JPH04353429A - Production of uniaxially stretched polyester sheet - Google Patents
Production of uniaxially stretched polyester sheetInfo
- Publication number
- JPH04353429A JPH04353429A JP15373091A JP15373091A JPH04353429A JP H04353429 A JPH04353429 A JP H04353429A JP 15373091 A JP15373091 A JP 15373091A JP 15373091 A JP15373091 A JP 15373091A JP H04353429 A JPH04353429 A JP H04353429A
- Authority
- JP
- Japan
- Prior art keywords
- stretching
- sheet
- roller
- polyester sheet
- polyester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000728 polyester Polymers 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 claims description 36
- 238000003856 thermoforming Methods 0.000 claims description 19
- 230000009477 glass transition Effects 0.000 claims description 5
- 238000001125 extrusion Methods 0.000 claims description 3
- 238000009998 heat setting Methods 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- -1 polyethylene terephthalate Polymers 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-N terephthalic acid group Chemical group C(C1=CC=C(C(=O)O)C=C1)(=O)O KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 3
- 239000002685 polymerization catalyst Substances 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- XCSGHNKDXGYELG-UHFFFAOYSA-N 2-phenoxyethoxybenzene Chemical compound C=1C=CC=CC=1OCCOC1=CC=CC=C1 XCSGHNKDXGYELG-UHFFFAOYSA-N 0.000 description 1
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 1
- QLIQIXIBZLTPGQ-UHFFFAOYSA-N 4-(2-hydroxyethoxy)benzoic acid Chemical compound OCCOC1=CC=C(C(O)=O)C=C1 QLIQIXIBZLTPGQ-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- UUAGPGQUHZVJBQ-UHFFFAOYSA-N Bisphenol A bis(2-hydroxyethyl)ether Chemical compound C=1C=C(OCCO)C=CC=1C(C)(C)C1=CC=C(OCCO)C=C1 UUAGPGQUHZVJBQ-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920006230 thermoplastic polyester resin Polymers 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、剛性が向上した熱成形
用ポリエステルシートの製造方法に関する。さらに詳し
くは、熱成形性を妨げない範囲の低倍率の一軸延伸を施
して剛性を向上させ、従来のポリエステルシート成形物
より剛性が大きく、使用シート厚みを節減できるなど、
経済性に優れた熱成形用ポリエステルシートの製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing thermoformable polyester sheets with improved rigidity. More specifically, the rigidity is improved by applying uniaxial stretching at a low magnification within a range that does not impede thermoformability, and the rigidity is greater than that of conventional polyester sheet moldings, making it possible to reduce the thickness of the sheet used.
The present invention relates to a method for producing a polyester sheet for thermoforming that is highly economical.
【0002】0002
【従来の技術】従来、2次成形を伴わない二軸延伸ポリ
エステルフィルムの製造は、かなりの高倍率で延伸され
るため、延伸班はなく、製造方法も確立されている。例
えば、ポリエステルの剛性向上方法として、物性バラン
ス・成形加工性などから二軸延伸がなされているが、延
伸はマシンディレクション(M.D.)及びそれと直交
する方向(T.D.)の二軸延伸を行う必要があり、工
程および設備の上からコスト上昇は避けられない。また
二軸延伸シートはその配向のため二次成形加工が困難で
あり、二次成形加工を伴う熱成形用には適さない。BACKGROUND OF THE INVENTION Conventionally, in the production of biaxially oriented polyester films without secondary forming, the film is stretched at a considerably high magnification, so there is no stretching team and the manufacturing method is well established. For example, as a method for improving the rigidity of polyester, biaxial stretching has been carried out in view of the balance of physical properties and moldability. Stretching is necessary, and an increase in costs due to the process and equipment is unavoidable. Further, biaxially stretched sheets are difficult to perform secondary molding due to their orientation, and are not suitable for thermoforming that involves secondary molding.
【0003】二次成形を伴う熱成形用延伸シートは、成
形性を保持させるため延伸倍率を低く抑える必要があり
、このため低倍率一軸延伸により製造される。しかしな
がら、低倍率一軸延伸は延伸班が発生し易いという解決
すべき課題を有している。[0003] Stretched sheets for thermoforming that involve secondary forming need to have a low stretching ratio in order to maintain formability, and are therefore produced by low-magnification uniaxial stretching. However, low-magnification uniaxial stretching has a problem to be solved in that stretching spots are likely to occur.
【0004】0004
【発明が解決しようとする課題】本発明の目的は、低倍
率で延伸した一軸延伸ポリエステルシートを製造する方
法を提供することにある。本発明の他の目的は、延伸班
のない一軸延伸ポリエステルシートを製造する方法を提
供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a uniaxially stretched polyester sheet that is stretched at a low stretching ratio. Another object of the present invention is to provide a method for producing a uniaxially oriented polyester sheet without stretching sections.
【0005】本発明のさらに他の目的は、剛性が向上し
た低倍率の一軸延伸ポリエステルシートを製造する方法
を提供することにある。本発明のさらに他の目的および
利点は以下の説明から明らかとなろう。Still another object of the present invention is to provide a method for producing a low-magnification uniaxially stretched polyester sheet with improved rigidity. Further objects and advantages of the present invention will become apparent from the description below.
【0006】[0006]
【課題を解決するための手段】本発明によれば、本発明
の上記目的および利点は、非晶ポリエステルシートを、
延伸送りローラーと延伸引取りローラーにニップローラ
ーを使用しそしてこれらのローラー間に該非晶ポリエス
テルシートのほぼ全巾に亘って延伸線を設けて低倍率で
一軸延伸する、ことを特徴とする一軸延伸ポリエステル
シートの製造方法によって達成される。[Means for Solving the Problems] According to the present invention, the above objects and advantages of the present invention can be achieved by
Uniaxial stretching characterized by using a nip roller as a stretching feed roller and a stretching take-off roller, and providing a stretching line between these rollers over almost the entire width of the amorphous polyester sheet to perform uniaxial stretching at a low magnification. This is achieved by a method for manufacturing polyester sheets.
【0007】本発明の第二は、上記第一の発明において
、延伸引取りローラー直後のローラーにニップローラー
を用いることを特徴とするポリエステルシートの製造方
法である。[0007] The second aspect of the present invention is a method for producing a polyester sheet according to the first aspect, characterized in that a nip roller is used as the roller immediately after the stretching take-off roller.
【0008】本発明の第三は、シート押出直後のキャス
トロール温度をガラス転移温度以下の出来るだけ高温域
で成形した結晶化度2〜10%のポリエステルシートを
延伸送りローラーと延伸引取りローラーにニップローラ
ーを使用して一軸延伸することを特徴とする上記ポリエ
ステルシートの製造方法である。The third aspect of the present invention is to use a polyester sheet with a crystallinity of 2 to 10% formed by keeping the cast roll temperature as high as possible, below the glass transition temperature, immediately after sheet extrusion, to a stretching feed roller and a stretching take-off roller. The method for producing the polyester sheet described above is characterized in that uniaxial stretching is performed using nip rollers.
