JPH04354935A - Mri system - Google Patents

Mri system

Info

Publication number
JPH04354935A
JPH04354935A JP3157636A JP15763691A JPH04354935A JP H04354935 A JPH04354935 A JP H04354935A JP 3157636 A JP3157636 A JP 3157636A JP 15763691 A JP15763691 A JP 15763691A JP H04354935 A JPH04354935 A JP H04354935A
Authority
JP
Japan
Prior art keywords
phase
signal
generated
transmitted
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3157636A
Other languages
Japanese (ja)
Other versions
JP2606488B2 (en
Inventor
Naoto Iijima
直人 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3157636A priority Critical patent/JP2606488B2/en
Publication of JPH04354935A publication Critical patent/JPH04354935A/en
Application granted granted Critical
Publication of JP2606488B2 publication Critical patent/JP2606488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To achieve the removal of a pseudo signal component simply and accurately by controlling echo signals which are generated via a change process of a nuclear spin in the same phase encoding value so as to be opposite in phase while collection data are added with a coding. CONSTITUTION:An inclined coil 13 and a probe 23 for transmitting or receiving an RF signal is arranged within a magnetostatic field to be generated from a magnetostatic field magnet 12 together with an object 11 to be inspected (human body). A pulse current of a specified waveform is supplied to the inclined coil 13 from an inclination power source 14 while a waveform datum and timing information are transmitted to the inclination power source 14 from a controller 41. Moreover, an RF pulse waveform is transmitted to a modulator 21 from the controller 41 to modulate a high-frequency signal in amplitude via a phase shifter 25 from a high-frequency oscillator 24, and then, the signal is amplified with a transmitting amplifier 22 to be transmitted to the prove 23. Then, an NMR signal generated in the object 11 to be inspected is received with the probe 23 and, after transmitted to an A/D converter 33 via a phase detector 32 or the like, it is added up with a coding by means of an addition memory 34 to be stored.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、MRI装置(核磁気
共鳴断層撮影装置)に関し、とくにSSFP(定常才差
運動)状態を利用してイメージングシーケンスを行なう
MRI装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MRI apparatus (nuclear magnetic resonance tomography apparatus), and more particularly to an MRI apparatus that performs an imaging sequence using an SSFP (steady state precession) state.

【0002】0002

【従来の技術】従来より、SSFP状態を利用してイメ
ージングシーケンスを行なうMRI装置が知られている
。このイメージングシーケンスは、緩和時間T1、T2
より短い繰り返し時間で励起パルスを繰り返し照射し、
定常状態でNMR信号を発生するいわゆるSSFP状態
を実現させ、その信号を採取して画像化を行なうもので
、従来から種々のものが提案されている。このイメージ
ングシーケンスに体動補正のためのリフェーズ法を適用
しようとすると、FID信号と同時に発生する疑似信号
(エコー信号)の混入が避けられず、再構成画像のアー
ティファクトの原因となる。
2. Description of the Related Art Conventionally, MRI apparatuses that perform imaging sequences using SSFP states have been known. This imaging sequence consists of relaxation times T1, T2
Repeatedly irradiate excitation pulses with shorter repetition times,
Various methods have been proposed in the past to realize a so-called SSFP state in which an NMR signal is generated in a steady state, and to collect the signal and perform imaging. If a rephasing method for body motion correction is applied to this imaging sequence, a false signal (echo signal) generated simultaneously with the FID signal will inevitably be mixed in, causing artifacts in the reconstructed image.

【0003】そこで、励起パルスの位相を変化させたイ
メージングシーケンスと、変化させないイメージングシ
ーケンスとを行なって2組のデータを採取し、これらの
データ間の適当な加減算処理によって疑似信号を除去す
る手法が提案されている(M.Deimling et
 al. 第8回SMRM(Society of M
agnetic Resonance in Medi
cine) 演題No.842,Amsterdam,
Aug.1989など)。
[0003] Therefore, there is a method in which two sets of data are collected by performing an imaging sequence in which the phase of the excitation pulse is changed and an imaging sequence in which the phase is not changed, and the pseudo signals are removed by appropriate addition and subtraction processing between these data. It has been proposed (M. Deimling et
al. 8th SMRM (Society of M
agnetic resonance in medicine
cine) Title No. 842,Amsterdam,
Aug. 1989 etc.).

