JPH04352206A - Automatic tracking device for measurement point - Google Patents
Automatic tracking device for measurement pointInfo
- Publication number
- JPH04352206A JPH04352206A JP3127436A JP12743691A JPH04352206A JP H04352206 A JPH04352206 A JP H04352206A JP 3127436 A JP3127436 A JP 3127436A JP 12743691 A JP12743691 A JP 12743691A JP H04352206 A JPH04352206 A JP H04352206A
- Authority
- JP
- Japan
- Prior art keywords
- range
- reflected light
- receiving position
- displacement limit
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 47
- 238000006073 displacement reaction Methods 0.000 claims abstract description 55
- 238000010191 image analysis Methods 0.000 claims abstract description 14
- 238000003384 imaging method Methods 0.000 claims description 27
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Closed-Circuit Television Systems (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、地すべり、切り土或は
盛土工事に伴う斜面の挙動監視を自動的に行なう測点の
自動追尾装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic measuring point tracking device for automatically monitoring the behavior of slopes associated with landslides, cutting or embankment construction.
【0002】0002
【従来の技術】従来、構造物の変位や掘削斜面の挙動監
視を行なうため、地盤の変位を計測する装置として、例
えば特願昭59−140276では、セオドライトと光
波距離計を自動的に駆動させ、反射プリズムからの反射
光量を検知することによって、測点を認識し、高角度と
水平角および距離を測定して測点台座の三次元座標を演
算し、セオドライト等を駆動制御する自動変位測定装置
が開示されている。[Prior Art] Conventionally, in order to monitor the displacement of structures and the behavior of excavated slopes, a device for measuring ground displacement has been proposed, for example, in Japanese Patent Application No. 59-140276, in which a theodolite and a light wave distance meter are automatically driven. Automatic displacement measurement that recognizes the measurement point by detecting the amount of reflected light from the reflective prism, measures the high angle, horizontal angle, and distance, calculates the three-dimensional coordinates of the measurement point pedestal, and controls the drive of theodolite, etc. An apparatus is disclosed.
【0003】また、測点に設けた反射プリズムにレーザ
光を照射し、その反射光をCCDカメラで受光し画像解
析を行ない、さらに別途測定した斜距離データと演算を
行なって、測点の三次元座標を得る方法及びその装置も
提案されている。[0003] In addition, a laser beam is irradiated onto a reflective prism installed at a measuring point, and the reflected light is received by a CCD camera for image analysis, and calculations are performed using separately measured oblique distance data to determine the tertiary dimension of the measuring point. A method and apparatus for obtaining original coordinates have also been proposed.
【0004】0004
【発明が解決しようとする課題】しかし、前記CCDカ
メラを用いて測点計測を行なう際、該測点の変位量が前
記CCDカメラの撮像範囲を越えて変位した場合には、
全く測定不可能になるという欠点があった。However, when measuring a measuring point using the CCD camera, if the displacement of the measuring point exceeds the imaging range of the CCD camera,
The drawback was that it became completely impossible to measure.
【0005】本発明は上記問題点を解決すべくなされた
ものであり、その目的は、CCDカメラを用いて測点観
測を行なう際、測点が大きく変位した場合にも、変位し
た測点を自動的に追尾する測点の自動追尾装置を提供す
ることにある。[0005] The present invention has been made to solve the above-mentioned problems, and its purpose is to detect the displaced measuring point even if the measuring point is significantly displaced when observing the measuring point using a CCD camera. An object of the present invention is to provide an automatic tracking device for automatically tracking measurement points.