【0009】また本発明のポリエステル熱成形物は、上
記一軸低倍率延伸ポリエステルシートを熱成形して得ら
れることを特徴とする剛性に優れたポリエステル熱成形
物である。[0009] The polyester thermoformed product of the present invention is a polyester thermoformed product with excellent rigidity, which is obtained by thermoforming the above-mentioned uniaxially stretched low-strength polyester sheet.
【0010】本発明を更に詳しく説明すると、本発明に
おいてポリエステルとしては、例えばポリエチレンテレ
フタレート、ポリエチレンナフタレート等のホモポリマ
ーは勿論のこと、ジカルボン酸成分の80モル%以上、
好ましくは90モル%以上がテレフタル酸またはナフタ
レン−2,6−ジカルボン酸であり、グリコール成分の
80モル%以上、好ましくは90モル%以上がエチレン
グリコールである結晶性の熱可塑性ポリエステル樹脂が
有利に用いられる。To explain the present invention in more detail, in the present invention, the polyester includes not only homopolymers such as polyethylene terephthalate and polyethylene naphthalate, but also 80 mol% or more of the dicarboxylic acid component,
Advantageously, a crystalline thermoplastic polyester resin in which 90 mol% or more is terephthalic acid or naphthalene-2,6-dicarboxylic acid and 80 mol% or more, preferably 90 mol% or more of the glycol component is ethylene glycol is used. used.
【0011】共重合成分としては、テレフタル酸を主た
る酸成分とする場合はナフタレン−2,6−ジカルボン
酸も、一方ナフタレン−2,6−ジカルボン酸を主たる
酸成分とする場合はテレフタル酸も含め、イソフタル酸
、ジフェニルジカルボン酸、ジフェノキシエタンジカル
ボン酸、ジフェニルエーテルジカルボン酸、ジフェニル
スルホンジカルボン酸、ヘキサヒドロジカルボン酸、ヘ
キサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、
アジピン酸、セバチン酸、p−β−ヒドロキシエトキシ
安息香酸、ε−オキシカプロン酸等の芳香族、脂環族及
び脂肪族の二官能カルボン酸等を挙げることができる。As a copolymerization component, when terephthalic acid is used as the main acid component, naphthalene-2,6-dicarboxylic acid is also included; on the other hand, when naphthalene-2,6-dicarboxylic acid is used as the main acid component, terephthalic acid is also included. , isophthalic acid, diphenyl dicarboxylic acid, diphenoxyethane dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylsulfone dicarboxylic acid, hexahydrodicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid,
Examples include aromatic, alicyclic, and aliphatic bifunctional carboxylic acids such as adipic acid, sebacic acid, p-β-hydroxyethoxybenzoic acid, and ε-oxycaproic acid.
【0012】また、グリコール成分としては、例えばジ
エチレングリコール、トリエチレングリコール、ポリエ
チレングリコール、プロピレングリコール、1,4−ブ
タンジオール、ネオペンチルグリコール、ヘキサメチレ
ングリコール、デカメチレングリコール、1,4−シク
ロヘキサンジメタノール、2,2−ビス(4’−β−ヒ
ドロキシエトキシフェニル)プロパン、−ビス(4’−
β−ヒドロキシエトキシフェニル)スルホン酸等が挙げ
られる。Further, as the glycol component, for example, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, hexamethylene glycol, decamethylene glycol, 1,4-cyclohexanedimethanol, 2,2-bis(4'-β-hydroxyethoxyphenyl)propane, -bis(4'-
Examples include β-hydroxyethoxyphenyl)sulfonic acid.
【0013】なお、本発明におけるポリエステルには、
実質的に線状である範囲において少量の3官能以上の多
官能性化合物を共重合成分として用いることができる。[0013] The polyester in the present invention includes:
A small amount of a trifunctional or higher functional compound can be used as a copolymerization component within a substantially linear range.
【0014】本発明のポリエステルの粘度は、好ましく
は1,1,2,2−テトラクロロエタン/フェノール=
40/60混合溶媒で20℃で測定した極限粘度(IV
)が0.5ないし1.0以下、より好ましくは0.6以
上0.9以下の範囲である。The viscosity of the polyester of the present invention is preferably 1,1,2,2-tetrachloroethane/phenol=
Intrinsic viscosity (IV
) is in the range of 0.5 to 1.0 or less, more preferably 0.6 or more and 0.9 or less.
【0015】また本発明のポリエステルは、必要に応じ
て公知の染顔料、熱安定剤、紫外線吸収剤、滑剤、帯電
防止剤等を含有していてもよい。The polyester of the present invention may also contain known dyes and pigments, heat stabilizers, ultraviolet absorbers, lubricants, antistatic agents, etc., if necessary.
【0016】延伸前のシートは実質的に非晶状態であり
、結晶化度は通常2%以下である。また、シートの厚さ
は特に限定しないが、有効部(両端耳部各5〜10cm
を除いた部分)で50〜1000μmであり好ましくは
100〜500μmである。延伸後のシート幅は特に限
定しない。延伸後両端耳部を各50〜100mmを除去
した部分を実用として用いるのが好ましい。[0016] The sheet before stretching is substantially amorphous, and the degree of crystallinity is usually 2% or less. Although the thickness of the sheet is not particularly limited,
50 to 1000 μm, preferably 100 to 500 μm. The sheet width after stretching is not particularly limited. After stretching, it is preferable to use the portions obtained by removing 50 to 100 mm from both end edges for practical use.