【0004】0004

【発明が解決しようとする課題】しかしながら、従来で
は、最低2回のイメージングシーケンスが必要であり、
この2回のイメージングシーケンスの間に体動などがあ
ればデータ間の加減算処理によっては疑似信号を除去す
ることはできず、アーティファクトを引き起こすことが
あるという問題がある。
[Problem to be Solved by the Invention] However, conventionally, at least two imaging sequences are required;
If there is body movement or the like between these two imaging sequences, the false signal cannot be removed by addition/subtraction processing between the data, and there is a problem in that artifacts may occur.

【0005】この発明は、上記に鑑み、FID信号と疑
似信号とが同時に生じた場合でも1回のイメージングシ
ーケンスのみで疑似信号成分を除去することができるM
RI装置を提供することを目的とする。
[0005] In view of the above, the present invention provides an M system that can remove pseudo signal components with only one imaging sequence even when an FID signal and a pseudo signal occur simultaneously.
The purpose is to provide an RI device.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明によるMRI装置においては、緩和時間よ
り短い繰り返し時間で励起パルスを繰り返し照射して定
常状態においてNMR信号を発生する状態を現出させ、
位相エンコーディング量を同じにして複数の励起パルス
を与えてその励起パルスの位相を制御し、核スピンの位
相の2つ以上の変化プロセスを経て発生するエコー信号
を、それらの位相が互いに逆向きとなるようにして時間
的に同時に発生させて互いに打ち消し合うようにし、さ
らに、同じ位相エンコーディング量のものとして収集し
たデータ同士を符号付け加算することによって、上記の
打ち消し合いの結果残った成分を除去する。これにより
1回のイメージングシーケンスのみで、エコー信号成分
のみを十分に除去することが可能となる。
[Means for Solving the Problems] In order to achieve the above object, the MRI apparatus according to the present invention creates a state in which an NMR signal is generated in a steady state by repeatedly irradiating excitation pulses with a repetition time shorter than the relaxation time. let it come out,
The phase of the excitation pulses is controlled by applying multiple excitation pulses with the same amount of phase encoding, and the echo signals generated through two or more changing processes of the phase of the nuclear spin are generated so that their phases are opposite to each other. The components that remain as a result of the above cancellation are removed by making them occur at the same time in time so that they cancel each other out, and then adding the signs of the data collected as having the same amount of phase encoding. . This makes it possible to sufficiently remove only the echo signal component with only one imaging sequence.

【0007】[0007]

【実施例】以下、この発明の一実施例について図面を参
照しながら詳細に説明する。図1において、静磁場マグ
ネット12が発生する静磁場内に被検体(人体)11が
配置され、また、その静磁場空間内に傾斜コイル13と
、RF信号を送受するプローブ23とが配置される。 傾斜コイル13には傾斜電源14より所定の波形のパル
ス電流が流されて、静磁場に重畳するような傾斜磁場が
発生させられる。この傾斜電源14には、制御装置41
から波形データとタイミング情報が送られ、そのデータ
通りの波形の電流が指示通りのタイミングで傾斜コイル
13に出力され、所望の波形の傾斜磁場パルスが所望の
タイミングで得られる。傾斜コイル13は直交3軸方向
にそれぞれ設けられており、それらに対応して傾斜電源
14からは各方向の傾斜磁場用の電流が出力される。こ
の直交3軸方向の傾斜磁場はそれぞれ、スライス選択用
の傾斜磁場、位相エンコーディング用の傾斜磁場、リー
ドアウト用の傾斜磁場である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. In FIG. 1, a subject (human body) 11 is placed in a static magnetic field generated by a static magnetic field magnet 12, and a gradient coil 13 and a probe 23 for transmitting and receiving RF signals are placed in the static magnetic field space. . A pulse current having a predetermined waveform is passed through the gradient coil 13 from a gradient power source 14 to generate a gradient magnetic field that is superimposed on the static magnetic field. This gradient power supply 14 includes a control device 41
Waveform data and timing information are sent from the controller, and a current having a waveform according to the data is outputted to the gradient coil 13 at a designated timing, thereby obtaining a gradient magnetic field pulse having a desired waveform at a desired timing. The gradient coils 13 are provided in three orthogonal axes, and the gradient power supply 14 outputs current for gradient magnetic fields in each direction correspondingly. The gradient magnetic fields in the three orthogonal axes directions are respectively a gradient magnetic field for slice selection, a gradient magnetic field for phase encoding, and a gradient magnetic field for readout.