【0006】[0006]
【課題を解決するための手段】本発明は、上記目的に鑑
みてなされたものであり、その要旨は、測点に向けてレ
ーザ光を照射するレーザ光照射手段と、前記測点に設置
した反射手段からの反射光を受光するCCDカメラと、
前記レーザ光照射手段とCCDカメラとを備えた装置本
体を水平及び垂直に駆動する本体駆動手段と、前記CC
Dカメラの撮像面における前記反射光の受光位置を解析
する画像解析手段と、前記撮像面における反射光の受光
位置の範囲を変更自在に設定する範囲設定部と、前記画
像解析手段により解析した前記撮像面における反射光の
受光位置と前記範囲設定部で設定した変位限界範囲とを
比較する比較手段と、該比較手段における比較結果に基
づき、前記反射光の受光位置が前記変位限界範囲の外側
に位置する場合に、該変位限界範囲の内側に前記受光位
置が位置するように前記本体駆動手段の駆動制御を行な
う駆動制御手段とからなることを特徴とする測点の自動
追尾装置にある。[Means for Solving the Problems] The present invention has been made in view of the above objects, and the gist thereof is to provide a laser beam irradiation means for irradiating a laser beam toward a measurement point, and a laser beam irradiation means installed at the measurement point. a CCD camera that receives reflected light from the reflecting means;
body driving means for horizontally and vertically driving a device body including the laser beam irradiation means and the CCD camera;
an image analysis means for analyzing the light receiving position of the reflected light on the imaging surface of the D camera; a range setting section for changingably setting the range of the light receiving position of the reflected light on the imaging surface; a comparison means for comparing the light reception position of the reflected light on the imaging surface and the displacement limit range set by the range setting section; and a drive control means for controlling the drive of the main body drive means so that the light receiving position is located inside the displacement limit range when the light receiving position is located within the displacement limit range.
【0007】[0007]
【作用】前記CCDカメラの撮像面に、測点の変位する
範囲を定めた変位限界範囲を前記範囲設定部によって予
め設定しておき、反射光の受光位置が前記撮像面上の変
位限界範囲を越えて受光された場合に、前記装置本体を
駆動する。測定に当たっては、測点からの反射光が該変
位限界範囲の略中央部に位置するように、前記駆動制御
手段によって本体駆動手段を制御して初期設定をしてお
く。次いで、一定の時間間隔或は連続して測定を行ない
、前記CCDカメラによって観測される前記反射光の受
光位置を前記画像解析手段によって画像解析し、前記C
CDカメラの撮像面における反射光の受光位置と前記変
位限界範囲とを比較手段によって比較する。この結果、
反射光の受光位置が前記変位限界範囲の内側に位置して
いれば、前記装置本体はその位置を変えずその位置で測
定を続ける。また、反射光の受光位置が前記変位限界範
囲の範囲外に位置して観測された場合には、前記比較手
段の比較結果を受けて、変位した測点の反射光が再び前
記変位限界範囲の略中央部に位置するように、前記駆動
制御手段は前記本体駆動手段を駆動制御するものである
。[Operation] A displacement limit range that defines the range of displacement of the measurement point is set in advance on the imaging surface of the CCD camera by the range setting section, and the receiving position of the reflected light is set within the displacement limit range on the imaging surface. When the light is received beyond the threshold, the main body of the device is driven. In the measurement, the main body drive means is controlled by the drive control means to perform initial settings so that the reflected light from the measuring point is located approximately at the center of the displacement limit range. Next, measurements are performed at regular time intervals or continuously, and the image analysis means analyzes the reception position of the reflected light observed by the CCD camera, and
The light receiving position of the reflected light on the imaging surface of the CD camera and the displacement limit range are compared by a comparing means. As a result,
If the receiving position of the reflected light is located inside the displacement limit range, the apparatus main body does not change its position and continues measurement at that position. Furthermore, if the receiving position of the reflected light is observed to be outside the displacement limit range, the reflected light from the displaced measuring point is again within the displacement limit range based on the comparison result of the comparison means. The drive control means drives and controls the main body drive means so that it is located approximately at the center.
【0008】[0008]
【実施例】以下、本発明に係る測点の自動追尾装置を添
付図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An automatic measuring point tracking device according to the present invention will be described below with reference to the accompanying drawings.
【0009】第1図は自動追尾装置を示し、測点の変位
を計測する計測部1と、該計測部1の計測結果を演算処
理する演算制御部20とで構成する。FIG. 1 shows an automatic tracking device, which is composed of a measuring section 1 that measures the displacement of a measuring point, and an arithmetic control section 20 that performs arithmetic processing on the measurement results of the measuring section 1.