【0017】本発明に用いるシート成膜方法はタッチロ
ール方式、静電印加方式、エアーナイフ方式等の公知の
方式でよい。押出機は単軸押出機、二軸押出機、タンデ
ム押出機等公知の方式でよく、ベントの有無は問わない
。ベントの無い場合またはベントの真空度が30tor
rより悪い場合は、予め原料を公知の乾燥方法例えば真
空加熱乾燥機やホッパードライヤーで乾燥し水分率を1
00ppm以下、望ましくは50ppm以下にする。水
分率が高いとシートのIV低下が激しかったり、フィッ
シュアイが発生し易いやすい。IVの値は通常0.5〜
1.0、好ましくは0.6〜0.9である。0.5より
低下すると機械的物性が極端に低下し、一方1.0を超
えると賦型が困難となる。一方ベントの真空度が30T
orr以下(好ましくは10Torr以下)の場合は、
原料樹脂は通常の環境での飽和水分率3,000〜7,
000ppmであれば特に問題ない。また、樹脂の形状
はペレット(チップ)、フラフ、粉体状でも特に問題な
く、成形品のリサイクルを使用してもよい。The sheet film forming method used in the present invention may be a known method such as a touch roll method, an electrostatic application method, or an air knife method. The extruder may be a known type such as a single-screw extruder, twin-screw extruder, or tandem extruder, with or without a vent. If there is no vent or the vacuum level of the vent is 30 torr
If it is worse than
00 ppm or less, preferably 50 ppm or less. If the moisture content is high, the IV drop of the sheet will be severe and fish eyes will easily occur. The value of IV is usually 0.5~
1.0, preferably 0.6 to 0.9. If it is less than 0.5, the mechanical properties will be extremely deteriorated, while if it is more than 1.0, it will be difficult to form. On the other hand, the degree of vacuum in the vent is 30T.
orr or less (preferably 10 Torr or less),
The raw material resin has a saturated moisture content of 3,000 to 7,000 in normal environments.
000 ppm, there is no particular problem. Further, the shape of the resin may be pellets (chips), fluff, or powder without any particular problem, and recycled molded products may be used.
【0018】一軸延伸方法は一旦、成膜したシートロー
ル巻を一軸延伸装置にかけてもよく、成膜直後に一軸延
伸(インライン)してもよいが、熱エネルギー的にはイ
ンライン方式が望ましい。成膜一軸延伸されたポリエス
テルシートは熱収縮率が延伸方向に20%以上且つ延伸
と直角方向の熱収縮率が5%未満であり、シートの有効
部の厚み斑が±15%以下(好ましくは10%以下)で
あればよい。[0018] In the uniaxial stretching method, the film-formed sheet roll may be once applied to a uniaxial stretching device, or the film may be uniaxially stretched (in-line) immediately after film formation, but the in-line method is preferable in terms of thermal energy. The polyester sheet that has been uniaxially stretched after film formation has a heat shrinkage rate of 20% or more in the stretching direction and less than 5% in the direction perpendicular to the stretching, and the thickness unevenness of the effective part of the sheet is ±15% or less (preferably 10% or less).
【0019】比較的高い温度で延伸し、延伸配向性を得
る方法としては、押出成膜時に冷却ロール(キャストロ
ール)温度をガラス転移温度以下のできるだけ高温にし
実質的に透明で結晶化度2〜10%、好ましくは3〜6
%のシートに成膜する方法が挙げられる。[0019] As a method for obtaining stretch orientation by stretching at a relatively high temperature, the cooling roll (cast roll) temperature is set as high as possible below the glass transition temperature during extrusion film formation to obtain a film that is substantially transparent and has a crystallinity of 2 to 2. 10%, preferably 3-6
A method of forming a film on a sheet of 10% is mentioned.
【0020】本発明の延伸方法としては、延伸送りロー
ラーと延伸引取りローラーにニップローラーを使用し、
かつ該延伸ローラー間にポリエステルシートの全巾に亘
って延伸線を設けて低倍率延伸する。好ましくは、更に
延伸引取りローラー直後のローラーにニップローラーを
用いる。より安定に均一延伸するためには、延伸送りロ
ーラーと延伸引取りローラーの間隔を300mm以下(
好ましくは100mm以下)のできるだけ短くする方法
、延伸送りローラーと延伸引取りローラーにニップロー
ラーを使用した2段以上の一軸多段延伸を採用する方法
、および延伸部を赤外線ヒーターで補助加熱する方法等
が採用される。これらの方法を適宜組合せることがより
好ましい。In the stretching method of the present invention, a nip roller is used as a stretching feed roller and a stretching take-up roller,
A stretching line is provided between the stretching rollers over the entire width of the polyester sheet, and the polyester sheet is stretched at a low ratio. Preferably, a nip roller is further used immediately after the drawing roller. In order to stretch more stably and uniformly, the distance between the stretch feed roller and the stretch take-up roller should be set to 300 mm or less (
A method of making the length as short as possible (preferably 100 mm or less), a method of employing two or more uniaxial multi-stage stretching using nip rollers as a stretching feed roller and a stretching take-off roller, a method of auxiliary heating of the stretching part with an infrared heater, etc. Adopted. It is more preferable to appropriately combine these methods.
【0021】エチレンテレフタレート単位を主成分とす
るポリエステルの場合、延伸倍率が1.5倍未満では強
度・剛性の向上が小さく、一方2.5倍を超えるとシー
トの延伸方向と直交方向の熱収縮率も大きくなり熱成形
時に十分賦型出来ない。また延伸温度はガラス転移温度
(Tg)以上であればよい。適切な延伸温度は厚みやシ
ートの走行速度により異なるので特に上限を限定しにく
いが、あまり高すぎると延伸による剛性向上効果が少な
い。更に高いと膠着や白化の恐れがある。In the case of polyester whose main component is ethylene terephthalate units, if the stretching ratio is less than 1.5 times, the improvement in strength and rigidity will be small, while if it exceeds 2.5 times, the sheet will undergo heat shrinkage in the direction perpendicular to the stretching direction. The ratio also increases, making it impossible to form the mold sufficiently during thermoforming. Further, the stretching temperature may be at least the glass transition temperature (Tg). The appropriate stretching temperature varies depending on the thickness and the running speed of the sheet, so it is difficult to set an upper limit, but if it is too high, the effect of improving the stiffness by stretching will be small. If the temperature is even higher, there is a risk of sticking and whitening.
【0022】延伸送りローラーと延伸引取りローラーの
間には非晶ポリエステルシートのほぼ全巾に亘って延伸
線を設ける。延伸線は、ポリエステルシートの走行方法
にほぼ直交して設けたガイドバー、エッジまたはローラ
ーにより固定するのが好ましい。かかるガイドバー、エ
ッジまたはローラーは延伸送りローラーと延伸引取りロ
ーラーとの間に1個又は複数個設けることができる。ま
た延伸引取りローラーの後にさらに別の延伸引取りロー
ラーを設け、この両延伸引取りローラー間にもガイドバ
ーまたはエッジをさらに設けることができる。この場合
には、延伸送りローラーと延伸引取りローラー間のガイ
ドバーまたはエッジでまず一段目を延伸し、次いで両延
伸引取りローラー間のガイドバーまたはエッジで二段目
の延伸を行うことができる。A stretching line is provided between the stretching feed roller and the stretching take-off roller over almost the entire width of the amorphous polyester sheet. Preferably, the drawn line is fixed by a guide bar, edge or roller provided substantially perpendicular to the running direction of the polyester sheet. One or more such guide bars, edges or rollers can be provided between the stretching feed roller and the stretching take-off roller. Furthermore, another stretching take-off roller can be provided after the stretching take-off roller, and a guide bar or an edge can also be provided between the two stretching take-off rollers. In this case, the first stage of stretching can be performed first using a guide bar or edge between the stretching feed roller and the stretching take-off roller, and then the second stage of stretching can be performed using the guide bar or edge between both the stretching take-off rollers. .
