JPH04354049A - Learning system for pattern recognition - Google Patents
Learning system for pattern recognitionInfo
- Publication number
- JPH04354049A JPH04354049A JP3129979A JP12997991A JPH04354049A JP H04354049 A JPH04354049 A JP H04354049A JP 3129979 A JP3129979 A JP 3129979A JP 12997991 A JP12997991 A JP 12997991A JP H04354049 A JPH04354049 A JP H04354049A
- Authority
- JP
- Japan
- Prior art keywords
- learning
- vector
- similarity
- evaluation
- math
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003909 pattern recognition Methods 0.000 title claims description 8
- 239000013598 vector Substances 0.000 claims abstract description 38
- 238000011156 evaluation Methods 0.000 claims abstract description 23
- 238000011867 re-evaluation Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 43
- 230000006870 function Effects 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000012854 evaluation process Methods 0.000 claims description 2
- 238000012567 pattern recognition method Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 4
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
Landscapes
- Image Analysis (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はパタ−ン認識に関し、特
に類別パタ−ンが既知で有るようなパタ−ンの集合に対
する類別類の標準パタ−ンの学習方式に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to pattern recognition, and more particularly to a method for learning standard patterns of classification for a set of patterns for which classification patterns are known.
【0002】0002
【従来の技術】従来この種の学習方式は、図2に示すよ
うに類別処理11、標準ベクトルの評価処理12、及び
学習処理13から成っており、数式5に示すような標準
パタ−ンに対し、下記の数式8に示すような数を求める
際の評価関数として主に識別率Rc を用いており、R
c+1 がRc に等しいか又はそれより大きく成るよ
うな学習を有効な学習とする構成と成っていた。2. Description of the Related Art Conventionally, this type of learning method consists of a classification process 11, a standard vector evaluation process 12, and a learning process 13, as shown in FIG. On the other hand, the identification rate Rc is mainly used as the evaluation function when calculating the number shown in Equation 8 below, and R
The configuration was such that learning such that c+1 was equal to or greater than Rc was effective learning.
【0003】0003
【数8】[Math. 8]
【0004】0004
【発明が解決しようとする課題】従来の方式による標準
パタ−ンは、識別率Rc のみを評価関数として用いる
構成と成っていた為、学習を行った区間τにおいて、標
準パタ−ンを求めるために用いた集合と異なる未知の集
合に対して最適な標準パタ−ンすなわち既知集合Sによ
り求めた下記の数式9に示す標準パタ−ンにより未知集
合Tを類別した時得られる識別率RT を最大となし得
る標準パタ−ンを得ることが出来る訳ではないと言う欠
点があった。[Problem to be solved by the invention] Since the standard pattern according to the conventional method is configured to use only the recognition rate Rc as an evaluation function, it is difficult to obtain the standard pattern in the interval τ where learning is performed. Maximize the identification rate RT obtained when classifying the unknown set T using the optimal standard pattern for the unknown set different from the set used in There is a drawback that it is not possible to obtain a standard pattern that can be used.
【0005】[0005]
【数9】[Math. 9]
【0006】[0006]
【課題を解決するための手段】本発明の学習方式は、学
習結果を評価する関数として、識別率と、各集合中で類
似度rpq(pはベクトルの通し番号、qは集合番号)
の値の近接する要素での類似度rpt(tはベクトルが
属する集合番号)とrpt’の比のpに就いての積算値
とを有し、評価結果が前回の値より悪かった際に、学習
係数C(R) を変化させるフィ−ドバックル−プを有
しているパタ−ン認識の学習方式がえられる。[Means for Solving the Problems] The learning method of the present invention uses the classification rate and the similarity rpq (p is the serial number of the vector, q is the set number) in each set as a function for evaluating the learning results.
The similarity rpt (t is the set number to which the vector belongs) in adjacent elements of the value of and the integrated value of the ratio p of rpt', and when the evaluation result is worse than the previous value, A pattern recognition learning method having a feedback loop for changing the learning coefficient C(R) is obtained.
