JPH04352013A - Control device for robot - Google Patents

Control device for robot

Info

Publication number
JPH04352013A
JPH04352013A JP15212991A JP15212991A JPH04352013A JP H04352013 A JPH04352013 A JP H04352013A JP 15212991 A JP15212991 A JP 15212991A JP 15212991 A JP15212991 A JP 15212991A JP H04352013 A JPH04352013 A JP H04352013A
Authority
JP
Japan
Prior art keywords
acceleration
deceleration
axis
movement
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15212991A
Other languages
Japanese (ja)
Other versions
JP2705367B2 (en
Inventor
Masanobu Ito
雅信 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15212991A priority Critical patent/JP2705367B2/en
Publication of JPH04352013A publication Critical patent/JPH04352013A/en
Application granted granted Critical
Publication of JP2705367B2 publication Critical patent/JP2705367B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To shorten the tact time of a vertical joint type robot by displaying the moving operation capacity of the robot at its maximum in accordance with a load state. CONSTITUTION:Horizontal face distances between a base point and the moving start points of respective spindles or their moving end points or the coordinates of the moving start and end points of respective spindles are computed by the 1st to 3rd spindle acceleration/deceleration command means 22A to 22D, acceleration and deceleration corresponding to the distances or coordinates are read out from a load information table 21, and respective minimum values out of the read contents are selected by an acceleration/deceleration determining means 25 and applied as acceleration and deceleration command values to move respective spindles.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は垂直関節形ロボットの
各軸の移動動作を制御する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a device for controlling the movement of each axis of a vertically articulated robot.

【0002】0002

【従来の技術】図6〜図8は、例えば特開平1−295
778号公報に示されたロボットを制御する装置を示す
図で、図6は垂直関節形ロボットの斜視図、図7は制御
ブロック図、図8は速度指令値曲線図である。
[Prior Art] FIGS. 6 to 8 are, for example, Japanese Patent Laid-Open No. 1-295
FIG. 6 is a perspective view of a vertically articulated robot, FIG. 7 is a control block diagram, and FIG. 8 is a speed command value curve diagram.

【0003】図6において、1〜6はロボットの各駆動
軸を示し、それぞれ以後J1軸〜J6軸と記すことにす
る。7はロボットの旋回台である。すなわち、J1軸1
はロボット本体を旋回台7上に旋回させる軸であり、J
2軸2及びJ3軸3はそれぞれロボットの腕を鉛直面に
沿って、前後・上下の動作をさせる軸である。また、J
4軸4〜J6軸6は手首軸である。
In FIG. 6, reference numerals 1 to 6 indicate drive axes of the robot, which will hereinafter be referred to as J1 axes to J6 axes, respectively. 7 is a rotating base of the robot. In other words, J1 axis 1
is an axis for rotating the robot body on the swivel table 7, and J
The 2-axis 2 and the J3-axis 3 are axes that allow the arm of the robot to move back and forth and up and down, respectively, along a vertical plane. Also, J
The 4th axis 4 to the J6 axis 6 are wrist axes.

【0004】図7において、11はロボットのユーザが
ロボットに所望の作業をさせるためのプログラムと位置
データが格納されているプログラムメモリ、12はプロ
グラム中の移動命令の実行が開始されるごとに閉成し、
移動目的位置がバッファ13に格納されると開放するス
イッチ、14はロボットの現在位置が格納されるバッフ
ァ、15A、15Bはそれぞれ加速度及び減速度が格納
されているバッファ、16はロボットに許容される動作
最高速度が格納されているバッファ、17はバッファ1
3〜16の目的位置、現在位置、加速度、減速度及び許
容最高速度に基づいて移動動作中の各時点における速度
を決定する速度指令手段、18は速度指令値によって示
される位置と現在位置を加算する加算器、19は速度指
令値が書き込まれるバッファである。
In FIG. 7, numeral 11 is a program memory in which a program and position data for the robot user to make the robot perform a desired task is stored, and numeral 12 is a program memory that is closed each time execution of a movement command in the program is started. accomplished,
A switch that opens when the movement target position is stored in the buffer 13; 14 is a buffer in which the current position of the robot is stored; 15A and 15B are buffers in which acceleration and deceleration are respectively stored; 16 is a switch allowed by the robot. Buffer where the maximum operating speed is stored, 17 is buffer 1
Speed command means for determining the speed at each point in time during the movement operation based on the target position, current position, acceleration, deceleration, and allowable maximum speed of 3 to 16; 18 adds the position indicated by the speed command value and the current position; The adder 19 is a buffer into which the speed command value is written.