【0023】ガイドバーおよびはエッジは適宜温度調節
ができる構造を有する。延伸倍率は、延伸を一段で行う
かあるいは二段以上の多段で行うかに関係なく、1.5
〜2.5倍とするのが好ましい。本発明の一軸延伸方法
はより具体的に例えば以下のようにして実施することが
できる。The guide bar and the edge have a structure that allows temperature adjustment as appropriate. The stretching ratio is 1.5 regardless of whether the stretching is performed in one stage or in multiple stages of two or more stages.
It is preferable to set it to 2.5 times. The uniaxial stretching method of the present invention can be carried out more specifically, for example, as follows.
【0024】一軸延伸方法は、例えば一旦、押出機にて
未延伸無配向シートを押出し成膜してロール巻きにする
。押出されたシートの厚み斑は通常±10%以下、好ま
しくは±5%以下である。本発明で用いる非晶ポリエス
テルシートの場合、延伸前のシートの両端部のネックン
対策として延伸前のシートの断面形状が両端より中央部
で2〜10%厚いもの、または両端部が中央部より少な
くとも1.5倍以上を有するものを使用する場合もある
。[0024] In the uniaxial stretching method, for example, an unstretched, non-oriented sheet is once extruded to form a film using an extruder, and then rolled. The thickness unevenness of the extruded sheet is usually ±10% or less, preferably ±5% or less. In the case of the amorphous polyester sheet used in the present invention, in order to prevent necking at both ends of the sheet before stretching, the cross-sectional shape of the sheet before stretching is 2 to 10% thicker at the center than at both ends, or when both ends are at least at least 10% thicker than at the center. In some cases, one having a ratio of 1.5 times or more is used.
【0025】その後延伸装置:繰り出し装置、温調ロー
ルを配し、シートを延伸温度まで加熱し、延伸送りロー
ラーと延伸引取りローラー間で一軸延伸をかけ、必要に
よりヒートセットさせる方法(オフライン)、または未
延伸無配向シート成膜直後に一軸延伸をかけ、必要によ
りヒートセットさせる方法(インライン)でもよい。ポ
リエステルの延伸は、成膜後の時間的な影響があり、ま
た熱エネルギー的にもインライン方式が望ましい。[0025] After that, a method of providing a stretching device: a feeding device and a temperature control roll, heating the sheet to the stretching temperature, applying uniaxial stretching between a stretching feed roller and a stretching take-up roller, and heat setting if necessary (off-line); Alternatively, a method (in-line) in which uniaxial stretching is applied immediately after film formation of an unstretched, non-oriented sheet and heat setting is performed if necessary may be used. The stretching of polyester is influenced by the time after film formation, and an in-line method is preferable in terms of thermal energy.
【0026】均一延伸方法としては、例えば延伸送りロ
ーラーと延伸引取りローラー間に該ポリエステルシート
にほぼ直交して全巾に亘って適宜温調したガイドバーお
よび/またはエッジを単独または複数個組み合わせて延
伸線(点)を固定する方法を用いる。更にこの方法に、
延伸送りローラーと延伸引取りローラーにニップローラ
ーを使用し、延伸引取りローラー直後のローラーにニッ
プローラーを用いる方法、延伸送りローラーと延伸引取
りローラーの間隔が300mm以下、好ましくは100
mm以下のできるだけ短くする方法、延伸部を赤外線ヒ
ーター等で補助加熱する方法の2種以上を組み合わせる
方法等が挙げられる。これらの方法を用いるとより均一
な延伸ができる。[0026] As a uniform stretching method, for example, a guide bar and/or an edge which is appropriately temperature-controlled over the entire width of the polyester sheet is installed either singly or in combination between a stretching feed roller and a stretching take-up roller. A method of fixing the drawn line (point) is used. Furthermore, this method
A method in which a nip roller is used as the stretch feed roller and the stretch take-off roller, and the nip roller is used as the roller immediately after the stretch take-off roller, and the distance between the stretch feed roller and the stretch take-off roller is 300 mm or less, preferably 10 mm.
Examples include a method of making the length as short as possible (mm or less), a method of auxiliary heating of the stretched portion with an infrared heater, etc., and a method of combining two or more of them. Using these methods allows for more uniform stretching.
【0027】一軸延伸されたシートの配向を維持するた
めに、延伸後にヒートセットロールを数本設けロール温
度を100℃以上、200℃以下にし、ヒートセット時
間が3分以内になるようにシートを通しヒートセットを
行ってもよい。またロール間でのシートのヒートセット
とは別に、熱成形した後に110℃以上、好ましくは1
30℃以上で結晶化度をコントロールして透明性を維持
させつつヒートセットを行うこともできる。In order to maintain the orientation of the uniaxially stretched sheet, several heat-setting rolls are provided after stretching, and the roll temperature is set to 100°C or higher and 200°C or lower, and the sheet is heated such that the heat-setting time is within 3 minutes. Heat setting may also be performed. In addition to the heat setting of the sheet between rolls, after thermoforming the sheet is heated to 110°C or higher, preferably 1
Heat setting can also be performed at 30° C. or higher while controlling the degree of crystallinity and maintaining transparency.
【0028】一軸延伸ポリエステルシートの延伸方向の
熱収縮は、延伸倍率を増しても熱収縮率が60%を越え
ず、逆に低下傾向を示すようになる。延伸方向の熱収縮
比は、下記式1The heat shrinkage of the uniaxially stretched polyester sheet in the stretching direction does not exceed 60% even when the stretching ratio is increased, and on the contrary shows a decreasing tendency. The heat shrinkage ratio in the stretching direction is expressed by the following formula 1.
【0029】[0029]
【式1】[Formula 1]
【0030】で表わされるがこの値が0.9以下になる
と熱成形時に賦型できない。本発明方法で得られた一軸
延伸ポリエステルシートは、式1で表わされる熱収縮比
が0.93〜0.98の間にあるのが好ましい。If this value is less than 0.9, it cannot be shaped during thermoforming. The uniaxially stretched polyester sheet obtained by the method of the present invention preferably has a heat shrinkage ratio expressed by Formula 1 between 0.93 and 0.98.
【0031】本発明による一軸延伸されたシートは、好
ましくは厚み斑が±15%以下、より好ましくは±10
%以下である。ポリエステルの場合、未延伸部に比べ延
伸部の応力が高くなるため、未延伸部分から延伸され均
一延伸化される。また、実用上シートの厚み斑は±15
%以下であれば使用できるが、延伸線(点)を設けるこ
とにより、容易に一軸延伸の均一性が向上し厚み班が小
さくなる。The uniaxially stretched sheet according to the present invention preferably has a thickness unevenness of ±15% or less, more preferably ±10%.