【0007】また本発明によれば、学習結果を評価する
関数として、識別率と、各集合中で類似度rpq(pは
ベクトルの通し番号、qは集合番号)の値の近接する要
素での類似度rpt(tはベクトルが属する集合番号)
とrpt’の比のpに就いての積算値とを有し、識別R
の計算を行う処理と、識別率Rを用いて標準ベクトルの
評価を行う処理と、類似度をもとに標準ベクトルの再評
価を行う処理と、再評価結果が前回の値より悪かった際
に、学習係数C(R) を再設定する処理と、標準ベク
トルの評価処理に於ける学習係数による第1の学習と再
設定された学習係数による第2の学習を行う学習処理を
有するパタ−ン認識の学習方式が得られる。Further, according to the present invention, as a function for evaluating learning results, the classification rate and the similarity of the values of similarity rpq (p is the serial number of the vector, q is the set number) in adjacent elements in each set are evaluated. degrees rpt (t is the set number to which the vector belongs)
and the integrated value for p of the ratio of rpt', and the identification R
, a process to evaluate the standard vector using the discrimination rate R, a process to re-evaluate the standard vector based on the similarity, and a process to perform the re-evaluation when the re-evaluation result is worse than the previous value. , a process of resetting the learning coefficient C(R), and a learning process of performing first learning using the learning coefficient in standard vector evaluation processing and second learning using the reset learning coefficient. A learning method for recognition is obtained.
【0008】更に本発明によれば、有限の要素を有する
類似パタ−ンの集合1と、この集合1とは異なる類似性
を有する集合2と、同様に分類される集合3,4・・・
・と、これらの集合1,2,・・・・すべてを含む集合
Aに於いて、各要素の特徴を表すベクトルを数式1のよ
うに表し、集合1,2,・・・・の標準ベクトルを数式
2のように表し、数式1のベクトルの集合k(k=1,
2,・・・・)に対する類似度を求める演算を数式3と
するとき、数式1で表されるベクトルの類別される集合
を、数式3を最大又は最少とするkの値とするようなパ
タ−ンの認識方式に於いて、数式4で表されるベクトル
の属する集合が既知であるものの集合αについて、前記
演算の結果により類別された集合α内で正しく識別され
た割合を表す識別率R[%]を向上させるため、数式5
として新たに数式2に対し演算を行い、数式6を求める
ような学習方式において数式5の評価関数として識別率
Rと数式7を有し、第2の評価関数の評価結果による学
習処理へのフィ−ドバックル−プと、このフィ−ドバッ
クル−プ中の学習係数の再設定を行う処理を有すること
を特徴とする、パタ−ン認識の学習方式が得られる。Furthermore, according to the present invention, there is a set 1 of similar patterns having finite elements, a set 2 having a different similarity from the set 1, and sets 3, 4, etc. that are classified similarly.
In the set A that includes all of these sets 1, 2, etc., the vector representing the characteristics of each element is expressed as in Formula 1, and the standard vector of the sets 1, 2, etc. is expressed as in Equation 2, and the set k of vectors in Equation 1 (k=1,
2,...) is expressed as Equation 3, the set of classified vectors expressed in Equation 1 is a pattern that makes Equation 3 the maximum or minimum value of k. -In the recognition method of In order to improve [%], Formula 5
In a learning method where Equation 2 is newly computed as A learning method for pattern recognition is obtained, which is characterized by having a feedback loop and a process for resetting learning coefficients in the feedback loop.
【0009】[0009]
【実施例】次に本発明に就いて図面を参照して説明する
。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.
【0010】第1図は本発明の一実施例の処理を順に示
した図である。FIG. 1 is a diagram sequentially showing the processing of an embodiment of the present invention.
【0011】処理1に於いては、集合Aに対し識別処理
を行い、数式3の計算を行って識別率R[%]を求める
。[0011] In process 1, a classification process is performed on the set A, and the calculation according to Equation 3 is performed to obtain the classification rate R [%].
