JPH04357420A - Infrared light detecting element - Google Patents
Infrared light detecting elementInfo
- Publication number
- JPH04357420A JPH04357420A JP3143997A JP14399791A JPH04357420A JP H04357420 A JPH04357420 A JP H04357420A JP 3143997 A JP3143997 A JP 3143997A JP 14399791 A JP14399791 A JP 14399791A JP H04357420 A JPH04357420 A JP H04357420A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- infrared light
- phosphor
- light
- photodetector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 57
- 238000001514 detection method Methods 0.000 claims description 61
- JGIATAMCQXIDNZ-UHFFFAOYSA-N calcium sulfide Chemical compound [Ca]=S JGIATAMCQXIDNZ-UHFFFAOYSA-N 0.000 claims description 13
- 229910052772 Samarium Inorganic materials 0.000 claims description 12
- 229910052693 Europium Inorganic materials 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 8
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 7
- AHMCFSORHHSTSB-UHFFFAOYSA-N selanylidenecalcium Chemical compound [Se]=[Ca] AHMCFSORHHSTSB-UHFFFAOYSA-N 0.000 claims description 3
- XXCMBPUMZXRBTN-UHFFFAOYSA-N strontium sulfide Chemical group [Sr]=S XXCMBPUMZXRBTN-UHFFFAOYSA-N 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 34
- 239000011521 glass Substances 0.000 abstract description 15
- 239000000758 substrate Substances 0.000 abstract description 12
- 230000003287 optical effect Effects 0.000 abstract description 9
- 239000000843 powder Substances 0.000 abstract description 8
- 239000011230 binding agent Substances 0.000 abstract description 5
- 238000004891 communication Methods 0.000 abstract description 4
- 230000004936 stimulating effect Effects 0.000 abstract 2
- 239000005132 Calcium sulfide based phosphorescent agent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 239000011575 calcium Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- ZEGFMFQPWDMMEP-UHFFFAOYSA-N strontium;sulfide Chemical compound [S-2].[Sr+2] ZEGFMFQPWDMMEP-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- QDVBBRPDXBHZFM-UHFFFAOYSA-N calcium;selenium(2-) Chemical compound [Ca+2].[Se-2] QDVBBRPDXBHZFM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910001940 europium oxide Inorganic materials 0.000 description 2
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- -1 alkaline earth metal sulfides Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は赤外光検出素子に係わり
、特に安価で感度の高い赤外光検出素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared light detection element, and more particularly to an inexpensive and highly sensitive infrared light detection element.
【0002】0002
【従来の技術および問題点】光通信技術、光情報処理技
術の進展により、近赤外域に発光波長をもつ赤外源が近
年各所で用いられるようになってきている。これに伴い
、光部品、光材料等の製造部門や、これら部品を用いて
システムを構成する部門、またはこれらシステムの保守
をする部門で赤外光を用いた検査の需要が増大し、赤外
光検出器の需要もますます高まってきている。光通信部
品、光情報処理部品の適用領域が広くなるにつれ検査方
法も多岐にわたり必ずしも赤外光強度の正確な測定が必
要でなく、赤外光の有無だけを検知すれば充分である検
査も急速に増大しつつある。特に光部品の接続不良箇所
から漏洩する赤外光を検出することによりシステムの不
良箇所を特定する検査では赤外光の検知のみで充分であ
る場合が多い。BACKGROUND OF THE INVENTION Due to advances in optical communication technology and optical information processing technology, infrared sources with emission wavelengths in the near-infrared region have come to be used in many places in recent years. Along with this, the demand for inspection using infrared light has increased in departments that manufacture optical components and optical materials, departments that configure systems using these components, and departments that maintain these systems. Demand for photodetectors is also increasing. As the application areas of optical communication components and optical information processing components become wider, inspection methods become more diverse, and inspections that do not necessarily require accurate measurement of infrared light intensity, but merely detect the presence or absence of infrared light, are rapidly becoming more common. is increasing. In particular, in many cases, only the detection of infrared light is sufficient for an inspection in which a faulty part of a system is identified by detecting infrared light leaking from a faulty connection of an optical component.
【0003】現在、光通信用の光源としては1.3μm
帯、1.55μm帯の赤外光源が主として用いられてお
り、これら波長域の赤外光を検出する検出器としてはI
nGaAsを用いた半導体光検出器が広く用いられてい
る。これらの検出器は光強度を正確に測定できるものの
非常に高価であるという欠点があった。[0003]Currently, the light source for optical communication is 1.3 μm.