【0010】計測部1は、測点に設置した反射プリズム
14にレーザ光を照射するレーザ光照射手段としてのレ
ーザ発振器5と、反射プリズム14からの前記レーザ光
の反射光をとらえるCCDカメラ6と、多焦点レンズ7
及び屈折装置部8とで構成する。前記各計測器は固定枠
9に一体的に固定されており、該固定枠9は支持板10
上に軸支されている。また、固定枠9の下端部にはラッ
クが設けられ、支持板10内部に設けたパルスモータ(
図示せず)に連結したピニオンと歯合しており、鉛直方
向駆動装置13として機能する。支持板10は回転台1
1上に固定されており、該回転台11は水平方向駆動装
置12により水平方向に回動する(図1参照)。The measurement unit 1 includes a laser oscillator 5 as a laser beam irradiation means for irradiating a laser beam onto a reflecting prism 14 installed at a measuring point, and a CCD camera 6 for capturing the reflected light of the laser beam from the reflecting prism 14. , multifocal lens 7
and a refraction device section 8. Each of the measuring instruments is integrally fixed to a fixed frame 9, and the fixed frame 9 is connected to a support plate 10.
It is pivoted on top. A rack is provided at the lower end of the fixed frame 9, and a pulse motor (
(not shown), and functions as a vertical drive device 13. The support plate 10 is the rotary table 1
1, and the rotary table 11 is rotated in the horizontal direction by a horizontal drive device 12 (see FIG. 1).
【0011】図2(a)に演算制御部20の内部回路の
ブロック図を示すが、説明の便宜上、自動追尾回路30
に関連した部分のみを示している。図2(a)において
、自動追尾回路30は、CCDカメラ6で受光した反射
光の受光位置を解析する画像解析部33と、前記撮像面
における反射光の受光位置5aの範囲を設定する範囲設
定部36と、画像解析部33により解析した前記撮像面
における反射光の受光位置と前記範囲設定部36により
設定した変位限界範囲とを比較する比較部31と、レー
ザ発振器5及びCCDカメラ6等を固定した装置本体を
水平及び鉛直方向に駆動制御する制御手段としての制御
部32とで構成する。FIG. 2(a) shows a block diagram of the internal circuit of the arithmetic control section 20. For convenience of explanation, the automatic tracking circuit 30 is shown in FIG.
Only relevant parts are shown. In FIG. 2A, the automatic tracking circuit 30 includes an image analysis unit 33 that analyzes the light receiving position of the reflected light received by the CCD camera 6, and a range setting unit that sets the range of the light receiving position 5a of the reflected light on the imaging surface. section 36, a comparison section 31 that compares the receiving position of the reflected light on the imaging surface analyzed by the image analysis section 33 and the displacement limit range set by the range setting section 36, a laser oscillator 5, a CCD camera 6, etc. It is composed of a control section 32 as a control means for driving and controlling the fixed device main body in the horizontal and vertical directions.
【0012】図2(b)にCCDカメラ6の撮像面6a
を示す。CCDカメラ6は、シリコン基板上に多数のゲ
ート電極である画素6bを縦横に並べており(350画
素×420画素)、入力キー35を操作して、この撮像
面6aの略中央部を枠状に囲むように画素6bを選定し
、この内側の範囲を、反射プリズム14からの反射光の
受光位置5aが撮像面6a上に像を結ぶ範囲、即ち、変
位限界範囲6cとして設定する。設定した変位限界範囲
6cは、範囲設定部36に登録される。FIG. 2(b) shows the imaging surface 6a of the CCD camera 6.
shows. The CCD camera 6 has a large number of pixels 6b, which are gate electrodes, arranged vertically and horizontally on a silicon substrate (350 pixels x 420 pixels), and by operating an input key 35, the approximate center of the imaging surface 6a is shaped into a frame. The pixels 6b are selected so as to surround them, and the inner range is set as the range where the light receiving position 5a of the reflected light from the reflection prism 14 forms an image on the imaging surface 6a, that is, the displacement limit range 6c. The set displacement limit range 6c is registered in the range setting section 36.