【0008】制御装置41はRFパルス波形を変調器2
1に送り、この変調器21においてそのパルス波形に応
じて高周波発振器24からの位相シフタ25を経た高周
波信号が振幅変調され、その変調後の高周波出力が送信
アンプ22で増幅され、プローブ23に送られる。こう
してプローブ23から被検体11に向けてRF信号が照
射される。
The control device 41 transmits the RF pulse waveform to the modulator 2.
1, the modulator 21 amplitude-modulates the high-frequency signal from the high-frequency oscillator 24 that passes through the phase shifter 25 according to the pulse waveform, and the modulated high-frequency output is amplified by the transmission amplifier 22 and sent to the probe 23. It will be done. In this way, an RF signal is irradiated from the probe 23 toward the subject 11 .

【0009】被検体11で発生したNMR信号はプロー
ブ23により受信される。この受信信号は、受信アンプ
31で増幅された後、位相検波器32に送られて、上記
の高周波発振器24から位相シフタ25を経た高周波信
号を参照信号として位相検波される。検波出力はA/D
変換器33に送られ、デジタルデータに変換され、加算
メモリ34で適当な符号付け加算されて蓄積される。こ
うして収集されたデータは画像再構成演算装置42によ
り2次元フーリエ変換などの画像再構成処理され、得ら
れた画像が表示器43で表示される。
[0009] The NMR signal generated by the subject 11 is received by the probe 23 . This received signal is amplified by a receiving amplifier 31, and then sent to a phase detector 32, where phase detection is performed using the high frequency signal that has passed from the high frequency oscillator 24 through the phase shifter 25 as a reference signal. Detection output is A/D
The data is sent to a converter 33, converted into digital data, added with an appropriate sign, and stored in an addition memory 34. The data thus collected is subjected to image reconstruction processing such as two-dimensional Fourier transformation by the image reconstruction calculation device 42, and the obtained image is displayed on the display 43.

【0010】図2のAで示すようにRFパルスが短い繰
り返し時間間隔で繰り返し照射され、NMR信号を定常
的に発生するSSFP状態とされる。スライス選択用の
傾斜磁場パルスを図2のBに示すように各RFパルスと
同時に加えて、所定のスライス面のみを選択的に励起さ
せる。また、図2のCに示すようにリードアウト用傾斜
磁場を反転させてP点及びQ点でNMR信号を発生させ
る。位相エンコーディング用傾斜磁場は図2のDのよう
にすこしずつ変化させられる。
As shown by A in FIG. 2, RF pulses are repeatedly irradiated at short repetition time intervals to create an SSFP state in which an NMR signal is constantly generated. Gradient magnetic field pulses for slice selection are applied at the same time as each RF pulse, as shown in FIG. 2B, to selectively excite only a predetermined slice plane. Further, as shown in FIG. 2C, the readout gradient magnetic field is reversed to generate NMR signals at points P and Q. The phase encoding gradient magnetic field is changed little by little as shown in D in FIG.