Infrared light sources in the 1.55 μm band and 1.55 μm band are mainly used, and I
Semiconductor photodetectors using nGaAs are widely used. Although these detectors can accurately measure light intensity, they have the disadvantage of being very expensive.
【0004】一方、量産性に優れ安価な光検出器として
はSiを用いた半導体光検出器があるが、1.3μm帯
、1.55μm帯の光に対して感度を有していないため
この波長域の光を利用する装置の検査に用いることがで
きない。On the other hand, a semiconductor photodetector using Si is an inexpensive photodetector that can be mass-produced, but it is not sensitive to light in the 1.3 μm band and 1.55 μm band, so this It cannot be used to inspect devices that use light in the wavelength range.
【0005】これら半導体光検出器に対し、光強度の精
密測定は困難であるが安価である光検出器として赤外輝
尽蛍光体を用いた光検出器がある。赤外輝尽蛍光体とは
、予め短波長の光を照射した後、赤外光を照射すると可
視域の発光を発生するという蛍光体である。アルカリ土
類金属の硫化物あるいはセレン化物にユーロピウム(E
u)とサマリウム(Sm)あるいはセリウム(Ce)と
サマリウム(Sm)などの2種類以上の希土類を添加し
た蛍光体が最も赤外可視変換効率の高い蛍光体としてよ
く知られている。In contrast to these semiconductor photodetectors, there is a photodetector using an infrared stimulable phosphor, which is difficult to accurately measure light intensity but is inexpensive. An infrared stimulable phosphor is a phosphor that emits light in the visible range when it is irradiated with infrared light after being irradiated with short wavelength light in advance. Europium (E) is added to alkaline earth metal sulfides or selenides.
Phosphors doped with two or more kinds of rare earth elements such as u) and samarium (Sm) or cerium (Ce) and samarium (Sm) are well known as phosphors with the highest infrared-visible conversion efficiency.
【0006】従って、赤外輝尽蛍光体は赤外光の有無を
検知するだけの検査に対して充分機能する検出器である
。そこで我々は各種赤外輝尽蛍光体を作製しその性能を
評価した。その結果、赤外光の検出感度は最大でも−3
5dBmにしか達せず、微弱な漏洩光を検出するために
は感度不足であることが判明した。これは、赤外輝尽蛍
光体を用いた赤外検知法では、赤外輝尽蛍光体によって
変換された光を肉眼によって検知するため、肉眼の光検
出能力によって検出感度の限界が規定されるためである
。[0006] Therefore, the infrared stimulable phosphor is a detector that functions sufficiently for inspections that merely detect the presence or absence of infrared light. Therefore, we created various infrared stimulable phosphors and evaluated their performance. As a result, the detection sensitivity of infrared light is -3 at maximum.
It was found that the sensitivity was insufficient to detect weak leakage light, reaching only 5 dBm. This is because in the infrared detection method using an infrared photostimulable phosphor, the light converted by the infrared photostimulable phosphor is detected by the naked eye, so the limit of detection sensitivity is determined by the light detection ability of the naked eye. It's for a reason.
【0007】[0007]
【問題点を解決するための手段】本発明は以上の欠点に
鑑みなされたものであり、赤外光検出素子をシリコン光
検出器の受光部の前面に赤外輝尽蛍光体を設けた赤外光
検出素子とすることにより安価で感度の高い赤外光検出
素子を実現したものである。[Means for Solving the Problems] The present invention has been made in view of the above-mentioned drawbacks, and it is an infrared light detecting element in which an infrared stimulable phosphor is provided in front of the light receiving part of a silicon photodetector. By using an external light detection element, an inexpensive and highly sensitive infrared light detection element is realized.
【0008】前記赤外輝尽蛍光体としては、好ましくは
硫化ストロンチウム(SrS)または硫化カルシウム(
CaS)またはセレン化カルシウム(CaSe)にユー
ロピウム(Eu)とサマリウム(Sm)を共に添加した
ものを用いる。The infrared stimulable phosphor is preferably strontium sulfide (SrS) or calcium sulfide (SrS).
CaS) or calcium selenide (CaSe) to which europium (Eu) and samarium (Sm) are added together is used.