% or less. In the case of polyester, the stress in the stretched portion is higher than that in the unstretched portion, so that the unstretched portion is stretched and uniformly stretched. In addition, in practice, the thickness unevenness of the sheet is ±15
% or less, but by providing stretching lines (dots), the uniformity of uniaxial stretching can be easily improved and the thickness spots can be reduced.
【0032】一軸延伸された該ポリエステルシートの熱
成形方法としては従来公知の方法でよく、熱板成形、真
空成形、圧空成形、真空圧空成形等が挙げられる。剛性
の評価法は、シートの場合には引張弾性率で行い、熱成
形品では曲げ強度、腰強度で評価した。The thermoforming method for the uniaxially stretched polyester sheet may be any conventionally known method, including hot plate forming, vacuum forming, pressure forming, vacuum pressure forming, and the like. Rigidity was evaluated using tensile modulus for sheets, and bending strength and stiffness for thermoformed products.
【0033】以下、測定方法を説明する。
(1)極限粘度(IV)
1,1,2,2−テトラクロルエタン/フェノール=4
0/60の混合溶媒に試料を溶かし、ウベロード粘度計
を用い20℃で測定した。The measurement method will be explained below. (1) Intrinsic viscosity (IV) 1,1,2,2-tetrachloroethane/phenol = 4
A sample was dissolved in a 0/60 mixed solvent and measured at 20°C using an Ubbelod viscometer.
【0034】(2)熱収縮率
シート20cm×20cmを乾熱オーブン中に置き、1
30℃×30分放置する。次いで、冷却した後、寸法を
中央部の10cm×10cmで測定する。l0:熱収縮
前寸法、l:熱収縮後寸法とすると、熱収縮率は下式で
与えられる。(2) Place the heat shrinkage sheet 20cm x 20cm in a dry heat oven,
Leave at 30°C for 30 minutes. Then, after cooling, the dimensions are measured at the center, 10 cm x 10 cm. When l0 is the dimension before heat shrinkage and l is the dimension after heat shrinkage, the heat shrinkage rate is given by the following formula.
【0035】[0035]
【式2】[Formula 2]
【0036】(3)結晶化度
密度勾配管を用いて測定した密度dから下式により算出
する。(3) Crystallinity Calculated from the density d measured using a density gradient tube using the following formula.
【0037】[0037]
【式3】[Formula 3]
【0038】但し、da:非晶状態の密度(例えばポリ
エチレンテレフタレートでは1.335g/ml)、d
c:結晶状態の密度(例えばポリエチレンテレフタレー
トでは1.455g/ml)However, da: density of amorphous state (for example, 1.335 g/ml for polyethylene terephthalate), d
c: Density in crystalline state (for example, 1.455 g/ml for polyethylene terephthalate)
【0039】(4)引張弾性率
シートの剛性の評価として引張弾性率を用いる。
オリエンテック製:テンシロンRTA−100を用い、
JISの引張試験に準拠し測定する。但し、引張速度は
50mm/minとした。(4) Tensile Modulus Tensile modulus is used to evaluate the rigidity of the sheet. Made by Orientech: Using Tensilon RTA-100,
Measured in accordance with JIS tensile test. However, the tensile speed was 50 mm/min.
【0040】(5)容器の曲げ強度、腰強度容器の剛性
の評価に曲げ強度(図2参照)と腰強度(図3参照)を
用いる。
島津製作所製:オートグラフAGS−500Sを使用す
る。但し、ヘッドスピードは50mm/minとした。(5) Bending strength and waist strength of the container Bending strength (see FIG. 2) and waist strength (see FIG. 3) are used to evaluate the rigidity of the container. Autograph AGS-500S manufactured by Shimadzu Corporation is used. However, the head speed was 50 mm/min.
【0041】(6)容器の耐熱性
熱成形容器に熱湯を入れ、容器が変形する温度で評価し
た。(6) Heat Resistance of Container Hot water was poured into a thermoformed container and evaluated at the temperature at which the container deformed.
【0042】[0042]
【実施例】以下、実施例により更に詳細に説明するが、
本発明はこれらの実施例に限定されるものではない。[Example] Hereinafter, it will be explained in more detail with examples.
The present invention is not limited to these examples.
【0043】比較例1
三酸化アンチモンを重合触媒として、重合した極限粘度
(IV)0.85のポリエチレンテレフタレート(以下
PETと称する)のペレットを未乾燥のままベント付2
軸押出機でタッチロール方式により幅960mm、厚み
800μmの実質的に未延伸無配向のシートを得た(キ
ャストロール温度55℃)。このシートをキーフェル社
製の熱成形機にて、タテ160mm、ヨコ130mm、
深さ35mmの熱成形を行った結果、賦型は良好であっ
た。得られた結果を表1に示す。Comparative Example 1 Pellets of polyethylene terephthalate (hereinafter referred to as PET) having an intrinsic viscosity (IV) of 0.85 were polymerized using antimony trioxide as a polymerization catalyst, and were placed in an undried state with a vent 2.
A substantially unstretched, non-oriented sheet having a width of 960 mm and a thickness of 800 μm was obtained using a touch roll method using an axial extruder (cast roll temperature: 55° C.). This sheet was molded into a length of 160 mm, a width of 130 mm, using a Kiefel thermoforming machine.
As a result of thermoforming to a depth of 35 mm, the molding was good. The results obtained are shown in Table 1.
【0044】実施例1
比較例1の未延伸無配向シートを、400φの80℃の
予熱ローラー4本により予めシートを予熱し、送りロー
ラーと引取りローラー間で400℃の赤外線ヒーターを
シート上部から照射し、シートの下側にガイドバーを設
け、延伸点を固定させ(延伸装置A法)、送りローラー
と引取りローラーの周速比が1:1.5の縦方向に1.
5倍に延伸し、冷却した。赤外線ヒーターはシート面か
ら約3cm上方にシートの走行方向に直交する方向にそ
の長軸が平行になるように固定された。また、ガイドバ
ーはシート面(投影面)上で赤外線ヒーターの測定位置
の最後部(シートの進行方向側)に設置された。Example 1 The unstretched non-oriented sheet of Comparative Example 1 was preheated using four 400φ 80°C preheating rollers, and a 400°C infrared heater was applied from the top of the sheet between the feed roller and take-up roller. A guide bar is provided on the lower side of the sheet, the stretching point is fixed (stretching device A method), and the sheet is stretched in the longitudinal direction with a peripheral speed ratio of 1:1.5.