【0013】比較部31では、画像解析部33によって
解析された撮像面6a上での受光位置5aと、前記範囲
設定部36に設定した変位限界範囲6cとの位置関係を
比較する。比較した結果、受光位置5aが図2(c),
(d)に示すように、変位限界範囲6cの内側に位置す
る場合には、前記装置本体の駆動制御は行なわず、図2
(e)に示すように、変位限界範囲6cの外側に受光位
置5aが位置する場合にのみ、制御部32は水平方向移
動装置12及び鉛直方向移動装置13の駆動制御を行な
うものである。The comparison section 31 compares the positional relationship between the light receiving position 5a on the imaging surface 6a analyzed by the image analysis section 33 and the displacement limit range 6c set in the range setting section 36. As a result of the comparison, the light receiving position 5a is as shown in FIG. 2(c),
As shown in (d), when the device is located inside the displacement limit range 6c, the drive control of the device main body is not performed, and as shown in FIG.
As shown in (e), the control unit 32 controls the drive of the horizontal movement device 12 and the vertical movement device 13 only when the light receiving position 5a is located outside the displacement limit range 6c.
【0014】制御部32では、前記比較部31での比較
結果を受けて、受光位置5aが図2(c)に示す撮像面
6aの図心の基準位置に位置するように、前記装置本体
を駆動する。なお、この制御部32で制御される移動量
は、前記基準位置と図2(e)に示す反射光の受光位置
との間に存在する水平方向及び鉛直方向の画素数と、設
定した多焦点レンズ7の焦点距離fとから求まる。一例
として、焦点距離1200mmの場合、一画素は3.2
4秒に該当する。また、この際、制御部32では、入力
キー35′を操作して、追尾精度、即ち追尾移動量の精
度許容値を設定することも可能である。この場合、追尾
精度をゼロと設定すれば、前記追尾移動量が測点の移動
量と等しくなるものである。In response to the comparison result from the comparison section 31, the control section 32 controls the main body of the apparatus so that the light receiving position 5a is located at the reference position of the centroid of the imaging surface 6a shown in FIG. 2(c). Drive. The amount of movement controlled by the control unit 32 is determined by the number of pixels in the horizontal and vertical directions existing between the reference position and the reflected light receiving position shown in FIG. 2(e), and the set multifocal point. It is determined from the focal length f of the lens 7. As an example, when the focal length is 1200mm, one pixel is 3.2
This corresponds to 4 seconds. Further, at this time, in the control unit 32, it is also possible to operate the input key 35' to set the tracking accuracy, that is, the accuracy tolerance value of the tracking movement amount. In this case, if the tracking accuracy is set to zero, the amount of tracking movement will be equal to the amount of movement of the measurement point.
【0015】また、図3に測点の変位量と変位限界範囲
の関係を示す。複数の測定点のうち最も変位量が大きい
測点に着眼して、その予想変位量から変位限界範囲を読
み取ることができる。この変位量がある値(CCDカメ
ラでは25画素程度)を越えると光波距離計による距離
測定ができなくなるのため、変位限界範囲を25画素以
下に設定する必要がある。例えば、距離500mの測点
の予想変位量を10cmとすると、変位限界範囲は約1
4画素となる。Further, FIG. 3 shows the relationship between the displacement amount of the measuring point and the displacement limit range. Focusing on the measurement point with the largest amount of displacement among the plurality of measurement points, the displacement limit range can be read from the expected amount of displacement. If this amount of displacement exceeds a certain value (approximately 25 pixels for a CCD camera), it becomes impossible to measure distance using a light wave distance meter, so it is necessary to set the displacement limit range to 25 pixels or less. For example, if the expected displacement of a measurement point at a distance of 500 m is 10 cm, the displacement limit range is approximately 1
There are 4 pixels.
【0016】以上のように構成する測点の自動追尾装置
を用いた測定手順を説明する。A measurement procedure using the automatic measuring point tracking device configured as described above will be explained.