【0005】従来のロボットの制御装置は上記のように
構成され、ロボットのプログラムの実行が開始されると
、移動命令の実行ごとにスイッチ12が閉成し、プログ
ラムメモリ11から移動目的位置が目的位置バッファ1
3に格納される。目的位置がバッファ13に格納される
と、スイッチ12は開放する。速度指令手段17は、各
時点ごとに前時点の速度、バッファ15A、15Bの加
速度及び減速度、バッファ13、14の目的位置及び現
在位置に基づいて、バッファ16の許容最高速度を越え
ないように速度指令値を算出し、これをバッファ19に
書き込むと同時に、加算器18により現在位置を更新す
る。
A conventional robot control device is configured as described above, and when execution of a robot program is started, the switch 12 is closed each time a movement command is executed, and the movement target position is determined from the program memory 11. position buffer 1
3. When the target position is stored in the buffer 13, the switch 12 is opened. The speed command means 17 controls the speed so as not to exceed the allowable maximum speed of the buffer 16 based on the speed at the previous time, the acceleration and deceleration of the buffers 15A and 15B, and the target and current positions of the buffers 13 and 14 at each time point. A speed command value is calculated and written into the buffer 19, and at the same time, the adder 18 updates the current position.

【0006】この際、図8に示すように、移動中の最高
速度Vmに達するまでの加速時T1にはバッファ15A
の加速度が用いられ、最高速度Vmから目的位置に達す
るまでの減速時T2には、バッファ15Bの減速度が用
いられ、目的位置までの速度制御が行われる。
At this time, as shown in FIG. 8, during acceleration T1 until reaching the maximum speed Vm during movement, the buffer 15A is
During the deceleration time T2 from the maximum speed Vm until reaching the target position, the deceleration of the buffer 15B is used to control the speed up to the target position.

【0007】なお、移動動作において使用される加速度
及び減速度は、あらかじめ一定値が指定されており、各
動作で同一であり、各軸同時に移動動作が完了するよう
に速度制御される。ここで、移動動作の場合、動作姿勢
、ハンドリング対象のワーク形状、重量等により、ロボ
ットに加わる負荷状態は種々多様である。このため、上
記加速度及び減速度は、ロボットに最大の負荷が加わる
状態でも支障が生じることなく動作できるように決定さ
れている。
[0007] The acceleration and deceleration used in the movement operation are specified in advance to be constant values and are the same for each movement, and the speeds are controlled so that the movement movement of each axis is completed at the same time. Here, in the case of a moving operation, the load conditions applied to the robot vary depending on the operating posture, the shape of the work to be handled, the weight, etc. Therefore, the acceleration and deceleration are determined so that the robot can operate without any trouble even when the maximum load is applied to the robot.

【0008】[0008]

【発明が解決しようとする課題】上記のような従来のロ
ボットの制御装置では、移動動作時の加速度及び減速度
は、最大負荷を対象として決定されているため、ロボッ
トの持つ最大能力を移動動作時に発揮できず、かつロボ
ットが目的とする時間内で作業を完了できないという問
題点がある。
[Problems to be Solved by the Invention] In the conventional robot control device as described above, the acceleration and deceleration during movement are determined based on the maximum load. There are problems in that robots are unable to perform their tasks at times, and robots are unable to complete their tasks within the desired time.

【0009】この発明は上記問題点を解決するためにな
されたもので、負荷状態に応じて、目的とする時間内で
作業を完了できるようにしたロボットの制御装置を提供
することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a robot control device that can complete work within a targeted time depending on the load state. .

【0010】0010

【課題を解決するための手段】この発明に係るロボット
の制御装置は、基点と各軸の移動始点及び移動終点間の
水平面距離又は移動始点の座標を演算し、上記距離又は
座標に対応する加減速度を読み出し、これらの中からそ
れぞれ最小のものを選択し、これを加速度指令値及び減
速度指令値とするものである。
[Means for Solving the Problems] A robot control device according to the present invention calculates the horizontal plane distance between a base point and the movement start point and movement end point of each axis or the coordinates of the movement start point, and calculates the adjustment corresponding to the distance or coordinates. The speeds are read out, the smallest one is selected from these, and these are used as the acceleration command value and deceleration command value.

