyclone separator
US6596170B2 (en) Long free vortex cylindrical telescopic separation chamber cyclone apparatus
US3590558A (en) Particle-from-fluid separator
US4756729A (en) Apparatus for separating dust from gases
GB675365A (en) Improvements in or relating to method of and apparatus for classifying particles
EP0673288B1 (en) Rotor for mechanical air classifiers
JPH1066897A (en) Cyclone, especially cyclone dust collector and cyclone classifier
JPH0258989B2 (en)
US5201422A (en) Classifier for powdery material
CN109290075A (en) Hydrocyclone separation technology device based on partial size selection
US2776053A (en) Hydraulic separating apparatus and method
US20040069705A1 (en) Long free vortex, multi-compartment separation chamber cyclone apparatus
US3667600A (en) Method and apparatus for centrifugal classification
US2731147A (en) Hydraulic classifier
JPH0435751A (en) Superfine powder classifier
JP2946230B2 (en) Ultra fine powder classifier
US2329299A (en) Pneumatic classifier
JP2946231B2 (en) Ultra fine powder classifier
HU195746B (en) Method and apparatus for separating the aggregation of grains of smaller than 300 micron size into fine and coarse phase
US2702632A (en) Particle classification
JP2807841B2 (en) Ultra fine powder classifier
US3441135A (en) Particle classification device and method
JP3180420B2 (en) Powder classifier
JPH04141251A (en) Method and device for centrifugal separation
JPS60161722A (en) Method and apparatus for mixing powders by air stream