【0017】まず、入力キー35′による手動操作によ
り、制御部32を介して水平・鉛直方向駆動装置12、
13を駆動させ、レーザ発振器5及びCCDカメラ6等
を測点に設置した反射プリズム14を視準させる。また
、入力キー35、35′によって変位限界範囲6c及び
追尾精度等を入力する。First, by manual operation using the input key 35', the horizontal/vertical drive device 12,
13 is driven to collimate the reflective prism 14 in which the laser oscillator 5, CCD camera 6, etc. are installed at the measurement point. Further, the displacement limit range 6c, tracking accuracy, etc. are input using the input keys 35, 35'.
【0018】次に、レーザ発振器5により発光したレー
ザ光を屈折装置8を介して、多焦点レンズ7の光軸と同
一光軸から測点方向へ照射する。照射したレーザ光は、
測点に設置した反射プリズム14で正確に反射され反射
光となり、再び多焦点レンズ7を通過し、CCDカメラ
6に画像を結ぶ。CCDカメラ6で検知した画像データ
を画像解析部33で解析し、撮像面6aにおける反射光
の受光位置5aを検出する。Next, the laser beam emitted by the laser oscillator 5 is irradiated in the direction of the measuring point through the refracting device 8 from the same optical axis as the optical axis of the multifocal lens 7. The irradiated laser light is
The reflected light is accurately reflected by the reflecting prism 14 installed at the measurement point, passes through the multifocal lens 7 again, and forms an image on the CCD camera 6. The image data detected by the CCD camera 6 is analyzed by the image analysis section 33, and the light receiving position 5a of the reflected light on the imaging surface 6a is detected.
【0019】次に、比較部31において、範囲設定部3
6に設定した変位限界範囲6cと画像解析部33で検出
した反射光の受光位置5aとの位置関係を比較する。こ
の結果、受光位置5aの変位限界範囲6cの内側に位置
する場合には、前記装置本体の駆動制御は行なわないた
め、追尾は実行されない。Next, in the comparison section 31, the range setting section 3
The positional relationship between the displacement limit range 6c set at 6 and the light receiving position 5a of the reflected light detected by the image analysis unit 33 is compared. As a result, when the light receiving position 5a is located inside the displacement limit range 6c, the drive control of the device main body is not performed, so tracking is not performed.
【0020】また、変位限界範囲6cの外側に受光位置
5aが位置する場合には(図2(e)参照)、水平方向
移動装置12及び鉛直方向移動装置13の駆動制御を行
なう。制御部32では、撮像面6aの図心の基準位置と
、反射光の受光位置5aとの間の画素数を算出し、設定
された多焦点レンズ7の焦点距離に基づいて、水平及び
鉛直方向に装置本体を回転移動して、自動追尾を行なう
ものである(図2(f))。一定の時間を経過した後、
再び上記追尾動作を行なうことにより、測点の自動追尾
が可能となる。Further, when the light receiving position 5a is located outside the displacement limit range 6c (see FIG. 2(e)), drive control of the horizontal movement device 12 and the vertical movement device 13 is performed. The control unit 32 calculates the number of pixels between the reference position of the centroid of the imaging surface 6a and the reflected light receiving position 5a, and calculates the number of pixels in the horizontal and vertical directions based on the set focal length of the multifocal lens 7. The main body of the device is rotated to perform automatic tracking (FIG. 2(f)). After a certain amount of time has passed,
By performing the above tracking operation again, automatic tracking of the measurement point becomes possible.
【0021】また、本実施例で示した自動追尾装置を、
本出願人が先に提案した「測点の変位自動計測方法及び
その装置」(特開平3−31715号)と組み合わせて
使用することにより、1台の変位計測装置で、多数の測
点を自動的に観測しながら、自動的に追尾を行なうこと
も可能である。[0021] Furthermore, the automatic tracking device shown in this embodiment is
By using it in combination with "Method and device for automatic measuring point displacement measurement" (Japanese Unexamined Patent Publication No. 3-31715) previously proposed by the present applicant, a single displacement measuring device can automatically measure a large number of measuring points. It is also possible to automatically track the object while observing the object.
