JPH04352373A - High-temperature superconducting switching element - Google Patents

High-temperature superconducting switching element

Info

Publication number
JPH04352373A
JPH04352373A JP3152262A JP15226291A JPH04352373A JP H04352373 A JPH04352373 A JP H04352373A JP 3152262 A JP3152262 A JP 3152262A JP 15226291 A JP15226291 A JP 15226291A JP H04352373 A JPH04352373 A JP H04352373A
Authority
JP
Japan
Prior art keywords
switching element
high temperature
superconductor
magnetic field
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3152262A
Other languages
Japanese (ja)
Inventor
Yoichi Ando
陽一 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP3152262A priority Critical patent/JPH04352373A/en
Publication of JPH04352373A publication Critical patent/JPH04352373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make the title device compact and to make its power loss very small. CONSTITUTION:An electric current is made to flow to a direction perpendicular to the bonding face of a high-temperature superconductor 2 in which high- temperature superconductor layers 4, 4,..., 4 and insulator layers 5, 5,..., 5 have been Josephson-bonded in a multilayer manner; a magnetic field is applied or cut in a direction parallel to the bonding face. Thereby, the electric field is switching-controlled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は各種電気機器、電子機器
類に使用されているスイッチング素子に関する。更に詳
述すると、本発明は将来実用化が期待される超電導を利
用した電力貯蔵システムやモータ等に用いて好適な高温
超電導スイッチング素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to switching elements used in various electrical and electronic devices. More specifically, the present invention relates to a high temperature superconducting switching element suitable for use in power storage systems, motors, etc. using superconductivity, which are expected to be put to practical use in the future.

【0002】0002

【従来の技術】従来、交直変換器、モータ、大型電気、
電子機器に使用されている大電力用のスイッチング素子
としてはサイリスタ、トライアック、パワートランジス
タ、パワーFET等が一般的である。これら従来のスイ
ッチング素子は、小型化が計られるとともに制御も非常
に簡単である。
[Prior Art] Conventionally, AC/DC converters, motors, large electrical appliances,
Typical high-power switching elements used in electronic equipment include thyristors, triacs, power transistors, and power FETs. These conventional switching elements are compact and very easy to control.

【0003】0003

【発明が解決しようとする課題】しかしながら、従来の
スイッチング素子では電力損失が大きく、大電流の制御
をこのスイッチング素子に行なった場合には発熱量も非
常に大きくなり、その放熱対策も必要となっていた。し
たがって、スイッチング素子そのものは小さなものであ
っても、放熱対策に割合大きなスペースを必要としてい
た。
[Problems to be Solved by the Invention] However, conventional switching elements have a large power loss, and when large currents are controlled by these switching elements, the amount of heat generated is also extremely large, and heat dissipation measures are also required. was. Therefore, even if the switching element itself is small, a relatively large space is required for heat dissipation.

【0004】また、これらスイッチング素子は常温動作
を前提として作られているため、超電導を利用した機器
類に使用する場合には、このスイッチング素子と超電導
利用機器本体との間に大きな温度差が生じ、機器本体の
熱侵入損失も大きなものとなっている。更に、現在、超
電導を利用したエレクトロニクス素子としては、省電力
、処理スピードの大幅アップを目指した超電導デジタル
デバイスは研究開発中ではあるが、大容量の電力用パワ
ースイッチング素子はなかった。
[0004] Furthermore, since these switching elements are manufactured on the assumption that they will operate at room temperature, when used in equipment that uses superconductivity, a large temperature difference will occur between the switching element and the main body of the equipment that uses superconductivity. , heat penetration loss in the equipment body is also large. Furthermore, as electronic devices using superconductivity, superconducting digital devices that aim to save power and significantly increase processing speed are currently under research and development, but there are no power switching devices for large-capacity power.

【0005】本発明は電力損失の非常に少ない高温超電
導スイッチング素子を提供することを目的とする。
An object of the present invention is to provide a high temperature superconducting switching element with extremely low power loss.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
め、本発明の高温超電導スイッチング素子は、高温超電
導体を多層状にジョセフソン結合し、前記高温超電導体
の接合面に垂直な方向に電流を流し、かつ前記接合面に
平行な方向から磁場をかけたり切ったりすることによっ
て前記電流をスイッチング制御するようにしている。
[Means for Solving the Problems] In order to achieve the above object, the high temperature superconducting switching element of the present invention comprises Josephson bonding of high temperature superconductors in a multi-layered manner, and a current flow in a direction perpendicular to the bonding surface of the high temperature superconductors. The switching control of the current is carried out by applying and cutting off a magnetic field from a direction parallel to the junction surface.