It was stretched 5 times and cooled. The infrared heater was fixed about 3 cm above the sheet surface so that its long axis was parallel to the direction perpendicular to the running direction of the sheet. Further, the guide bar was installed on the sheet surface (projection surface) at the rearmost position (on the sheet traveling direction side) of the measurement position of the infrared heater.
【0045】延伸点については、ロール間隔を100m
mにし、80℃のガイドバーに未延伸シートを長さを2
mm, 接触角90度で接触させることで固定させた
。その結果、偏光板による延伸斑は認められなかった。
次いで延伸シートをキーフェル社製の熱成形機にて、タ
テ160mm、ヨコ130mm、深さ35mmの熱成形
を行った。熱成形時の賦型は良好で、未延伸無配向シー
トの成形性(比較例1)となんら変わりはなく、剛性の
ある容器が得られた。得られた結果を表1に示す。[0045] Regarding the stretching point, the roll spacing was 100 m.
m, and the unstretched sheet was placed on a guide bar at 80°C to a length of 2
mm, and was fixed by contacting with a contact angle of 90 degrees. As a result, no stretching unevenness due to the polarizing plate was observed. Next, the stretched sheet was thermoformed to a length of 160 mm, width of 130 mm, and depth of 35 mm using a thermoforming machine manufactured by Kiefel. The shapeability during thermoforming was good, and the moldability was no different from that of the unstretched, non-oriented sheet (Comparative Example 1), and a rigid container was obtained. The results obtained are shown in Table 1.
【0046】実施例2
延伸倍率を2倍にした以外は実施例1と同様にシートを
製造した。その結果、偏光板による延伸斑は認められず
、また熱成形性も良く、剛性のある容器が得られた。
得られた結果を表1に示す。Example 2 A sheet was produced in the same manner as in Example 1, except that the stretching ratio was doubled. As a result, no stretching unevenness due to the polarizing plate was observed, and a container with good thermoformability and rigidity was obtained. The results obtained are shown in Table 1.
【0047】実施例3
延伸倍率を2.5倍にした以外は実施例1と同様にシー
トを製造した。その結果、偏光板による延伸斑は認めら
れず、また熱成形性も良く、剛性のある容器が得られた
。得られた結果を表1に示す。Example 3 A sheet was produced in the same manner as in Example 1, except that the stretching ratio was increased to 2.5 times. As a result, no stretching unevenness due to the polarizing plate was observed, and a container with good thermoformability and rigidity was obtained. The results obtained are shown in Table 1.
【0048】比較例2
延伸倍率を3倍にした以外は実施例1と同様にシートを
製造した。その結果、偏光板による延伸斑は認められな
かった。しかし、熱収縮比が0.32で熱成形性が悪く
、熱成形時に充分賦型出来ず、容器を得ることが出来な
かった。得られた結果を表1に示す。Comparative Example 2 A sheet was produced in the same manner as in Example 1, except that the stretching ratio was increased to 3 times. As a result, no stretching unevenness due to the polarizing plate was observed. However, the heat shrinkage ratio was 0.32 and the thermoformability was poor, and the shape could not be sufficiently formed during thermoforming, making it impossible to obtain a container. The results obtained are shown in Table 1.
【0049】比較例3
比較例1の未延伸無配向シートを、400φの80℃の
予熱ローラー4本により予めシートを予熱し、送りロー
ラーと引取りローラー間隔を100mmにし、400℃
の赤外線ヒーターをシート上部から照射し、ガイドバー
を設けることなく、送りローラーと引取りローラーの周
速比が1:2の縦方向に2倍に延伸し、冷却した。その
結果、偏光板による延伸斑が認められた。延伸シートを
キーフェル社製の熱成形機にて、タテ160mm、ヨコ
130mm、深さ35mmの熱成形を行った。熱成形性
はシートの位置により異なり、賦型の良好なところと賦
型できないところがあった。得られた結果を表1に示す
。Comparative Example 3 The unstretched non-oriented sheet of Comparative Example 1 was preheated using four 400φ preheating rollers at 80°C, the distance between the feed roller and the take-up roller was set to 100 mm, and the sheet was heated at 400°C.
An infrared heater was irradiated from above the sheet, and the sheet was stretched twice in the longitudinal direction at a circumferential speed ratio of the feed roller and the take-up roller of 1:2 without providing a guide bar, and then cooled. As a result, stretching unevenness due to the polarizing plate was observed. The stretched sheet was thermoformed to a length of 160 mm, width of 130 mm, and depth of 35 mm using a thermoforming machine manufactured by Kiefel. Thermoformability varied depending on the position of the sheet, with some parts being good at forming and others not being able to be formed. The results obtained are shown in Table 1.
【0050】実施例4
図1に示した延伸装置により延伸した。すなわち、三酸
化アンチモンを重合触媒として、重合した極限粘度(I
V)0.85のPET樹脂ペレットを未乾燥のままベン
ト付2軸押出機にて幅960mm、厚み600μmの実
質的に未延伸無配向シートを成膜し、そのままインライ
ンで400φの80℃の予熱ローラー4本によりシート
を予熱し、送りローラーと引取りローラー間でシートの
下側にエッジを設け、延伸点を固定させ(延伸装置B法
、図1参照)、送りローラーと引取りローラーの周速比
が1:1.5の縦方向に1.5倍に延伸し、冷却した。Example 4 Stretching was carried out using the stretching apparatus shown in FIG. That is, using antimony trioxide as a polymerization catalyst, the polymerized intrinsic viscosity (I
V) 0.85 PET resin pellets are left undried to form a substantially unstretched, non-oriented sheet with a width of 960 mm and a thickness of 600 μm using a vented twin-screw extruder, and preheated in-line at 80°C with a diameter of 400 mm. The sheet is preheated by four rollers, an edge is provided on the lower side of the sheet between the feed roller and the take-up roller, and the stretching point is fixed (stretching device B method, see Figure 1). It was stretched 1.5 times in the longitudinal direction at a speed ratio of 1:1.5 and cooled.
【0051】赤外線ヒーターは実施例1の場合と同じ位
置に同様に固定された。また、エッジは、実施例1と同
様に設置された。延伸点については、ロール間隔を80
mmにし90℃のエッジに未延伸シートを長さを2mm
、接触角90度で接触させることで固定させた。その結
果、偏光板による延伸斑は認められなかった。延伸シー
トを実施例1と同じ熱成形機を用いて成形し、熱成形時
の賦型は良好で、剛性のある容器が得られた。得られた
結果を表1に示す。The infrared heater was similarly fixed at the same position as in Example 1. Further, the edge was installed in the same manner as in Example 1. For the stretching point, the roll spacing is 80
2mm length of unstretched sheet on the edge at 90℃
, were fixed by contacting at a contact angle of 90 degrees. As a result, no stretching unevenness due to the polarizing plate was observed. The stretched sheet was molded using the same thermoforming machine as in Example 1, and the shaping during thermoforming was good and a rigid container was obtained. The results obtained are shown in Table 1.