【0011】[0011]

【作用】この発明においては、移動始点と移動終了点の
位置から加減速度を読み出し、これらの中からそれぞれ
最小のものを選択して加速度指令値及び減速度指令値と
したため、ロボットの負荷状態に合わせて加速度及び減
速度が決定できる。
[Operation] In this invention, the acceleration/deceleration is read from the positions of the movement start point and the movement end point, and the minimum one is selected from these as the acceleration command value and deceleration command value. Acceleration and deceleration can be determined together.

【0012】0012

【実施例】図1〜図5はこの発明の一実施例を示す図で
、図1は制御ブロック図、図2は負荷情報テーブルの内
容図、図3は垂直関節形ロボットの水平面距離説明図、
図4は動作を示すフローチャート、図5は移動始点及び
移動終点の説明図であり、従来装置と同様の部分は同一
符号で示す。
[Embodiment] Figures 1 to 5 are diagrams showing one embodiment of the present invention, in which Figure 1 is a control block diagram, Figure 2 is a content diagram of a load information table, and Figure 3 is an explanatory diagram of horizontal plane distance of a vertically articulated robot. ,
FIG. 4 is a flowchart showing the operation, and FIG. 5 is an explanatory diagram of the movement start point and movement end point, and the same parts as in the conventional device are designated by the same reference numerals.

【0013】図1において、21は図2に示すように移
動距離及び座標に対応して加減速度情報が書き込まれた
負荷情報テーブル、22A〜22Dはそれぞれ負荷情報
テーブル21から負荷情報を読み込んで加速度指令値及
び減速度指令値を決定する第1軸(X軸)加減速度指令
手段、第2軸(Y軸)加減速度指令手段、第3軸(Z軸
)加減速度指令手段及び手首軸加減速度指令手段、23
A〜23Dはそれぞれ各加減速度指令手段22A〜22
Dにより決定された加速度を格納するバッファ、24A
〜24Dは同じく減速度を格納するバッファ、25はバ
ッファ23A〜23D、24A〜24Dに格納された加
速度及び減速度の中から最適な加速度及び減速度を決定
する加減速度決定手段、26A、26Bは移動動作の開
始時に閉成し、決定された加速度及び減速度がバッファ
15A、15Bに書き込まれると開放するスイッチであ
る。
In FIG. 1, reference numeral 21 indicates a load information table in which acceleration/deceleration information is written corresponding to the travel distance and coordinates as shown in FIG. 2, and 22A to 22D read load information from the load information table 21 and calculate acceleration First-axis (X-axis) acceleration/deceleration command means, second-axis (Y-axis) acceleration/deceleration command means, third-axis (Z-axis) acceleration/deceleration command means, and wrist-axis acceleration/deceleration that determine command values and deceleration command values. Command means, 23
A to 23D are acceleration/deceleration command means 22A to 22, respectively.
Buffer for storing acceleration determined by D, 24A
24D is a buffer for storing deceleration, 25 is acceleration/deceleration determining means for determining the optimum acceleration and deceleration from among the accelerations and decelerations stored in buffers 23A to 23D and 24A to 24D, and 26A and 26B are This is a switch that closes at the start of a moving operation and opens when the determined acceleration and deceleration are written into the buffers 15A and 15B.

【0014】図2において、Ro・・・Ri・・・Rn
は図3に示すように、ロボットの任意の位置において、
旋回台7からJ6軸6の先端までの水平面での距離R、
αo・・・αi・・・αnは距離Rのそれぞれに対応す
るJ1軸1の加速度及び減速度、(J2)o・・・(J
2)i・・・(J2)mはJ2軸2の座標、βo・・・
βi・・・βnはJ2軸座標に対応するJ2軸2の加速
度及び減速度、(J3)o・・・(J3)i・・・(J
3)lはJ3軸3の座標、γo・・・γi・・・γlは
J3軸座標に対応するJ3軸3の加速度及び減速度であ
る。
In FIG. 2, Ro...Ri...Rn
As shown in Figure 3, at any position of the robot,
Distance R on the horizontal plane from the swivel base 7 to the tip of the J6 axis 6,
αo...αi...αn is the acceleration and deceleration of J1 axis 1 corresponding to each distance R, (J2)o...(J
2) i...(J2)m is the coordinate of J2 axis 2, βo...
βi...βn is the acceleration and deceleration of J2 axis 2 corresponding to the J2 axis coordinate, (J3)o...(J3)i...(J
3) l is the coordinate of the J3 axis 3, and γo...γi...γl are the acceleration and deceleration of the J3 axis 3 corresponding to the J3 axis coordinate.