【0007】[0007]

【作用】したがって、磁場が印加されると、高温超電導
体層の間のジョセフソン結合が切れ、高抵抗が生じて電
流の流れを遮断する。また、磁場が印加されない時には
、高温超電導体の各層がジョセフソン結合されるととも
にジョセフソン電流が流れるため、抵抗値は0となる。 依って、磁場のON,OFFによって高温超電導体の接
合面に垂直な方向に流れる電流がスイッチング制御され
る。
[Operation] Therefore, when a magnetic field is applied, the Josephson coupling between the high temperature superconductor layers is broken, creating a high resistance and blocking the flow of current. Furthermore, when no magnetic field is applied, each layer of the high temperature superconductor is Josephson coupled and a Josephson current flows, so the resistance value becomes 0. Therefore, the switching of the current flowing in the direction perpendicular to the junction surface of the high temperature superconductor is controlled by turning the magnetic field ON and OFF.

【0008】[0008]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be explained in detail below based on embodiments shown in the drawings.

【0009】図2に本発明の高温超電導スイッチング素
子の一実施例を概略図で示す。この高温超電導スイッチ
ング素子は、磁場の中例えばコイル1の中に両側面に電
流リード3,3を固着した高温超電導体2が配置され、
コイル1に通電することによってコイル1内に発生させ
た磁場を高温超電導体2にかけるようにしている。超電
導体部分2は、図1に示す詳細図に示すように、高温超
電導体の層4と絶縁体の層5とを交互に積層した多層状
に形成され、その両端の高温超電導体層4に高温超電導
体で形成されている電流リード3,3が固着されている
。絶縁体層5,5,…,5は例えば、数オングストロー
ム〜数十オングストロームの厚さに形成されており、こ
の絶縁体層5,5,…,5を介して高温超電導体層4,
4,…,4がジョセフソン結合する。したがって、この
高温超電導体層4の接合面と平行な方向に磁場が印加さ
れていない場合、ジョセフソン効果によって、超電導体
部分2にジョセフソン電流が発生するとともにこの超電
導体部分2の両電流リード3方向の抵抗はゼロとなる。 換言すれば、両電流リード3間に電流を流した場合にお
いて、超電導体部分2の電力損失はゼロとなる。この超
電導体部分2の接合面と平行な方向に数百ガウス程度の
磁場を印加すると、高温超電導体層4,4,…,4に生
じていたジョセフソン結合が遮断され、超電導体部分2
が高抵抗となり電流をオフする。スイッチング素子とし
ては、この抵抗値を大きくして漏れ電流を防止すること
が望ましいため、本実施例のように絶縁層5,5,…,
5を多数存在させた多層構造とすることが望ましい。高
温電導体層4,4,…,4と絶縁体層5,5,…,5と
は数オングストローム程度で極めてスムーズに整合する
必要があることから、特に限定されるものではないが本
実施例では交互にエピタキシャル成長させて作るように
している。そのため、高温超電導体層4,4,…,4と
絶縁体層5,5,…,5を構成する材料の結晶構造及び
格子定数に整合が必要となる。例えば、本実施例では、
高温超電導体層4,4,…,4にイットリウムバリウム
系のY−Ba2 −Cu3 −Oxを、絶縁体層5,5
,…,5にプラセオジムバリウム系のPr−Ba2 −
Cu3 −Oxを用いて交互エピタキシャル成長によっ
て超電導体部分2を作っている。
FIG. 2 schematically shows an embodiment of the high temperature superconducting switching element of the present invention. In this high-temperature superconducting switching element, a high-temperature superconductor 2 with current leads 3, 3 fixed to both sides thereof is arranged in a magnetic field, for example, inside a coil 1.
By energizing the coil 1, a magnetic field generated within the coil 1 is applied to the high temperature superconductor 2. As shown in the detailed view of FIG. 1, the superconductor portion 2 is formed into a multilayered structure in which high-temperature superconductor layers 4 and insulator layers 5 are alternately laminated. Current leads 3, 3 made of high temperature superconductor are fixed. The insulator layers 5, 5, ..., 5 are formed to have a thickness of, for example, several angstroms to several tens of angstroms, and the high temperature superconductor layers 4,
4,...,4 are Josephson-combined. Therefore, when a magnetic field is not applied in a direction parallel to the bonding surface of this high temperature superconductor layer 4, a Josephson current is generated in the superconductor portion 2 due to the Josephson effect, and both current leads of this superconductor portion 2 are generated. The resistance in three directions becomes zero. In other words, when a current is passed between both current leads 3, the power loss in the superconductor portion 2 becomes zero. When a magnetic field of several hundred Gauss is applied in a direction parallel to the bonding surface of the superconductor portion 2, the Josephson coupling occurring in the high temperature superconductor layers 4, 4,..., 4 is interrupted, and the superconductor portion 2
becomes high resistance and turns off the current. As a switching element, it is desirable to increase this resistance value to prevent leakage current, so as in this embodiment, insulating layers 5, 5, ...,
It is desirable to have a multilayer structure in which a large number of 5s are present. The high-temperature conductor layers 4, 4,..., 4 and the insulator layers 5, 5,..., 5 need to be aligned extremely smoothly within a few angstroms, so this embodiment is not particularly limited. In this case, they are made by alternating epitaxial growth. Therefore, it is necessary to match the crystal structures and lattice constants of the materials constituting the high temperature superconductor layers 4, 4, . . . , 4 and the insulator layers 5, 5, . For example, in this example,
Yttrium-barium-based Y-Ba2-Cu3-Ox is applied to the high-temperature superconductor layers 4, 4,..., 4, and the insulator layers 5, 5
,...,5 is praseodymium barium-based Pr-Ba2 −
The superconductor portion 2 is made by alternate epitaxial growth using Cu3-Ox.