【0009】硫化ストロンチウム(SrS)または硫化
カルシウム(CaS)またはセレン化カルシウム(Ca
Se)に添加するユーロピウム(Eu)とサマリウム(
Sm)の量は、好ましくはそれぞれ10ppm〜5%で
ある。この範囲を逸脱すると、後述の効果を発揮しない
からである。もっとも好ましくは100ppmのオーダ
である。Strontium sulfide (SrS) or calcium sulfide (CaS) or calcium selenide (CaS)
Europium (Eu) and samarium (Se) added to
The amount of Sm) is preferably 10 ppm to 5% in each case. This is because if it deviates from this range, the effects described below will not be exhibited. Most preferably it is on the order of 100 ppm.
【0010】0010
【作用】図1に示すように本発明の赤外光検出素子は赤
外輝尽蛍光体1とSi光検出器とから構成される。本発
明の赤外光検出素子では、赤外輝尽蛍光体によって赤外
光をSi光検出器が感度を有する波長域の光に変換し、
変換後の光をSi光検出器で検出することを最大の特徴
としている。これにより、従来1.3μm帯、1.55
μm帯の光に対して感度を有していないSi光検出器を
用いてこの波長域の光を検出することを可能にしたもの
である。[Operation] As shown in FIG. 1, the infrared light detection element of the present invention is composed of an infrared stimulable phosphor 1 and a Si photodetector. In the infrared light detection element of the present invention, an infrared stimulable phosphor converts infrared light into light in a wavelength range to which a Si photodetector is sensitive,
The main feature is that the converted light is detected by a Si photodetector. As a result, the conventional 1.3μm band, 1.55μm band
This makes it possible to detect light in this wavelength range using a Si photodetector that is not sensitive to light in the μm band.
【0011】以上に記載した赤外光検出機構を本発明の
赤外光検出素子、特に硫化カルシウム(CaS)にユー
ロピウム(Eu)とサマリウム(Sm)を共に添加した
赤外輝尽蛍光体(今後はCaS:Eu,Smと記載)を
用いた赤外光検出素子を例に取り詳細に説明する。The infrared light detecting mechanism described above can be used in the infrared light detecting element of the present invention, especially infrared stimulable phosphor (in the future) which is made by adding europium (Eu) and samarium (Sm) to calcium sulfide (CaS). A detailed explanation will be given by taking an example of an infrared light detection element using CaS:Eu,Sm).
【0012】図2はCaS:Eu,Smの赤外波長感度
特性を示す図である。図2から明らかなようにCaS:
Eu,Smは0.8μm〜1.7μmにわたる波長域の
赤外光に対し感度を有しているため1.3μm帯、1.
55μm帯の赤外光を検出することができる。図2の波
長域の波長をもった光がCaS:Eu,Sm赤外輝尽蛍
光体に入射すると図3に示す波長域の可視光に変換され
る。FIG. 2 is a diagram showing the infrared wavelength sensitivity characteristics of CaS:Eu and Sm. As is clear from Figure 2, CaS:
Eu and Sm are sensitive to infrared light in the wavelength range of 0.8 μm to 1.7 μm, so they are sensitive to infrared light in the 1.3 μm band, 1.
It can detect infrared light in the 55 μm band. When light with a wavelength in the wavelength range shown in FIG. 2 is incident on the CaS:Eu,Sm infrared stimulable phosphor, it is converted into visible light in the wavelength range shown in FIG.
【0013】図4はSi光検出器の波長感度領域を示す
図である。図4と図3を比較すると明らかなようにCa
S:Eu,Sm赤外輝尽蛍光体によって変換された可視
光の波長域はSi検出器の波長感度領域に入っているた
めSi光検出器によって効率よく検出することができる
。FIG. 4 is a diagram showing the wavelength sensitivity range of a Si photodetector. As is clear from comparing Figures 4 and 3, Ca
The wavelength range of visible light converted by the S:Eu,Sm infrared stimulable phosphor is within the wavelength sensitivity range of the Si detector, so it can be efficiently detected by the Si photodetector.
【0014】以上の過程すなわち赤外光の入射、蛍光体
内での赤外可視変換、Si光検出器による光検出により
感度よく赤外検出が可能となるものである。[0014] Infrared detection can be performed with high sensitivity through the above-mentioned process, that is, incidence of infrared light, infrared-visible conversion within the phosphor, and light detection by the Si photodetector.