【0012】処理2に於いては、処理1で得られた識別
率R[%]を数式7で示される評価関数として数式1に
示す標準ベクトルの評価を行って前回より識別率Rが良
いかどうかを求め、集束すれば、数式3の類似度を求め
る。In process 2, the standard vector shown in equation 1 is evaluated using the identification rate R [%] obtained in process 1 as the evaluation function shown in equation 7, and it is determined whether the identification rate R is better than the previous time. If we calculate the degree of similarity and converge, we calculate the similarity of Equation 3.
【0013】処理3においては、処理2で得られた数式
3の類似度をもとに、数式7で示される評価関数の値を
求め、数式1の標準スペクトルの再評価値を求める。In process 3, the value of the evaluation function shown by formula 7 is determined based on the similarity of formula 3 obtained in process 2, and the re-evaluation value of the standard spectrum of formula 1 is determined.
【0014】この評価関数の計算に於いて母集合の要素
をai とし、それに対する類似度をri としたとき
、評価関数はri をiについて積分した形になる。但
しri は適当な数Cに等しいかそれより大きいものと
する。In calculating this evaluation function, if the element of the mother set is ai and the degree of similarity to it is ri, then the evaluation function will be in the form of integrating ri with respect to i. However, it is assumed that ri is equal to or larger than an appropriate number C.
【0015】そしてこの再評価値と前回の評価値の差が
予め設定したスレッショルドより小さい場合、すなわち
集束している場合は、十分に学習されていたとして全処
理を終了する。[0015] If the difference between this re-evaluation value and the previous evaluation value is smaller than a preset threshold, that is, if they are converged, it is assumed that sufficient learning has been achieved and the entire process is terminated.
【0016】処理4に於いては、上記の処理3に於ける
評価値の差が前記のスレッショルドより小さくないとき
は、すなわち集束しない場合は、学習係数の再設定を行
い、集束するときは何もしない。In process 4, if the difference between the evaluation values in process 3 is not smaller than the threshold, that is, if convergence does not occur, the learning coefficient is reset, and when convergence occurs, what is done? Neither.
【0017】図3は学習係数の初期値に対する比と認識
率の関係を示す図であって、このカ−ブに合わせて係数
をコントロ−ルする。FIG. 3 is a diagram showing the relationship between the ratio of the learning coefficient to the initial value and the recognition rate, and the coefficient is controlled according to this curve.
【0018】処理5に於いては、処理2による標準スペ
クトルの評価結果が前回評価結果より良かった場合に、
設定された学習係数をもとに標準ベクトルに対する第1
の学習を行い、処理5で再設定された係数をもとに標準
ベクトルに対する第2の学習を行い、処理1に戻す。In process 5, if the evaluation result of the standard spectrum in process 2 is better than the previous evaluation result,
Based on the set learning coefficient, the first
A second learning is performed on the standard vector based on the coefficients reset in process 5, and the process returns to process 1.
【0019】図4は第1の学習による分離度と第2の学
習に於ける分離度を比較して示したイメ−ジ図で、第2
の学習による効果が大きくなることが読み取れる。FIG. 4 is an image diagram showing a comparison of the degree of separation in the first learning and the degree of separation in the second learning.
It can be seen that the effect of learning becomes greater.
【0020】[0020]
【発明の効果】以上説明下ように、本発明は標準ベクト
ルの評価関数として、類似度の限定要素に対する和を用
いたこと及びそれによる評価結果をもとに学習の係数を
制御する方法を用いたことにより、既知集合のみから得
られる標準ベクトルによって未知集合を類別した場合の
識別率を向上させる事が出来ると言う効果がある。[Effects of the Invention] As explained above, the present invention uses a sum of similarities for limited elements as an evaluation function of standard vectors, and a method of controlling learning coefficients based on the evaluation results. This has the effect of improving the identification rate when classifying unknown sets using standard vectors obtained only from known sets.
【図1】本発明のパタ−ン認識の学習方式の処理のフロ
−を示す図である。FIG. 1 is a diagram showing a processing flow of a pattern recognition learning method according to the present invention.
【図2】従来の学習方式の処理のフロ−を示す図である
。FIG. 2 is a diagram showing a processing flow of a conventional learning method.