【0022】以下、自動的に追尾を行なう変位計測装置
について説明する。まず、計測位置・範囲設定部36′
に記憶した各測点の計測位置データ(水平角及び鉛直角
データ)に基づいて制御部32により水平・鉛直方向駆
動装置12、13を駆動させ、光波測距儀4、レーザ発
振器5及びCCDカメラ6を視準させる。次いで、測点
に設置した反射プリズム14に向けてレーザ発振器5に
よりレーザ光を照射し、その反射光をCCDカメラ6で
受光する。CCDカメラ6で検知した画像データを画像
解析部33で解析し、撮像面6aにおける反射光の受光
位置5aを検出する。A displacement measuring device that automatically performs tracking will be described below. First, the measurement position/range setting section 36'
The control unit 32 drives the horizontal and vertical drive devices 12 and 13 based on the measurement position data (horizontal angle and vertical angle data) of each measurement point stored in Aim at 6. Next, a laser oscillator 5 irradiates a laser beam toward a reflecting prism 14 installed at a measuring point, and a CCD camera 6 receives the reflected light. The image data detected by the CCD camera 6 is analyzed by the image analysis section 33, and the light receiving position 5a of the reflected light on the imaging surface 6a is detected.
【0023】次に、演算・比較部31′において、計測
位置・範囲設定部36′に設定した変位限界範囲6cと
画像解析部33で検出した反射光の受光位置5aとの位
置関係を比較する。この結果、受光位置5aの変位限界
範囲6cの外側に位置する場合には、水平方向移動装置
12及び鉛直方向移動装置13の駆動制御を行なう。制
御部32では、撮像面6aの図心の基準位置と、反射光
の受光位置5aとの間の画素数を算出し、設定された多
焦点レンズ7の焦点距離に基づいて、水平及び鉛直方向
に装置本体を回転移動して、自動追尾を行なう(図2(
c)〜(f)参照)。Next, the calculation/comparison section 31' compares the positional relationship between the displacement limit range 6c set in the measurement position/range setting section 36' and the light receiving position 5a of the reflected light detected by the image analysis section 33. . As a result, when the light receiving position 5a is located outside the displacement limit range 6c, the drive control of the horizontal movement device 12 and the vertical movement device 13 is performed. The control unit 32 calculates the number of pixels between the reference position of the centroid of the imaging surface 6a and the reflected light receiving position 5a, and calculates the number of pixels in the horizontal and vertical directions based on the set focal length of the multifocal lens 7. Rotate the main body of the device to perform automatic tracking (Figure 2 (
c) to (f)).
【0024】この自動追尾の結果、移動した測点の新し
い計測位置データ(水平角及び鉛直角データ)を計測位
置・範囲設定部36′に記憶する。一方、演算・比較部
31′では、反射光の受光位置データと前記移動した新
しい計測位置データとから得られる測点の角度データと
、光波測距儀4から得られる測点の斜距離データとを演
算し、変位した測点の三次元座標を得る。一箇所の測点
計測が終了した後、計測位置記憶部34から別の計測位
置データが出力され、上述した計測を繰返し行ない、設
定した全ての測点について計測を行なうものである。As a result of this automatic tracking, new measurement position data (horizontal angle and vertical angle data) of the moved measurement point is stored in the measurement position/range setting section 36'. On the other hand, the calculation/comparison unit 31' calculates the angle data of the measurement point obtained from the light receiving position data of the reflected light and the moved new measurement position data, and the oblique distance data of the measurement point obtained from the light wave range finder 4. is calculated to obtain the three-dimensional coordinates of the displaced measurement point. After the measurement at one measurement point is completed, another measurement position data is output from the measurement position storage section 34, and the above-mentioned measurement is repeated to measure all the set measurement points.