【0015】次に、この実施例の動作を、図2に基づい
て図5に示す移動始点30から移動終点31への移動に
ついて説明する。
Next, the operation of this embodiment will be described with reference to FIG. 2 regarding the movement from the movement start point 30 to the movement end point 31 shown in FIG. 5.

【0016】図5において、移動始点30におけるX軸
〜Z軸の座標をXs〜Zs、J1軸1〜J6軸6の座標
をJ1s〜J6s、移動終点31におけるX軸〜Z軸の
座標をXe〜Ze、J1軸1〜J6軸6の座標をJ1e
〜J6eとする。また、移動始点30と移動終点31に
おける旋回台7から第6軸6の先端までの水平面での距
離RをそれぞれRs、Reと記す。このとき距離Rs、
Reは次式で与えられる。
In FIG. 5, the coordinates of the X-axis to Z-axis at the movement start point 30 are Xs-Zs, the coordinates of the J1-axis 1 to J6-axis 6 are J1s-J6s, and the coordinates of the X-axis to Z-axis at the movement end point 31 are Xe. ~Ze, the coordinates of J1 axis 1 to J6 axis 6 are J1e
~ J6e. Moreover, the distance R in the horizontal plane from the swivel base 7 to the tip of the sixth shaft 6 at the movement start point 30 and the movement end point 31 are respectively written as Rs and Re. At this time, the distance Rs,
Re is given by the following formula.

【0017】[0017]

【数1】[Math 1]

【0018】まず、ステップ41で第1軸加減速度指令
手段22Aは移動開始前に、バッファ14の現在位置か
ら移動始点30を決定し、ステップ42でバッファ13
の目的位置から移動終点31を決定する。そして、ステ
ップ43で上式によって距離Rs、Reを算出する。次
いで、ステップ44で負荷情報テーブル21を探索し、
距離Rsに対応する加速度及び減速度を本移動における
J1軸1の加速度として算出し、バッファ23Aに書き
込む。ステップ45で同様に距離Reに対応する減速度
を算出してバッファ24Aに書き込む。ここで、バッフ
ァ23A、24Aの値は加速度指令値及び減速度指令値
の候補となる。
First, in step 41, the first axis acceleration/deceleration command means 22A determines the movement start point 30 from the current position of the buffer 14 before starting the movement, and in step 42, the first axis acceleration/deceleration command means 22A determines the movement start point 30 from the current position of the buffer 14.
The movement end point 31 is determined from the target position. Then, in step 43, distances Rs and Re are calculated using the above equations. Next, in step 44, the load information table 21 is searched,
The acceleration and deceleration corresponding to the distance Rs are calculated as the acceleration of the J1 axis 1 in the main movement, and are written into the buffer 23A. In step 45, the deceleration corresponding to the distance Re is similarly calculated and written to the buffer 24A. Here, the values of the buffers 23A and 24A are candidates for the acceleration command value and deceleration command value.

【0019】第2軸加減速度指令手段22Bも第1軸加
減速度指令手段22Aと同様に動作するが、距離Rでは
なくJ2軸2の座標値により加減速度を決定する。まず
、移動動作開始時の現在位置から移動始点30のJ2軸
2の座標J2s、目的位置から移動終点31のJ2軸2
の座標J2eを算出する。ついで、負荷情報テーブル2
1中のJ2座標ごとの加減速度を探索し、座標J2sに
対応する加減速度を本移動におけるJ2軸2の加速度、
座標J2eに対応する加減速度を本移動における減速度
として算出し、それぞれバッファ23B、24Bに書き
込む。
The second axis acceleration/deceleration command means 22B also operates in the same manner as the first axis acceleration/deceleration command means 22A, but the acceleration/deceleration is determined by the coordinate value of the J2 axis 2 instead of the distance R. First, the coordinate J2s of the J2 axis 2 from the current position at the start of the movement to the movement start point 30, and the J2 axis 2 from the target position to the movement end point 31.
The coordinate J2e of is calculated. Next, load information table 2
1, and calculate the acceleration/deceleration corresponding to the coordinate J2s as the acceleration/deceleration of the J2 axis 2 in this movement,
The acceleration/deceleration corresponding to the coordinate J2e is calculated as the deceleration in the main movement, and is written into the buffers 23B and 24B, respectively.

【0020】第3軸加減速度指令手段22Cは第2軸加
減速度指令手段22Bと同様に動作し、それぞれJ3軸
3の加速度及び減速度を算出して、それぞれバッファ2
3C、24Cに書き込む。
The third axis acceleration/deceleration command means 22C operates in the same manner as the second axis acceleration/deceleration command means 22B, and calculates the acceleration and deceleration of the J3 axis 3, respectively, and sends them to the buffer 2.
Write to 3C and 24C.