【図3】本発明に於ける学習係数の再設定を行うための
係数と認識率の関係を示す図でる。FIG. 3 is a diagram showing the relationship between coefficients for resetting learning coefficients and recognition rate in the present invention.
【図4】本発明に於ける、第1の学習による分離度と第
2の学習による分離度の相違を示した図である。FIG. 4 is a diagram showing the difference between the degree of separation obtained by first learning and the degree of separation obtained by second learning in the present invention.
1 類別処理 2 標準ベクトルの評価処理 3 標準ベクトル再評価処理 4 学習係数の再設定処理 5 学習処理 6 類別面 1 Classification processing 2 Standard vector evaluation processing 3 Standard vector re-evaluation processing 4 Learning coefficient resetting process 5 Learning processing 6. Classification aspect
Claims (3)
率と、各集合中で類似度rpq(pはベクトルの通し番
号、qは集合番号)の値の近接する要素での類似度rp
t(tはベクトルが属する集合番号)とrpt’の比の
pに就いての積算値とを有し、評価結果が前回の値より
悪かった際に、学習係数C(R) を変化させるフィ−
ドバックル−プを有しているパタ−ン認識の学習方式。Claim 1: As a function for evaluating the learning results, the classification rate and the similarity rp of the values of similarity rpq (p is the serial number of the vector, q is the set number) of adjacent elements in each set are calculated.
t (t is the set number to which the vector belongs) and the integrated value for p of the ratio of rpt', and changes the learning coefficient C(R) when the evaluation result is worse than the previous value. −
A learning method for pattern recognition that has a double loop.
率と、各集合中で類似度rpq(pはベクトルの通し番
号、qは集合番号)の値の近接する要素での類似度rp
t(tはベクトルが属する集合番号)とrpt’の比の
pに就いての積算値とを有し、識別Rの計算を行う処理
と、識別率Rを用いて標準ベクトルの評価を行う処理と
、類似度をもとに標準ベクトルの再評価を行う処理と、
再評価結果が前回の値より悪かった際に、学習係数C(
R) を再設定する処理と、標準ベクトルの評価処理に
於ける学習係数による第1の学習と再設定された学習係
数による第2の学習を行う学習処理を有するパタ−ン認
識の学習方式。[Claim 2] As a function for evaluating learning results, the classification rate and the similarity rp of the values of similarity rpq (p is the serial number of the vector, q is the set number) of adjacent elements in each set are calculated.
t (t is the set number to which the vector belongs) and the integrated value for p of the ratio of rpt', a process of calculating the identification R, and a process of evaluating the standard vector using the identification rate R. and the process of re-evaluating the standard vector based on the similarity.
When the re-evaluation result is worse than the previous value, the learning coefficient C (
R) A learning method for pattern recognition which includes a process of resetting , a first learning process using a learning coefficient in standard vector evaluation process, and a second learning process using the reset learning coefficient.
合1と、この集合1とは異なる類似性を有する集合2と
、同様に分類される集合3,4・・・・と、これらの集
合1,2,・・・・すべてを含む集合Aに於いて、各要
素の特徴を表すベクトルを下記の数式1のように表し、
集合1,2,・・・・の標準ベクトルを下記の数式2の
ように表し、数式1のベクトルの集合k(k=1,2,
・・・・)に対する類似度を求める演算を下記の数式3
とするとき、数式1で表されるベクトルの類別される集
合を、数式3を最大又は最少とするkの値とするような
パタ−ンの認識方式に於いて、下記の数式4で表される
ベクトルの属する集合が既知であるものの集合αについ
て、前記演算の結果により類別された集合α内で正しく
識別された割合を表す識別率R[%]を向上させるため
、下記の数式5として新たに数式2に対し演算を行い、
下記の数式6を求めるような学習方式において数式5の
評価関数として識別率Rと下記の数式7を有し、第2の
評価関数の評価結果による学習処理へのフィ−ドバック
ル−プと、このフィ−ドバックル−プ中の学習係数の再
設定を行う処理を有することを特徴とする、パタ−ン認
識の学習方式。 【数1】 【数2】 【数3】 【数4】 【数5】 【数6】 【数7】Claim 3: A set 1 of similar patterns having finite elements, a set 2 having a different similarity from this set 1, sets 3, 4, etc. classified similarly, and these In the set A that includes all sets 1, 2, ..., the vector representing the characteristics of each element is expressed as in the following formula 1,
The standard vectors of sets 1, 2, etc. are expressed as in Equation 2 below, and the set k of vectors in Equation 1 (k=1, 2,
) is calculated using the following formula 3.