【0015】[0015]
【実施例】以下本発明、赤外光検出素子について、実施
例によってさらに具体的に説明する。EXAMPLES The infrared light detecting element of the present invention will be explained in more detail by way of examples.
【0016】[0016]
【実施例1】図1において赤外可視変換部1としてCa
S:Eu,Sm蛍光体を用いたことを特徴とする赤外光
検出素子について説明する。[Example 1] In Fig. 1, Ca is used as the infrared-visible converter 1.
An infrared light detection element characterized by using S:Eu,Sm phosphor will be described.
【0017】赤外可視変換部1を作製するに当たっては
、CaS:Eu,Sm蛍光体粉末を有機バインダー中に
分散させ、ガラス基板上に塗布し乾燥させる。この蛍光
体粉末を塗布したガラスをシリコン光検出器の受光部に
接着して素子を形成した。ここで、該蛍光体に添加する
添加物の濃度は赤外可視変換効率を高めるためにEuを
500ppm、Smを150ppmとした。また、湿気
などによる蛍光体の劣化を防ぐために蛍光体を塗布した
ガラス基板は蛍光体面をシリコン光検出器の受光面に接
する向きで接着した。In producing the infrared-visible converter 1, CaS:Eu,Sm phosphor powder is dispersed in an organic binder, coated on a glass substrate, and dried. Glass coated with this phosphor powder was adhered to the light receiving part of a silicon photodetector to form an element. Here, the concentrations of the additives added to the phosphor were 500 ppm for Eu and 150 ppm for Sm in order to increase the infrared-visible conversion efficiency. In addition, to prevent deterioration of the phosphor due to moisture, etc., the glass substrate coated with the phosphor was adhered with the phosphor surface facing the light-receiving surface of the silicon photodetector.
【0018】表1は上記のようにして作製した赤外光検
出素子の1.3μm帯、1.55μm帯の赤外光に対す
る最小検出感度と、Si光検出器を用いずに肉眼によっ
て検出した場合の最小検出感度と赤外輝尽蛍光体を用い
ずにSi光検出器だけを用いて検出した場合の最小検出
感度とを比較して示したものである。この結果から、本
発明の赤外光検出素子が肉眼による検出感度と比較して
、検出感度が高いことが明らかである。Table 1 shows the minimum detection sensitivity for infrared light in the 1.3 μm band and 1.55 μm band of the infrared light detection element produced as described above, and the detection sensitivity with the naked eye without using a Si photodetector. The figure shows a comparison between the minimum detection sensitivity in the case of the phosphor and the minimum detection sensitivity in the case of detection using only the Si photodetector without using the infrared stimulable phosphor. From this result, it is clear that the infrared light detection element of the present invention has a higher detection sensitivity than that detected by the naked eye.
【0019】[0019]
【表1】[Table 1]
【0020】[0020]
【実施例2】図1において赤外可視変換部1としてSr
S:Eu,Sm蛍光体を用いたことを特徴とする赤外光
検出素子について説明する。[Embodiment 2] In FIG. 1, the infrared-visible converter 1 is Sr.
An infrared light detection element characterized by using S:Eu,Sm phosphor will be described.
【0021】赤外可視変換部1を作製するに当たっては
、SrS:Eu,Sm蛍光体粉末を有機バインダー中に
分散させ、ガラス基板上に塗布し乾燥させる。この蛍光
体粉末を塗布したガラスをシリコン光検出器の受光部に
接着して素子を形成した。ここで、該蛍光体に添加する
添加物の濃度は赤外可視変換効率を高めるためにEuを
500ppm、Smを150ppmとした。また、湿気
などによる蛍光体の劣化を防ぐために蛍光体を塗布した
ガラス基板は蛍光体面をシリコン光検出器の受光面に接
する向きで接着した。In producing the infrared-visible converter 1, SrS:Eu,Sm phosphor powder is dispersed in an organic binder, coated on a glass substrate, and dried. Glass coated with this phosphor powder was adhered to the light receiving part of a silicon photodetector to form an element. Here, the concentrations of the additives added to the phosphor were 500 ppm for Eu and 150 ppm for Sm in order to increase the infrared-visible conversion efficiency. In addition, to prevent deterioration of the phosphor due to moisture, etc., the glass substrate coated with the phosphor was adhered with the phosphor surface facing the light-receiving surface of the silicon photodetector.