【0010】以上のように構成されているので次のよう
にしてスイッチング素子として作動する。コイル1に電
流を流すことにより、高温超電導体部分2を構成する層
状の高温超電導体4,4,…,4の接合面と平行な方向
に適宜強さの磁場例えば数百ガウス程度の磁場が印加さ
れると、各高温超電導体層4,4,…,4のジョセフソ
ン結合が遮断され、超電導体部分2が高抵抗となり電流
リード3,3間での電流の流れを遮断する。反面、コイ
ル1への通電が停止され磁場がとかれると、各高温超電
導体層4,4,…,4がジョセフソン結合されてジョセ
フソン電流が流れる。即ち、無励磁の状態でオン、励磁
状態でオフとなる。
Since the device is constructed as described above, it operates as a switching element in the following manner. By passing a current through the coil 1, a magnetic field of an appropriate strength, for example, several hundred Gauss, is generated in a direction parallel to the bonding surfaces of the layered high temperature superconductors 4, 4, ..., 4 constituting the high temperature superconductor portion 2. When applied, the Josephson coupling of each high temperature superconductor layer 4, 4, . On the other hand, when the current supply to the coil 1 is stopped and the magnetic field is removed, the high temperature superconductor layers 4, 4, . . . , 4 are Josephson-coupled and a Josephson current flows. That is, it is turned on in a non-excited state and turned off in an excited state.

【0011】尚、上述の実施例は本発明の好適な実施の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能である
。例えば、本実施例ではイットリウムバリウム系の高温
超電導体、プラセオジムバリウム系の絶縁体にて超電導
体部分2を構成した場合について説明したが、特にこれ
に限定されるものではなく、他の高温超電導体や絶縁体
を使用可能なことは言うまでもない。また、コイル1自
体を超電導体で形成することによって、コイル1での電
力損失をなくすことが可能であるが、電力損失を無視す
るのであればコイルを超電導体にて形成する必要は無い
。更に、本実施例では磁場制御をコイルにて行なう構成
としたがこの方式に限定するものでは無く、所定のガウ
ス数を持って磁場を制御出来るものであれば良い。
[0011] The above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in this embodiment, a case has been described in which the superconductor portion 2 is made of an yttrium-barium-based high-temperature superconductor and a praseodymium-barium-based insulator, but the superconductor portion 2 is not particularly limited to this, and other high-temperature superconductors may be used. Needless to say, it is possible to use other materials such as or insulators. Further, it is possible to eliminate power loss in the coil 1 by forming the coil 1 itself with a superconductor, but if the power loss is ignored, there is no need to form the coil with a superconductor. Further, in this embodiment, the magnetic field is controlled by a coil, but the system is not limited to this method, and any method that can control the magnetic field with a predetermined Gauss number may be used.

【0012】0012

【発明の効果】以上の説明より明らかなように、本発明
の高温超電導スイッチング素子はジョセフソン電流が流
れる構造であるため、スイッチング素子でのオン、オフ
時における電力損失を無視出来る程度とすることができ
る。したがってスイッチング素子の放熱対策も必要はな
く装置全体の小型化を計ることができる。
[Effects of the Invention] As is clear from the above explanation, the high temperature superconducting switching element of the present invention has a structure in which a Josephson current flows, so that the power loss when the switching element is turned on and off can be ignored. Can be done. Therefore, there is no need to take measures to dissipate heat from the switching elements, and the entire device can be made smaller.