【0011】P点に現われる信号はFID信号であり、
Q点に現われる信号は疑似エコー信号である。このQ点
の信号はSSPF状態に特有のものであり、先行する励
起パルス列によって励起パルスの直前に結像するエコー
信号として理解される。2つの励起パルスにより発生す
る信号は図3に、3つの励起パルスによって発生する信
号は図4に示される。これらの図で縦棒は励起パルスを
表わし、実線はプラスの位相、点線はマイナスの位相で
あり、横及び斜めの線は核スピンの位相の進行状態を表
わし、実線はプラス側を点線はマイナス側を表わす。
The signal appearing at point P is an FID signal,
The signal appearing at point Q is a pseudo echo signal. This Q-point signal is characteristic of the SSPF condition and can be understood as an echo signal that is imaged just before the excitation pulse by the preceding excitation pulse train. The signal generated by two excitation pulses is shown in FIG. 3 and the signal generated by three excitation pulses is shown in FIG. 4. In these figures, the vertical bars represent excitation pulses, the solid lines represent positive phase, the dotted lines represent negative phase, and the horizontal and diagonal lines represent the progression of the nuclear spin phase, with solid lines representing positive and dotted lines representing negative phase. represents the side.

【0012】2つの励起パルスによって信号を発生させ
る場合、その励起パルスの位相は図3のA〜Dの4通り
となる。いずれの場合も第1の励起パルスによって励起
されFID信号が生じ、第2の励起パルスで反転して位
相がそろった(もとに戻った)時点で結像してエコー信
号が発生する。このエコー信号はeight−ball
 echo と呼ばれる。これらの場合、第1の励起パ
ルスがプラスであれば、その直後に発生するFID信号
の位相はプラスであり、第2の励起パルスがプラスでも
マイナスでも発生するエコー信号はプラス方向の位相と
なる(図3のA、B)。これに対して第1の励起パルス
の位相がマイナスのときはその直後に発生するFID信
号の位相はマイナスとなり、第2の励起パルスがプラス
であってもマイナスであってもエコー信号の位相はマイ
ナス方向の位相となる(図2のC、D)。
When a signal is generated using two excitation pulses, the excitation pulses have four phases, A to D in FIG. In either case, an FID signal is generated by being excited by the first excitation pulse, and is inverted by the second excitation pulse, and when the phases are aligned (return to the original state), an image is formed and an echo signal is generated. This echo signal is the eight-ball
It's called echo. In these cases, if the first excitation pulse is positive, the phase of the FID signal generated immediately after it is positive, and whether the second excitation pulse is positive or negative, the echo signal generated has a positive phase. (A, B in Figure 3). On the other hand, when the phase of the first excitation pulse is negative, the phase of the FID signal generated immediately after it is negative, and whether the second excitation pulse is positive or negative, the phase of the echo signal is The phase is in the negative direction (C and D in FIG. 2).

【0013】また、等間隔な3つの励起パルスによって
エコー信号を発生させる場合、その励起パルスの位相は
図4のA〜Hの8通りとなるが、いずれの場合も核スピ
ンは第1の励起パルスによって励起されてその直後にF
ID信号を生じ、第2の励起パルスで静磁場方向に向け
られてその位相を保持し、第3の励起パルスで位相が再
度逆方向に進んで位相がそろった時点で結像してエコー
信号が発生する。このエコー信号はstimulate
d echo と呼ばれる。ここで、第1の励起パルス
の位相がプラスのときは図4のA〜Dのようになり、そ
の直後に発生するFID信号の位相はプラスになるとと
もに、第2、第3のどちらかの励起パルスの位相がマイ
ナスのとき(図4のB、C)のみエコー信号の位相はマ
イナス側に、それ以外の場合つまり第2、第3の励起パ
ルスがいずれもプラス(図4のA)、いずれもマイナス
(図4のD)の場合にエコー信号の位相はプラスとなる
。他方、第1の励起パルスの位相がマイナスのときは図
4のE〜Hのようになってその直後に発生するFID信
号の位相はマイナスとなり、第2、第3のどちらかの励
起パルスの位相がマイナスのとき(図4のF、G)のみ
エコー信号の位相はプラス側に、それ以外の場合つまり
第2、第3の励起パルスがいずれもマイナス(図4のE
)、いずれもプラス(図4のH)の場合にエコー信号の
位相はマイナスとなる。
In addition, when an echo signal is generated by three equally spaced excitation pulses, the phases of the excitation pulses are eight different as shown in A to H in FIG. Excited by a pulse and immediately thereafter F
It generates an ID signal, is directed in the direction of the static magnetic field with the second excitation pulse and maintains its phase, and with the third excitation pulse the phase advances again in the opposite direction, and when the phases are aligned, it is imaged and an echo signal is generated. occurs. This echo signal stimulates
It is called d echo. Here, when the phase of the first excitation pulse is positive, it becomes as shown in A to D in Fig. 4, and the phase of the FID signal generated immediately after that becomes positive, and either the second or the third Only when the phase of the excitation pulse is negative (B and C in Figure 4), the phase of the echo signal is on the negative side; otherwise, both the second and third excitation pulses are positive (A in Figure 4). If both are negative (D in FIG. 4), the phase of the echo signal becomes positive. On the other hand, when the phase of the first excitation pulse is negative, the phase of the FID signal generated immediately after is negative as shown in E to H in Fig. 4, and the phase of either the second or third excitation pulse is negative. The phase of the echo signal is on the positive side only when the phase is negative (F and G in Figure 4), and in other cases, that is, both the second and third excitation pulses are negative (E in Figure 4).
), both of which are positive (H in FIG. 4), the phase of the echo signal becomes negative.