【0025】[0025]
【効果】本発明による測点の自動追尾装置よれば、前記
範囲設定部において前記撮像面における反射光の受光位
置の範囲を設定し、前記比較手段によって前記撮像面に
おける反射光の受光位置と前記範囲設定部で設定した変
位限界範囲とを比較し、この比較結果に基づき、前記反
射光の受光位置が前記変位限界範囲の外側に位置する場
合に、該変位限界範囲の内側に前記受光位置が位置する
ように、前記駆動制御手段によって前記本体駆動手段の
駆動制御を行なうので、CCDカメラを用いた画像処理
技術によって、極めて短時間に、しかも正確に測点の追
尾を自動的に行なうことが可能となる。また、前記範囲
設定部における変位限界範囲の設定を小さくすることに
より、急速で大きな変位量に対しても正確に追随するこ
とが可能となる。[Effect] According to the automatic measuring point tracking device according to the present invention, the range setting section sets the range of the light receiving position of the reflected light on the imaging surface, and the comparison means sets the range of the light receiving position of the reflected light on the imaging surface and the range of the light receiving position of the reflected light on the imaging surface. The displacement limit range set in the range setting section is compared, and based on the comparison result, if the light receiving position of the reflected light is located outside the displacement limit range, the light receiving position is located inside the displacement limit range. Since the drive control means controls the drive of the main body drive means so that the measurement point is located, the measurement point can be automatically tracked very quickly and accurately using image processing technology using a CCD camera. It becomes possible. Furthermore, by setting the displacement limit range in the range setting section small, it becomes possible to accurately follow even rapid and large displacement amounts.
【図1】本発明に係る自動追尾装置を示す概略斜視図で
ある。FIG. 1 is a schematic perspective view showing an automatic tracking device according to the present invention.
【図2】図2(a)は、本発明に係る自動追尾装置の構
成を示すブロック図、図2(b)は、CCDカメラの撮
像面を示す概略平面図、図2(c)〜(e)は、前記撮
像面における反射光の受光位置と変位限界範囲との位置
関係を示す説明図、図2(f)は追尾した前記撮像面の
位置と反射光の受光位置との位置関係を示す説明図であ
る。FIG. 2(a) is a block diagram showing the configuration of an automatic tracking device according to the present invention, FIG. 2(b) is a schematic plan view showing an imaging surface of a CCD camera, and FIGS. 2(c) to ( e) is an explanatory diagram showing the positional relationship between the position where the reflected light is received on the imaging surface and the displacement limit range, and FIG. FIG.
【図3】変位限界範囲の設定画素数に対する測点の変位
量の関係を、焦点距離をパラメータとして示すグラフで
ある。FIG. 3 is a graph showing the relationship between the displacement amount of a measuring point and the number of pixels set in the displacement limit range, using focal length as a parameter.
【図4】他の実施例を示すブロック図である。FIG. 4 is a block diagram showing another embodiment.
5 レーザ発振器(レーザ光照射手段)5a 受
光位置
6 CCDカメラ
6a 撮像面
6c 変位限界範囲
12 水平方向駆動装置(本体駆動手段)13 鉛
直方向駆動装置(本体駆動手段)14 反射プリズム
(反射プリズム)31 比較部(比較手段)
32 制御部(駆動制御手段)
33 画像解析部
36 範囲設定部5 Laser oscillator (laser beam irradiation means) 5a Light receiving position 6 CCD camera 6a Imaging surface 6c Displacement limit range 12 Horizontal direction drive device (main body drive means) 13 Vertical direction drive device (main body drive means) 14 Reflection prism (reflection prism) 31 Comparison section (comparison means) 32 Control section (drive control means) 33 Image analysis section 36 Range setting section
Claims (1)
前記測点に設置した反射手段からの反射光を受光するC
CDカメラと、前記レーザ光照射手段とCCDカメラと
を備えた装置本体を水平及び垂直に駆動する本体駆動手
段と、前記CCDカメラの撮像面における前記反射光の
受光位置を解析する画像解析手段と、前記撮像面におけ
る反射光の受光位置の範囲を変更自在に設定する範囲設
定部と、前記画像解析手段により解析した前記撮像面に
おける反射光の受光位置と前記範囲設定部で設定した変
位限界範囲とを比較する比較手段と、該比較手段におけ
る比較結果に基づき、前記反射光の受光位置が前記変位
限界範囲の外側に位置する場合に、該変位限界範囲の内
側に前記受光位置が位置するように前記本体駆動手段の
駆動制御を行なう駆動制御手段とからなることを特徴と
する測点の自動追尾装置。a laser beam irradiation means for irradiating a laser beam toward the measurement point;
C that receives the reflected light from the reflecting means installed at the measurement point.