【0013】また、本発明の高温超電導スイッチング素
子においては大面積の層状構造を作ることが容易にでき
るため、大電流制御を容易行なうことが可能となる。
Furthermore, in the high temperature superconducting switching element of the present invention, a layered structure with a large area can be easily formed, so that large current control can be easily performed.

【0014】更には、将来、超電導電力貯蔵システムや
超電導モータ等の超電導装置が実用化された場合、本素
子を使用することによって全システムを超電導化するこ
とができ、外部からの熱侵入を防止することができる。
Furthermore, when superconducting devices such as superconducting power storage systems and superconducting motors are put into practical use in the future, the entire system can be made superconducting by using this element, preventing heat from entering from the outside. can do.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の高温超電導スイッチング素子の超電導
体部分の一実施例を示す斜視図である。
FIG. 1 is a perspective view showing an embodiment of a superconductor portion of a high temperature superconducting switching element of the present invention.

【図2】本発明の高温超電導スイッチング素子の一実施
例を示す説明図ある。
FIG. 2 is an explanatory diagram showing one embodiment of the high temperature superconducting switching element of the present invention.

【符号の説明】[Explanation of symbols]

1  磁場を発生させるコイル 2  超電導体部分 4  高温超電導体層 5  絶縁体層 1 Coil that generates a magnetic field 2 Superconductor part 4 High temperature superconductor layer 5 Insulator layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  高温超電導体を多層状にジョセフソン
結合し、前記高温超電導体の接合面に垂直な方向に電流
を流し、かつ前記接合面に平行な方向から磁場をかけた
り切ったりすることによって前記電流をスイッチング制
御することを特徴とする高温超電導スイッチング素子。
1. High-temperature superconductors are Josephson-coupled in a multilayered manner, a current is passed in a direction perpendicular to the bonding surface of the high-temperature superconductors, and a magnetic field is applied or cut in a direction parallel to the bonding surface. A high-temperature superconducting switching element characterized in that the current is controlled by switching.
JP3152262A 1991-05-29 1991-05-29 High-temperature superconducting switching element Pending JPH04352373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152262A JPH04352373A (en) 1991-05-29 1991-05-29 High-temperature superconducting switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152262A JPH04352373A (en) 1991-05-29 1991-05-29 High-temperature superconducting switching element

Publications (1)

Publication Number Publication Date
JPH04352373A true JPH04352373A (en) 1992-12-07

Family

ID=15536644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152262A Pending JPH04352373A (en) 1991-05-29 1991-05-29 High-temperature superconducting switching element

Country Status (1)

Country Link
JP (1) JPH04352373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017561A1 (en) * 1993-01-20 1994-08-04 Mueller Paul Quasi particle injection transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017561A1 (en) * 1993-01-20 1994-08-04 Mueller Paul Quasi particle injection transistor

Similar Documents

Publication Publication Date Title
US9024192B2 (en) Multifilament conductor and method for producing same
CN107924744B (en) Apparatus and method for changing the magnetisation of a superconductor
US8588875B2 (en) Superconducting fault current-limiter with variable shunt impedance
US20150340139A1 (en) Superconductive coil device and production method therefor
Larbalestier The road to conductors of high temperature superconductors: 10 years do make a difference!
US8718732B2 (en) Superconductor switching arrangement
JP2002217020A (en) Magnetic flux pump equipped with high-temperature superconductor and superconducting electromagnet
US20150255200A1 (en) Fast Superconducting Switch for Superconducting Power Devices
RU2439749C1 (en) Superconducting device with josephson junction
JPH04352373A (en) High-temperature superconducting switching element
JP2000197263A (en) Superconductive coil device for current limiting element
US6794970B2 (en) Low alternating current (AC) loss superconducting coils
RU2442245C1 (en) Solar photoelectric submodule
JP2005085612A (en) Superconducting tape conductor, manufacturing method of the same, and device equipped with the same
US5105098A (en) Superconducting power switch
US3394335A (en) Thin wire power cryotrons
JPH0713924B2 (en) Superconducting magnet
KR20180137790A (en) High Temperature Superconductive Wires With Metal-Insulation Transition Materials
JP2871260B2 (en) Permanent current coil
JPS61265881A (en) Thermal type superconductive switch
JP3100151B2 (en) AC conduction method for HTS conductor
JPH0412412A (en) Superconductive conductor
JPH05198434A (en) Superconductive current lead
JPH01281510A (en) High magnetic field generating device
KR20230135632A (en) High-temperature superconducting switches and rectifiers