【0014】そこで、位相エンコーディング量が同じと
きに図5に示すように等間隔の励起パルスの位相をプラ
ス、プラス、マイナス、マイナスと4つのパルス周期で
繰り返し変化させる場合について考えてみる。この場合
、2つの励起パルスによる図3の各プロセスを経る信号
の位相は図6のAのようになり、3つの励起パルスによ
る図4の各プロセスを経る信号の位相は図6のBのよう
になってこれらが重なる。そのため、RFパルスの直後
に発生するFID信号はつねに図6のAとBとで同位相
となり、かつ2パルス毎に位相が反対になる。これに対
してエコー信号の方は図3のプロセスを経るものと図4
のプロセスを経るものがつねに逆位相で同時刻に発生す
ることになる。そこで、実際には図6のA、Bは重なる
ので、エコー信号の方が互いに打ち消し合って小さくな
る。データ採取区間を図6の区間1、区間2、区間3、
…のように2パルス毎に定め、区間(2n−1)の信号
はマイナスの符号を付け、区間(2n)の信号はプラス
の符号を付けてそれらを加算すれば、上記のように小さ
くなったエコー信号成分はさらにキャンセルし合い、F
ID信号成分は単純に加算されるので、エコー信号成分
のみを十分に除去しFID信号成分を残すことができる
[0014] Let us therefore consider the case where, when the amount of phase encoding is the same, the phase of equally spaced excitation pulses is repeatedly changed in four pulse periods: plus, plus, minus, minus, as shown in FIG. In this case, the phase of the signal passing through each process in FIG. 3 with two excitation pulses is as shown in FIG. 6A, and the phase of the signal passing through each process in FIG. 4 with three excitation pulses is as shown in FIG. 6B. and these overlap. Therefore, the FID signal generated immediately after the RF pulse always has the same phase in A and B in FIG. 6, and the phase is opposite every two pulses. On the other hand, the echo signal goes through the process shown in Figure 3 and Figure 4.
Things that go through the process always occur at the same time and in opposite phases. Therefore, since A and B in FIG. 6 actually overlap, the echo signals cancel each other out and become smaller. The data collection sections are section 1, section 2, section 3, and
If we define every 2 pulses as follows, and add a minus sign to the signal in the interval (2n-1) and a plus sign to the signal in the interval (2n), we can get a smaller value as shown above. The echo signal components further cancel each other out, and F
Since the ID signal components are simply added, it is possible to sufficiently remove only the echo signal component and leave the FID signal component.