a CD camera, a main body drive means for horizontally and vertically driving a device main body including the laser beam irradiation means and a CCD camera, and an image analysis means for analyzing a receiving position of the reflected light on an imaging surface of the CCD camera. , a range setting section for changeably setting the range of the light receiving position of the reflected light on the imaging surface, and a displacement limit range set by the light receiving position of the reflected light on the imaging surface analyzed by the image analysis means and the range setting section. and a comparison means for comparing the light receiving position with the light receiving position of the reflected light is located inside the displacement limit range when the light receiving position of the reflected light is located outside the displacement limit range based on the comparison result of the comparison means. and a drive control means for controlling the drive of the main body drive means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3127436A JPH04352206A (en) | 1991-05-30 | 1991-05-30 | Automatic tracking device for measurement point |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3127436A JPH04352206A (en) | 1991-05-30 | 1991-05-30 | Automatic tracking device for measurement point |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04352206A true JPH04352206A (en) | 1992-12-07 |
Family
ID=14959906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3127436A Pending JPH04352206A (en) | 1991-05-30 | 1991-05-30 | Automatic tracking device for measurement point |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04352206A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102339068A (en) * | 2011-06-18 | 2012-02-01 | 扬州莱达光电技术有限公司 | Method for automatically positioning image surface of four-quadrant infrared detector |
CN103399498A (en) * | 2013-07-24 | 2013-11-20 | 中国科学院光电技术研究所 | Steady switching tracking control method |
CN106441057A (en) * | 2016-08-25 | 2017-02-22 | 陕西省地质环境监测总站 | Geological disaster relative displacement automatic measurement and image collecting early warning device |
-
1991
- 1991-05-30 JP JP3127436A patent/JPH04352206A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102339068A (en) * | 2011-06-18 | 2012-02-01 | 扬州莱达光电技术有限公司 | Method for automatically positioning image surface of four-quadrant infrared detector |
CN103399498A (en) * | 2013-07-24 | 2013-11-20 | 中国科学院光电技术研究所 | Steady switching tracking control method |
CN106441057A (en) * | 2016-08-25 | 2017-02-22 | 陕西省地质环境监测总站 | Geological disaster relative displacement automatic measurement and image collecting early warning device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6560596B2 (en) | Surveying equipment | |
US7022962B2 (en) | Position determining apparatus | |
JP5469894B2 (en) | Surveying device and automatic tracking method | |
JP3953103B2 (en) | Method and apparatus for quickly detecting the position of a target mark | |
CN106338244A (en) | 3d measuring machine | |
EP1039263A2 (en) | Surveying system | |
JP2017142081A (en) | Measuring device | |
JPH0331715A (en) | Automatic method and device for measuring displacement of measuring point | |
EP0422946A1 (en) | Digitising the surface of an irregularly shaped article, e.g. a shoe last | |
JP2000221037A (en) | Automatic surveying machine and three-dimensional measuring method | |
US6614537B1 (en) | Measuring apparatus and measuring method | |
JPH04352206A (en) | Automatic tracking device for measurement point | |
JPH0694417A (en) | Pointing device for spot light and measuring device for three-dimensional position | |
JP2000046529A (en) | Method and device for measuring shape of object with 3-dimensional curves | |
EP0388559A2 (en) | Method and apparatus for measuring incident light angle relative to a reference | |
US20140125997A1 (en) | Device and method for calibrating the direction of a polar measurement device | |
JP7324097B2 (en) | Three-dimensional surveying device, three-dimensional surveying method and three-dimensional surveying program | |
KR0131526B1 (en) | Optical measuring device and its measuring method | |
JPH08327337A (en) | Three dimensional shape measuring apparatus | |
JP2018048868A (en) | Scanner device and surveying device | |
JP2521754B2 (en) | Surveying equipment | |
JP4175736B2 (en) | Automatic tracking device for position measurement drawing | |
JP3509202B2 (en) | Non-contact volume measurement method and device | |
JP7297636B2 (en) | Scanner device and surveying method using the same | |
JPH08304040A (en) | Three-dimensional shape measuring apparatus |