【0022】表2は上記のようにして作製した赤外光検
出素子の1.3μm帯、1.55μm帯の赤外光に対す
る最小検出感度と、Si光検出器を用いずに肉眼によっ
て検出した場合の最小検出感度と赤外輝尽蛍光体を用い
ずにSi光検出器だけを用いて検出した場合の最小検出
感度とを比較して示したものである。この結果から、本
発明の赤外光検出素子が肉眼による検出感度と比較して
、検出感度が高いことが明らかである。Table 2 shows the minimum detection sensitivity for infrared light in the 1.3 μm band and 1.55 μm band of the infrared light detection element produced as described above, and the detection sensitivity with the naked eye without using a Si photodetector. The figure shows a comparison between the minimum detection sensitivity in the case of the phosphor and the minimum detection sensitivity in the case of detection using only the Si photodetector without using the infrared stimulable phosphor. From this result, it is clear that the infrared light detection element of the present invention has a higher detection sensitivity than that detected by the naked eye.
【0023】[0023]
【表2】[Table 2]
【0024】[0024]
【実施例3】図1において赤外可視変換部1としてCa
S:Eu,Sm薄膜を形成したガラス基板を用いたこと
を特徴とする赤外光検出素子について説明する。[Embodiment 3] In FIG. 1, Ca is used as the infrared-visible converter 1
An infrared light detection element characterized by using a glass substrate on which a S:Eu, Sm thin film is formed will be described.
【0025】上記素子を作製するに当たっては、まず、
ガラス基板を純水、トリクレンで洗浄し真空蒸着装置内
に設置し、ガラス基板上にユーロピウムとサマリウムを
添加したCaS蛍光体膜を10μmの厚さで形成した。
ここで、該蛍光体層は赤外可視変換素子を作製するため
に酸化ユーロピウム(Eu2O3)を500ppm、酸
化サマリウム(Sm2O3)を150ppm添加したC
aSペレットを蒸発源として電子ビーム蒸着法によって
形成した。この後、CaS:Eu,Sm薄膜を形成した
ガラス基板を適切な大きさに切断しシリコン光検出器の
受光部に接着して素子を形成した。[0025] In producing the above element, first,
The glass substrate was cleaned with pure water and trichlene and placed in a vacuum evaporation apparatus, and a CaS phosphor film doped with europium and samarium was formed on the glass substrate to a thickness of 10 μm. Here, the phosphor layer was made of carbon to which 500 ppm of europium oxide (Eu2O3) and 150 ppm of samarium oxide (Sm2O3) were added in order to produce an infrared-visible conversion element.
It was formed by electron beam evaporation using aS pellets as an evaporation source. Thereafter, the glass substrate on which the CaS:Eu, Sm thin film was formed was cut into an appropriate size and adhered to the light receiving part of a silicon photodetector to form an element.
【0026】表3は上記のようにして作製した赤外光検
出素子の1.3μm帯、1.55μm帯の赤外光に対す
る最小検出感度と、Si光検出器を用いずに肉眼によっ
て検出した場合の最小検出感度と赤外輝尽蛍光体を用い
ずにSi光検出器だけを用いて検出した場合の最小検出
感度とを比較して示したものである。この結果から、本
発明の赤外光検出素子が肉眼による検出感度と比較して
、検出感度が高いことが明らかである。Table 3 shows the minimum detection sensitivity for infrared light in the 1.3 μm band and 1.55 μm band of the infrared light detection element produced as described above, and the detection sensitivity with the naked eye without using a Si photodetector. The figure shows a comparison between the minimum detection sensitivity in the case of the phosphor and the minimum detection sensitivity in the case of detection using only the Si photodetector without using the infrared stimulable phosphor. From this result, it is clear that the infrared light detection element of the present invention has a higher detection sensitivity than that detected by the naked eye.
【0027】[0027]
【表3】[Table 3]
【0028】[0028]
【実施例4】図1において赤外可視変換部1としてCa
Se:Eu,Sm蛍光体を用いたことを特徴とする赤外
光検出素子について説明する。[Embodiment 4] In FIG. 1, Ca is used as the infrared-visible converter 1.
An infrared light detection element characterized by using Se:Eu,Sm phosphor will be described.