【0015】また、位相エンコーディング量が同じとき
、図7のように等間隔のRFパルスの位相をプラス、プ
ラス、プラス、マイナスと4パルス周期で変化させると
、図3のタイプの信号は図8のAのような位相関係とな
り、図4のタイプの信号は図8のBのような位相関係と
なる。この図8に示すようにデータ採取区間を各パルス
ごとに区間1、区間2、区間3、…と定めると、区間4
n、4n+2ではエコー信号の位相は、図8のAとBと
で逆位相となって互いに打ち消し合って小さくなる。 区間4n+1、4n+3ではエコー信号の位相は図8の
AとBとで同位相で打ち消し合いの関係にないが、区間
4n+1と区間4n+3とでは図8のAとBとで位相が
逆になっている。そのため、区間4n+2だけマイナス
の符号を付けて加算することにより、エコー信号だけを
選択的に消去し、FID信号だけを残すことができる。
Furthermore, when the amount of phase encoding is the same, if the phase of the equally spaced RF pulses is changed in four pulse periods (plus, plus, plus, minus) as shown in FIG. 7, the signal of the type shown in FIG. 3 becomes as shown in FIG. A signal of the type shown in FIG. 4 has a phase relationship as shown in B of FIG. 8. As shown in FIG. 8, if the data collection intervals are defined as interval 1, interval 2, interval 3, etc. for each pulse, then interval 4
At n, 4n+2, the phases of the echo signals at A and B in FIG. 8 are opposite in phase, cancel each other out, and become smaller. In sections 4n+1 and 4n+3, the phases of the echo signals in A and B in FIG. 8 are the same and there is no cancellation relationship, but in sections 4n+1 and 4n+3, the phases of A and B in FIG. 8 are opposite. There is. Therefore, by adding only the section 4n+2 with a negative sign, it is possible to selectively erase only the echo signal and leave only the FID signal.

【0016】なお、励起パルス位相の制御は、位相シフ
タ25をパルスシーケンスに同期して制御装置41によ
って制御することにより行なうことができ、また加算時
のデータの符号付けはA/D変換の後に加算メモリ34
上でデジタル的に行なうことができるが、位相検波のた
めの参照信号の位相を制御することによっても行なうこ
とができる。
The excitation pulse phase can be controlled by controlling the phase shifter 25 by the control device 41 in synchronization with the pulse sequence, and the data at the time of addition is coded after A/D conversion. Addition memory 34
Although this can be done digitally, it can also be done by controlling the phase of a reference signal for phase detection.

【0017】[0017]

【発明の効果】以上、実施例について説明したように、
この発明のMRI装置によれば、FID信号と疑似信号
とが同時に生じてFID信号に疑似信号が混入すること
が避けられない場合でも、1回のイメージングシーケン
スのみでその疑似信号成分を除去することができ、画像
のアーティファクトの原因をなくすことができる。
[Effects of the Invention] As described above with respect to the embodiments,
According to the MRI apparatus of the present invention, even if an FID signal and a pseudo signal occur simultaneously and it is unavoidable that the pseudo signal is mixed into the FID signal, the pseudo signal component can be removed with only one imaging sequence. This eliminates the cause of image artifacts.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】同実施例のパルスシーケンスを示すタイムチャ
ート。
FIG. 2 is a time chart showing the pulse sequence of the same embodiment.

【図3】励起パルスが2個の場合の位相の変化を表わす
タイムチャート図。
FIG. 3 is a time chart showing a change in phase when there are two excitation pulses.

【図4】励起パルスが3個の場合の位相の変化を表わす
タイムチャート図。
FIG. 4 is a time chart showing changes in phase when there are three excitation pulses.

【図5】励起パルスの一例を示すタイムチャート。FIG. 5 is a time chart showing an example of an excitation pulse.

【図6】同例における位相の変化を表わすタイムチャー
ト。
FIG. 6 is a time chart showing changes in phase in the same example.

【図7】励起パルスの他の例を示すタイムチャート。FIG. 7 is a time chart showing another example of excitation pulses.

【図8】同例における位相の変化を表わすタイムチャー
ト。
FIG. 8 is a time chart showing changes in phase in the same example.