【0021】手首軸加減速度指令部22Dは、各移動動
作に対してすべて同一の加速度及び減速度を、それぞれ
バッファ23D、24Dに書き込む。
The wrist axis acceleration/deceleration command unit 22D writes the same acceleration and deceleration for each movement operation into the buffers 23D and 24D, respectively.

【0022】次に、加減速度決定手段25は、これらの
バッファ23A〜23Dの加速度指令値候補と、バッフ
ァ24A〜24Dの減速度指令値候補の中から最小のも
のを本移動における加速度指令値及び減速度指令値に決
定し、それぞれバッファ15A、15Bに書き込む。こ
のようにして決定された加速度指令値及び減速度指令値
と、バッファ13、14、16の目的位置、現在位置及
び許容最高速度を用いて速度指令値が決定されて、バッ
ファ19に書き込まれる。
Next, the acceleration/deceleration determining means 25 selects the smallest one from among the acceleration command value candidates in the buffers 23A to 23D and the deceleration command value candidates in the buffers 24A to 24D as the acceleration command value and the deceleration command value candidate for the main movement. Deceleration command values are determined and written into buffers 15A and 15B, respectively. A speed command value is determined using the acceleration command value and deceleration command value thus determined, and the target position, current position, and allowable maximum speed of the buffers 13, 14, and 16, and is written into the buffer 19.

【0023】上記実施例では、図3に示す垂直関節形ロ
ボットについて説明したが、これに限るものではなく、
他の軸構成を持つ垂直関節形ロボットにも適用可能であ
り、同様の効果を奏することができる。
In the above embodiment, the vertically articulated robot shown in FIG. 3 was explained, but the robot is not limited to this.
It is also applicable to vertically articulated robots with other axis configurations, and similar effects can be achieved.

【0024】[0024]

【発明の効果】以上説明したとおりこの発明では、基点
と各軸の移動始点及び移動終点間の水平面距離又は移動
始点及び移動終点の座標を演算し、上記距離又は座標に
対応する加速度及び減速度を読み出し、これらの中から
それぞれ最小のものを選択し、これを加速度指令値及び
減速度指令値として各軸を移動するようにしたので、ロ
ボットの負荷状態に合わせて加速度及び減速度が決定で
き、移動動作におけるロボットの能力を最大限に発揮さ
せ、目的とする時間内でロボットに作業を完了させ、ロ
ボットのタクト・タイムの短縮を図ることができる効果
がある。
As explained above, in this invention, the horizontal plane distance between the base point and the movement start point and movement end point of each axis or the coordinates of the movement start point and movement end point are calculated, and the acceleration and deceleration corresponding to the distance or coordinates are calculated. is read out, the smallest one is selected from these, and each axis is moved using this as the acceleration command value and deceleration command value, so the acceleration and deceleration can be determined according to the load condition of the robot. This has the effect of maximizing the ability of the robot in moving operations, allowing the robot to complete its work within a targeted time, and shortening the robot's takt time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例を示す制御ブロック図。FIG. 1 is a control block diagram showing one embodiment of the present invention.

【図2】図1の負荷情報テーブルの内容図。FIG. 2 is a content diagram of the load information table in FIG. 1;

【図3】図1により制御される垂直関節形ロボットの水
平面距離説明図。
FIG. 3 is a horizontal plane distance explanatory diagram of the vertically articulated robot controlled according to FIG. 1;

【図4】図1の動作を示すフローチャート。FIG. 4 is a flowchart showing the operation of FIG. 1;

【図5】図4の移動始点及び移動終点の説明図。FIG. 5 is an explanatory diagram of a movement start point and a movement end point in FIG. 4;

【図6】従来の垂直関節形ロボットの斜視図。FIG. 6 is a perspective view of a conventional vertically articulated robot.

【図7】図6の制御ブロック図。FIG. 7 is a control block diagram of FIG. 6.