Then, in a pattern recognition method where the classified set of vectors expressed by Formula 1 is the value of k whose maximum or minimum is Expression 3, the following Expression 4 is used. For the set α to which the set to which the vector belongs is known, in order to improve the identification rate R [%] which represents the proportion of correctly identified within the set α classified by the result of the above calculation, the following formula 5 is newly created. Perform calculations on formula 2,
In a learning method that obtains the following Equation 6, the evaluation function of Equation 5 is the recognition rate R and the following Equation 7, and a feedback loop to the learning process based on the evaluation result of the second evaluation function, and this A learning method for pattern recognition characterized by comprising a process of resetting learning coefficients in a feedback loop. [Math. 1] [Math. 2] [Math. 3] [Math. 4] [Math. 5] [Math. 6] [Math. 7]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3129979A JPH04354049A (en) | 1991-05-31 | 1991-05-31 | Learning system for pattern recognition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3129979A JPH04354049A (en) | 1991-05-31 | 1991-05-31 | Learning system for pattern recognition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04354049A true JPH04354049A (en) | 1992-12-08 |
Family
ID=15023165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3129979A Withdrawn JPH04354049A (en) | 1991-05-31 | 1991-05-31 | Learning system for pattern recognition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04354049A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6438531B1 (en) | 1998-09-24 | 2002-08-20 | Nec Corporation | Reference pattern producing apparatus with controlled contribution of learning coefficients |
-
1991
- 1991-05-31 JP JP3129979A patent/JPH04354049A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6438531B1 (en) | 1998-09-24 | 2002-08-20 | Nec Corporation | Reference pattern producing apparatus with controlled contribution of learning coefficients |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102068576B1 (en) | Convolutional neural network based image processing system and method | |
Li et al. | Floatboost learning and statistical face detection | |
Tan et al. | Nonlinear blind source separation using higher order statistics and a genetic algorithm | |
Li et al. | Image classification by a two-dimensional hidden Markov model | |
US5379352A (en) | Method of processing signal data on the basis of principal component transform, apparatus for performing the method | |
Huang et al. | The analysis of two-way functional data using two-way regularized singular value decompositions | |
Deutsch et al. | Zero shot learning via multi-scale manifold regularization | |
Han et al. | Incremental density approximation and kernel-based bayesian filtering for object tracking | |
Guo et al. | Adaptive orthogonal projection for batch and online continual learning | |
US20120121170A1 (en) | Object detection system based on a pool of adaptive features | |
CN114626042B (en) | Face verification attack method and device | |
Smolka et al. | Nonlinear techniques for color image processing | |
Zhang et al. | Grading learning for blind source separation | |
Zafeiriou et al. | Discriminant graph structures for facial expression recognition | |
CN106874867A (en) | A kind of face self-adapting detecting and tracking for merging the colour of skin and profile screening | |
CN108960280A (en) | A kind of picture similarity detection method and system | |
Du et al. | Principal component analysis | |
JPH04299469A (en) | Recognizing method for substance in image and application on substance tracking in series of images | |
CN109145738B (en) | Dynamic video segmentation method based on weighted non-convex regularization and iterative re-constrained low-rank representation | |
CN113378620B (en) | Cross-camera pedestrian re-identification method in surveillance video noise environment | |
CN114444727A (en) | Training method and device of kernel function approximation model, electronic model and storage medium | |
JPH10143613A (en) | Pattern recognition method | |
JPH04354049A (en) | Learning system for pattern recognition | |
Khotanzad et al. | A spatial correlation based method for neighbor set selection in random field image models | |
CN111914718B (en) | Feature weighted PCA face recognition method based on average influence value data transformation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980806 |