【符号の説明】[Explanation of symbols]

11          被検体 12          静磁場マグネット13   
       傾斜コイル 14          傾斜電源 21          変調器 22          送信アンプ 23          プローブ 24          高周波発振器25     
     位相シフタ 31          受信アンプ 32          位相検波器 33          A/D変換器34     
     加算メモリ 41          制御装置 42          画像再構成演算装置43  
        表示器
11 Subject 12 Static magnetic field magnet 13
Gradient coil 14 Gradient power supply 21 Modulator 22 Transmission amplifier 23 Probe 24 High frequency oscillator 25
Phase shifter 31 Receiving amplifier 32 Phase detector 33 A/D converter 34
Addition memory 41 Control device 42 Image reconstruction calculation device 43
display

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  緩和時間より短い繰り返し時間で励起
パルスを繰り返し照射して定常状態においてNMR信号
を発生する状態を現出させる手段と、位相エンコーディ
ング量を変化させながら位相エンコーディング用の傾斜
磁場を発生する手段と、同じ位相エンコーディング量に
おいて、核スピンの位相の2つ以上の変化プロセスを経
て発生するエコー信号を、それらの位相が互いに逆向き
となるようにして時間的に同時に発生させるよう複数の
励起パルスの位相を制御する手段と、同じ位相エンコー
ディング量のものとして収集したデータ同士を符号付け
加算する手段とを備えることを特徴とするMRI装置。
1. Means for repeatedly irradiating an excitation pulse with a repetition time shorter than the relaxation time to generate a state in which an NMR signal is generated in a steady state, and generating a gradient magnetic field for phase encoding while changing the amount of phase encoding. and a plurality of echo signals generated through two or more change processes of the phase of the nuclear spin with the same phase encoding amount, so that the echo signals are generated simultaneously in time so that the phases thereof are opposite to each other. An MRI apparatus comprising: means for controlling the phase of an excitation pulse; and means for adding together data acquired with the same phase encoding amount.
JP3157636A 1991-05-31 1991-05-31 MRI equipment Expired - Lifetime JP2606488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3157636A JP2606488B2 (en) 1991-05-31 1991-05-31 MRI equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3157636A JP2606488B2 (en) 1991-05-31 1991-05-31 MRI equipment

Publications (2)

Publication Number Publication Date
JPH04354935A true JPH04354935A (en) 1992-12-09
JP2606488B2 JP2606488B2 (en) 1997-05-07

Family

ID=15654055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3157636A Expired - Lifetime JP2606488B2 (en) 1991-05-31 1991-05-31 MRI equipment

Country Status (1)

Country Link
JP (1) JP2606488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325834A (en) * 2005-05-25 2006-12-07 Hitachi Medical Corp Magnetic resonance imaging apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261425A (en) * 1989-02-24 1990-10-24 Siemens Ag Image formation by nuclear magnetic resonance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261425A (en) * 1989-02-24 1990-10-24 Siemens Ag Image formation by nuclear magnetic resonance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325834A (en) * 2005-05-25 2006-12-07 Hitachi Medical Corp Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP2606488B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US7015696B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US4614195A (en) Method for reduction of motion artifacts in Fourier transform NMR imaging techniques
JPH0763455B2 (en) Magnetic resonance imager
JP2755125B2 (en) MR imaging device
US5043665A (en) Magnetic resonance imaging system
JP2642362B2 (en) Magnetic resonance imaging
JPH1133012A (en) Magnetic resonance imaging and imaging method
EP0955556B1 (en) Ghost artifact reduction in fact spin echo MRI sequences
US4689568A (en) NMR chemical shift imaging method
US4786871A (en) NMR imaging method and apparatus
JPH1066684A (en) Magnetic resonance imaging device
JPH0838444A (en) Magnetic resonance imaging device
EP0207765A2 (en) Magnetic resonance imaging apparatus and method utilizing a composite RF pulse
JP2606488B2 (en) MRI equipment
JP2000175882A (en) Mr imaging apparatus
EP0153703A2 (en) NMR imaging apparatus
JP3332951B2 (en) Magnetic resonance imaging equipment
JPH10234705A (en) Mr imaging system
JP2677601B2 (en) Magnetic resonance imaging
JP2000325325A (en) Mr imaging apparatus
JPH10234707A (en) Mr imaging system
JP3478867B2 (en) Magnetic resonance imaging equipment
JPH08215170A (en) Mr imaging device
JP2004057682A (en) Magnetic resonance imaging system
JP3453963B2 (en) Nuclear magnetic resonance imaging equipment