【0029】赤外可視変換部1を作製するに当たっては
、CaSe:Eu,Sm蛍光体粉末を有機バインダー中
に分散させ、ガラス基板上に塗布し乾燥させる。この蛍
光体粉末を塗布したガラスをシリコン光検出器の受光部
に接着して素子を形成した。ここで、該蛍光体に添加す
る添加物の濃度は赤外可視変換効率を高めるためにEu
を500ppm、Smを150ppmとした。また、湿
気などによる蛍光体の劣化を防ぐために蛍光体を塗布し
たガラス基板は蛍光体面をシリコン光検出器の受光面に
接する向きで接着した。In producing the infrared-visible converter 1, CaSe:Eu,Sm phosphor powder is dispersed in an organic binder, coated on a glass substrate, and dried. Glass coated with this phosphor powder was adhered to the light receiving part of a silicon photodetector to form an element. Here, the concentration of the additive added to the phosphor is set such that Eu
was set at 500 ppm, and Sm was set at 150 ppm. In addition, to prevent deterioration of the phosphor due to moisture, etc., the glass substrate coated with the phosphor was adhered with the phosphor surface facing the light-receiving surface of the silicon photodetector.
【0030】表4は上記のようにして作製した赤外光検
出素子の1.3μm帯、1.55μm帯の赤外光に対す
る最小検出感度と、Si光検出器を用いずに肉眼によっ
て検出した場合の最小検出感度と赤外輝尽蛍光体を用い
ずにSi光検出器だけを用いて検出した場合の最小検出
感度とを比較して示したものである。この結果から、本
発明の赤外光検出素子が肉眼による検出感度と比較して
、検出感度が高いことが明らかである。Table 4 shows the minimum detection sensitivity for infrared light in the 1.3 μm band and 1.55 μm band of the infrared light detection element produced as described above, and the sensitivity detected by the naked eye without using a Si photodetector. The figure shows a comparison between the minimum detection sensitivity in the case of the phosphor and the minimum detection sensitivity in the case of detection using only the Si photodetector without using the infrared stimulable phosphor. From this result, it is clear that the infrared light detection element of the present invention has a higher detection sensitivity than that detected by the naked eye.
【0031】[0031]
【表4】[Table 4]
【0032】なお上記実施例においては、蛍光体層とし
ては、粉末蛍光体を有機バインダーに分散したものや電
子ビーム蒸着法によって作製した蛍光体薄膜を用いたが
、本発明においては、これに限定されるものではなく、
蛍光体層形成方法としてはスパッタ法、MOCVD法、
CVD法などの各種薄膜形成法を用いた場合でも検出感
度の高い赤外光検出素子が実現できる。また、素子構成
としては反射防止を目的とする層や、蛍光体の保護を目
的とするための層などをさらに加えて形成した多層構造
の素子でも検出感度の高い赤外光検出素子が実現できる
。In the above embodiments, the phosphor layer used was a powder phosphor dispersed in an organic binder or a phosphor thin film prepared by electron beam evaporation, but the present invention is not limited to this. It is not something that is done, but
Phosphor layer formation methods include sputtering, MOCVD,
Even when various thin film formation methods such as CVD method are used, an infrared light detection element with high detection sensitivity can be realized. In addition, an infrared light detection element with high detection sensitivity can be realized even with a multilayered element formed by adding a layer for anti-reflection, a layer for protecting the phosphor, etc. .
【0033】[0033]
【発明の効果】以上述べてきたように、赤外光検出素子
を本発明構成の赤外検出素子とすること、すなわち、シ
リコン光検出器の受光部の前面に硫化ストロンチウム(
SrS)または硫化カルシウム(CaS)またはセレン
化カルシウム(CaSe)にユーロピウム(Eu)とサ
マリウム(Sm)を共に添加した赤外輝尽蛍光体を用い
た赤外可視変換部を設けたことを特徴とする赤外光検出
素子とすることによって、従来技術の有していた課題を
解決して検出感度が高く、かつ安価な赤外光検出素子を
提供することができた。Effects of the Invention As described above, by using an infrared light detection element having the structure of the present invention, that is, by using strontium sulfide (
The invention is characterized in that an infrared-visible conversion section is provided using an infrared stimulable phosphor obtained by adding both europium (Eu) and samarium (Sm) to calcium sulfide (CaS) or calcium selenide (CaSe). By providing an infrared light detection element that has a high detection sensitivity, it is possible to solve the problems of the prior art and provide an inexpensive infrared light detection element.
【図1】本発明赤外光検出素子の基本的構成を示す断面
図。FIG. 1 is a sectional view showing the basic configuration of an infrared light detection element of the present invention.