【0052】実施例5
二酸化ゲルマニウムを重合触媒として、重合した極限粘
度(IV)0.85のPET樹脂ペレットを未乾燥のま
まベント付2軸押出機にて幅960mm、厚み600μ
mの実質的に未延伸無配向シートを成膜し、そのままイ
ンラインで400φの80℃の予熱ローラー2本により
シートを予熱し、送りローラーと引取りローラー間でま
ずシートの上側にエッジを次いで20mm間隔でシート
の下側にエッジを設け、延伸点を固定させ(延伸装置C
法)、送りローラーと引取りローラーの周速比が1:2
.5の縦方向に2.5倍に延伸し、冷却した。延伸点に
ついては、ローラー間隔を150mmにし90℃のエッ
ジに未延伸シートを長さを1mm、接触角90度で接触
させることで固定させた。その結果、延伸斑は認められ
なかった。延伸シートを実施例1と同じ熱成形機を用い
て成形し、熱成形時の賦型は良好で、剛性のある容器が
得られた。得られた結果を表1に示す。Example 5 Using germanium dioxide as a polymerization catalyst, PET resin pellets having an intrinsic viscosity (IV) of 0.85 were polymerized using a vented twin-screw extruder to a width of 960 mm and a thickness of 600 μm without drying.
A substantially unstretched, non-oriented sheet of m is formed into a film, and the sheet is preheated in-line with two preheating rollers of 400φ at 80°C, and the edge is first placed on the upper side of the sheet between a feed roller and a take-up roller, and then a 20 mm Edges are provided on the lower side of the sheet at intervals, and the stretching points are fixed (stretching device C
method), the peripheral speed ratio of the feed roller and take-up roller is 1:2
.. 5 was stretched 2.5 times in the longitudinal direction and cooled. Regarding the stretching point, the roller interval was set to 150 mm, and the unstretched sheet was fixed by contacting the 90° C. edge with a length of 1 mm and a contact angle of 90 degrees. As a result, no stretching unevenness was observed. The stretched sheet was molded using the same thermoforming machine as in Example 1, and the shaping during thermoforming was good and a rigid container was obtained. The results obtained are shown in Table 1.
【0053】[0053]
【表1】[Table 1]
【0054】実施例6および7
延伸引取りローラーと直後のニップローラーの間に40
0φの加熱ローラーを3本設けて一軸延伸した後110
℃と150℃でヒートセットを施こす以外、実施例4と
同様にして延伸シートを製造し、次いで熱成形して容器
を得た。表2から判るように耐熱性の向上した延伸シー
トであり、容器も剛性と耐熱性の向上したものであった
。Examples 6 and 7 Between the stretch take-off roller and the immediately following nip roller
After uniaxial stretching with three 0φ heating rollers, 110
A stretched sheet was produced in the same manner as in Example 4, except that heat setting was performed at 150°C and 150°C, and then thermoformed to obtain a container. As can be seen from Table 2, the stretched sheet had improved heat resistance, and the container also had improved rigidity and heat resistance.
【0055】[0055]
【表2】[Table 2]
【0056】実施例8および9
実施例2で用いた延伸前の無延伸無配向シートの断面形
状は、平均厚み500μmのフラットである。実施例9
では平均厚み500μmで中央部520μm、両端部4
90μm(約6%中央部がなだらかに凸)の断面形状を
もったものを原反シートに用いた(実施例9)。実施例
10では中央部平均厚みが500μmで両端耳部が70
0μm(両端耳部が中央部の1.40倍)の断面形状を
もった原反シートを用い、各々実施例2と同様2倍に一
軸延伸した。これ等の一軸延伸シートの厚み斑は、何れ
も実施例2に比較し一層改善された。この結果を表3に
示す。Examples 8 and 9 The non-stretched, non-oriented sheet used in Example 2 had a flat cross-sectional shape with an average thickness of 500 μm. Example 9
In this case, the average thickness is 500 μm, the center part is 520 μm, and both ends are 4
A sheet having a cross-sectional shape of 90 μm (approximately 6% gently convex at the center) was used as the original sheet (Example 9). In Example 10, the average thickness of the central portion was 500 μm and the edge portions at both ends were 70 μm.
Using raw sheets having a cross-sectional shape of 0 μm (edges at both ends 1.40 times larger than the center), each sheet was uniaxially stretched to twice the size as in Example 2. The thickness unevenness of these uniaxially stretched sheets was further improved compared to Example 2. The results are shown in Table 3.
【0057】[0057]
【表3】[Table 3]
【0058】実施例10および11
キャストロールの温度を68℃、72℃に変更する以外
、直接インラインで実施例4と同様に一軸延伸した。
次いで、これ等を熱成形し評価した。その結果を表4に
示す。実施例10、11では実施例2に比較し剛性の向
上効果が見られた。なお、実施例2のペット樹脂のガラ
ス転移温度は74〜76℃である。Examples 10 and 11 Uniaxial stretching was carried out directly in-line in the same manner as in Example 4, except that the temperature of the cast roll was changed to 68°C and 72°C. Next, these were thermoformed and evaluated. The results are shown in Table 4. In Examples 10 and 11, an improvement in rigidity was observed compared to Example 2. In addition, the glass transition temperature of the PET resin of Example 2 is 74 to 76°C.
【0059】[0059]
【表4】[Table 4]
【図1】本発明のシートを製造する際に使用した延伸装
置の概略説明図である。FIG. 1 is a schematic explanatory diagram of a stretching device used in manufacturing the sheet of the present invention.
【図2】本発明のシートから製造した容器の曲げ強度を
測定する方法を示した概略図である。FIG. 2 is a schematic diagram showing a method for measuring the bending strength of a container made from the sheet of the present invention.
【図3】本発明のシートから製造した容器の腰強度を測
定する方法を示す概略図である。FIG. 3 is a schematic diagram showing a method of measuring the stiffness of a container made from the sheet of the present invention.
1 二軸押出機、
2 シート金型、
3 キャストロール、
4、5 ガイドローラー、
6、6’、17、17’ ニップローラー、7、8、
9、10 予熱ローラー、
11、11’ 延伸送りローラー(ニップローラー)
、12、12’ 延伸引取りローラー(ニップローラ
ー)、
13、13’ 冷却ローラー(ニップローラー)、1
4 赤外線ヒーター、
15、16 冷却ローラー、
18 捲取、
19 延伸線(エッジ)。1 Twin screw extruder, 2 Sheet mold, 3 Cast roll, 4, 5 Guide roller, 6, 6', 17, 17' Nip roller, 7, 8,
9, 10 Preheating roller, 11, 11' Stretching feed roller (nip roller)
, 12, 12' stretching take-off roller (nip roller), 13, 13' cooling roller (nip roller), 1
4 infrared heater, 15, 16 cooling roller, 18 winding, 19 drawing wire (edge).