【図8】図7の速度指令値曲線図。FIG. 8 is a speed command value curve diagram of FIG. 7;

【符号の説明】[Explanation of symbols]

1〜6          J1軸〜J6軸13   
         目的位置バッファ14      
      現在位置バッファ17         
   速度指令手段19            速度
指令バッファ21            負荷情報記
憶手段(負荷情報テーブル) 22A〜22D  第1軸〜第3軸及び手首軸加減速度
指令手段 23A〜23D  加速度バッファ 24A〜24D  減速度バッファ 25            加減速度決定手段30 
           移動始点31        
    移動終点0              基点
1 to 6 J1 axis to J6 axis 13
Target position buffer 14
Current position buffer 17
Speed command means 19 Speed command buffer 21 Load information storage means (load information table) 22A to 22D 1st to 3rd axes and wrist axis acceleration/deceleration command means 23A to 23D Acceleration buffers 24A to 24D Deceleration buffer 25 Acceleration/deceleration determination means 30
Movement starting point 31
Movement end point 0 Base point

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加速度指令値及び減速度指令値により
ロボットの各軸を移動させ、上記各軸の移動動作の際上
記各軸が同時に移動を完了するように速度制御される装
置において、上記各軸の位置に対する加速度及び減速度
が書き込まれた負荷情報記憶手段と、基点と上記各軸の
移動始点及び移動終点間の水平面距離又は上記移動始点
及び移動終点の座標を演算し、上記負荷情報記憶手段か
ら上記距離又は座標に対応する加速度及び減速度を読み
出す加減速度指令手段と、上記読み出された加速度及び
減速度の中からそれぞれ最小のものを選択しこれを上記
移動動作の加速度指令値及び減速度指令値として決定す
る加減速度決定手段とを備えたことを特徴とするロボッ
トの制御装置。
1. A device in which each axis of a robot is moved by an acceleration command value and a deceleration command value, and the speed is controlled such that each axis completes its movement simultaneously during the movement operation of each axis. A load information storage means in which acceleration and deceleration with respect to the axis position are written, and a horizontal plane distance between the base point and the movement start point and movement end point of each of the axes, or coordinates of the movement start point and movement end point, are calculated and the load information storage means is stored. acceleration/deceleration command means for reading out the acceleration and deceleration corresponding to the distance or coordinates from the means, and selecting the smallest one from the read acceleration and deceleration and using it as the acceleration command value and the acceleration command value for the movement operation. 1. A robot control device comprising: acceleration/deceleration determining means for determining a deceleration command value.
JP15212991A 1991-05-29 1991-05-29 Robot control device Expired - Lifetime JP2705367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15212991A JP2705367B2 (en) 1991-05-29 1991-05-29 Robot control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15212991A JP2705367B2 (en) 1991-05-29 1991-05-29 Robot control device

Publications (2)

Publication Number Publication Date
JPH04352013A true JPH04352013A (en) 1992-12-07
JP2705367B2 JP2705367B2 (en) 1998-01-28

Family

ID=15533696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15212991A Expired - Lifetime JP2705367B2 (en) 1991-05-29 1991-05-29 Robot control device

Country Status (1)

Country Link
JP (1) JP2705367B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061297A (en) * 2008-09-02 2010-03-18 Jtekt Corp Nc data creation device for machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061297A (en) * 2008-09-02 2010-03-18 Jtekt Corp Nc data creation device for machine tool

Also Published As

Publication number Publication date
JP2705367B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
JP2895672B2 (en) Multiple robot control method
JP2018134703A (en) Robot simulator, robot system, and simulation method
JP6904759B2 (en) Robot movement speed control device and method
JPWO2020066949A1 (en) Robot routing device, robot routing method, program
JPH04352013A (en) Control device for robot
JPS5878205A (en) Teaching method for industrial robot
JPH0736519A (en) Nearmiss checking method for robot
JPS62251901A (en) Course controller for multiaxis robot
JPH01121909A (en) Operation speed control method for rectangular coordinate type robot
JP2674398B2 (en) Robot control device
JPS61159391A (en) Method of controlling industrial robot
JPH03270887A (en) Control method and device for industrial robot
JPH0962322A (en) Control device and method for multiaxial robot
US20220355478A1 (en) Robot slider position setting device, robot slider position setting method, and robot slider position setting program
JPS60138611A (en) Controller of arm robot
JPH09128024A (en) Method for optimizing operation program of robot having redundant axis
JPS6125210A (en) Industrial joint robot
JP4124583B2 (en) Method and apparatus for creating operation path data of work robot
JPS6355607A (en) Robot teaching system
JP2023157089A (en) System for assisting creation of operation program of robot, method, and computer program
JPS6020207A (en) Method and apparatus for controlling robot
KR960002452B1 (en) Palletizing method for robot system
JPS632682A (en) Control system of robot
Hu et al. Study on the control system of a 3-PRS parallel machine tool based on PMAC2
JP2680647B2 (en) Industrial robot with position detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14