【図2】CaS:Eu,Sm赤外輝尽蛍光体の赤外波長
感度特性を示す図。FIG. 2 is a diagram showing the infrared wavelength sensitivity characteristics of CaS:Eu,Sm infrared stimulable phosphor.
【図3】CaS:Eu,Sm赤外輝尽蛍光体の赤外輝尽
発光スペクトルを示す図。FIG. 3 is a diagram showing the infrared stimulated emission spectrum of CaS:Eu,Sm infrared stimulated phosphor.
【図4】Si光検出器の波長感度特性を示す図。FIG. 4 is a diagram showing wavelength sensitivity characteristics of a Si photodetector.
1 赤外輝尽蛍光体 2 Si光検出器 1 Infrared stimulable phosphor 2 Si photodetector
Claims (2)
外可視変換部を設けた構造の赤外光検出素子において、
該赤外可視変換部に赤外輝尽蛍光体を用いたことを特徴
とする赤外光検出素子。[Claim 1] An infrared light detection element having a structure in which an infrared-visible conversion section is provided in front of a light receiving section of a silicon photodetector,
An infrared light detection element characterized in that an infrared stimulable phosphor is used in the infrared-visible conversion section.
ウム(SrS)、あるいは硫化カルシウム(CaS)、
あるいはセレン化カルシウム(CaSe)にユーロピウ
ム(Eu)とサマリウム(Sm)を共に添加したもので
あることを特徴とする請求項1記載の赤外光検出素子。2. The infrared stimulable phosphor is strontium sulfide (SrS), calcium sulfide (CaS),
2. The infrared light detection element according to claim 1, wherein europium (Eu) and samarium (Sm) are added to calcium selenide (CaSe).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3143997A JPH04357420A (en) | 1991-05-20 | 1991-05-20 | Infrared light detecting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3143997A JPH04357420A (en) | 1991-05-20 | 1991-05-20 | Infrared light detecting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04357420A true JPH04357420A (en) | 1992-12-10 |
Family
ID=15351913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3143997A Pending JPH04357420A (en) | 1991-05-20 | 1991-05-20 | Infrared light detecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04357420A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011523319A (en) * | 2008-06-11 | 2011-08-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Optical receiver for illumination system |
US8157441B2 (en) * | 2007-11-22 | 2012-04-17 | Yamatake Corporation | Temperature sensor probe |
-
1991
- 1991-05-20 JP JP3143997A patent/JPH04357420A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8157441B2 (en) * | 2007-11-22 | 2012-04-17 | Yamatake Corporation | Temperature sensor probe |
JP2011523319A (en) * | 2008-06-11 | 2011-08-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Optical receiver for illumination system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003521671A (en) | Composite nanoluminescent screen for radiation detection | |
US5831269A (en) | Radiation detector element | |
US7180065B2 (en) | Infra-red detector and method of making and using same | |
US4369367A (en) | Radiation image information read out device | |
JPS5944339B2 (en) | Radiographic image conversion method | |
Canfield et al. | Silicon photodiodes with integrated thin-film filters for selective bandpasses in the extreme ultraviolet | |
CA1123976A (en) | Radiation detection device | |
JPS6263929A (en) | Image recorder/reader | |
US6713795B2 (en) | Photodetector for ultraviolet light radiation | |
US2259372A (en) | Light sensitive device | |
JPH04357420A (en) | Infrared light detecting element | |
JP2001228254A (en) | Flat x-ray detector with alkali halogenide scintillator | |
JPS60230132A (en) | Reader for radiation image information | |
US3415989A (en) | Scintillation detector using a single crystal of gallium arsenide | |
US7446332B2 (en) | Radiation image read-out apparatus and radiation image convertor panel | |
JP2636098B2 (en) | Infrared detection method and infrared detector | |
JP2624410B2 (en) | Infrared light detector and infrared light detector | |
US6072187A (en) | Apparatus and method for reducing stray laser light in particle sensors using a narrow band filter | |
JP2636099B2 (en) | Infrared amount measuring method and infrared amount meter | |
US3699350A (en) | Radiant energy mark sensor | |
JPH1144573A (en) | Flame detector | |
RU1436794C (en) | Integral semiconductive detector of ionizing radiation and method of its production | |
JPH02105090A (en) | Radiant ray detecting device | |
JP2621750B2 (en) | Optical temperature measurement device | |
JPH0599753A (en) | Method for detecting infrared image and its detector |