Claims (8)
ローラーと延伸引取りローラーにニップローラーを使用
しそしてこれらのローラー間に該非晶ポリエステルシー
トのほぼ全巾に亘って延伸線を設けて低倍率で一軸延伸
する、ことを特徴とする一軸延伸ポリエステルシートの
製造方法。Claim 1: An amorphous polyester sheet is processed at a low magnification by using a nip roller as a stretching feed roller and a stretching take-off roller, and by providing a stretching line between these rollers over almost the entire width of the amorphous polyester sheet. A method for producing a uniaxially stretched polyester sheet, comprising uniaxially stretching.
.5倍で一軸延伸する請求項1に記載の方法。[Claim 2] The amorphous polyester sheet has a thickness of 1.5 to 2
.. The method according to claim 1, wherein the film is uniaxially stretched by a factor of 5.
ー直後のローラーにニップローラーを用いることを特徴
とするポリエステルシートの製造方法。3. The method for producing a polyester sheet according to claim 1, characterized in that a nip roller is used as the roller immediately after the stretching take-off roller.
ーの間隔が300mm以下である請求項1に記載のポリ
エステルシートの製造方法。4. The method for producing a polyester sheet according to claim 1, wherein the distance between the stretching feed roller and the stretching take-up roller is 300 mm or less.
の厚みが2〜10%厚い断面形状の原反シートを用いる
請求項1に記載のポリエステルシートの製造方法。5. The method for producing a polyester sheet according to claim 1, wherein the sheet is a raw sheet having a cross-sectional shape in which the thickness at the center is 2 to 10% thicker than at both ends.
くとも1.3倍以上である断面形状を有する原反シート
を用いる請求項1に記載のポリエステルシートの製造方
法。6. The method for producing a polyester sheet according to claim 1, wherein a raw sheet having a cross-sectional shape in which the thickness at both ends is at least 1.3 times or more thicker than the thickness at the center is used.
をガラス転移温度以下の出来るだけ高温域で成形した結
晶化度2〜10%のポリエステルシートを延伸送りロー
ラーと延伸引取りローラーにニップローラーを使用して
一軸延伸することを特徴とする請求項1に記載のポリエ
ステルシートの製造方法。[Claim 7] A polyester sheet with a crystallinity of 2 to 10% is formed by keeping the cast roll temperature immediately after sheet extrusion in the high temperature range below the glass transition temperature, using a nip roller as a stretching feed roller and a stretching take-off roller. 2. The method for producing a polyester sheet according to claim 1, wherein the polyester sheet is uniaxially stretched.
エステルシートを熱成形して得られる剛性に優れたポリ
エステル熱成形物。8. A polyester thermoformed article with excellent rigidity obtained by thermoforming the uniaxially low-strength stretched polyester sheet according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15373091A JP3045811B2 (en) | 1991-05-30 | 1991-05-30 | Method for producing uniaxially stretched polyester sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15373091A JP3045811B2 (en) | 1991-05-30 | 1991-05-30 | Method for producing uniaxially stretched polyester sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04353429A true JPH04353429A (en) | 1992-12-08 |
JP3045811B2 JP3045811B2 (en) | 2000-05-29 |
Family
ID=15568845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15373091A Expired - Fee Related JP3045811B2 (en) | 1991-05-30 | 1991-05-30 | Method for producing uniaxially stretched polyester sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3045811B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002172695A (en) * | 2000-12-05 | 2002-06-18 | Toyobo Co Ltd | Method for manufacturing biaxially oriented polyamide film |
JP2011093205A (en) * | 2009-10-29 | 2011-05-12 | Sekisui Chem Co Ltd | Method of manufacturing thermoformed article |
JPWO2014002504A1 (en) * | 2012-06-29 | 2016-05-30 | 株式会社クラレ | Method for producing (meth) acrylic resin composition |
-
1991
- 1991-05-30 JP JP15373091A patent/JP3045811B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002172695A (en) * | 2000-12-05 | 2002-06-18 | Toyobo Co Ltd | Method for manufacturing biaxially oriented polyamide film |
JP2011093205A (en) * | 2009-10-29 | 2011-05-12 | Sekisui Chem Co Ltd | Method of manufacturing thermoformed article |
JPWO2014002504A1 (en) * | 2012-06-29 | 2016-05-30 | 株式会社クラレ | Method for producing (meth) acrylic resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP3045811B2 (en) | 2000-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6797279B2 (en) | Method for manufacturing thermoplastic resin film and thermoplastic resin film | |
US4867937A (en) | Process for producing high modulus film | |
CN111936563B (en) | Heat-shrinkable polyester film | |
CN107921698B (en) | Heat-shrinkable polyester film and package | |
JP4232004B2 (en) | Biaxially oriented polyester film | |
JP4228087B2 (en) | Biaxially stretched polyester film for processing | |
US3901851A (en) | Strengthened films and method for producing same | |
JP2010201857A (en) | Biaxially-oriented polyester film for molding simultaneous transfer | |
JP3053245B2 (en) | Polyester sheet for thermoforming, thermoformed product thereof and production method thereof | |
JP3045811B2 (en) | Method for producing uniaxially stretched polyester sheet | |
JP4232143B2 (en) | Method for producing heat-shrinkable polyester film | |
JP7540493B2 (en) | Heat-shrinkable polyester film, heat-shrinkable label, and packaging material | |
JPH09300892A (en) | Polyester film for transfer foil | |
JP7501048B2 (en) | Biaxially oriented film | |
JPH07329170A (en) | Rolling polyester sheet, its thermal molding and manufacture thereof | |
KR20160116702A (en) | Polyester and manufacturing method thereof | |
JPH0832498B2 (en) | Polyester film for transfer film | |
JPH0367629A (en) | Biaxially oriented polyester film for molding | |
JPH06335966A (en) | Rolled polyester sheet, thermoformed article thereof and production thereof | |
JPH03134052A (en) | Orientated polyester film | |
JPS61254326A (en) | Manufacture of polyester molded part | |
JPS6026697B2 (en) | Method for producing ethylene-vinyl alcohol copolymer film | |
JP3975582B2 (en) | Method for producing biaxially stretched polyester film | |
JPH0657116A (en) | Poly@(3754/24)butylene terephthalate)-based resin composition with excellent stretchability for biaxially stretched tubular film | |
JP2794893B2 (en) | Biaxially oriented polyester film for molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000228 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |