JPH04351968A - Probe - Google Patents

Probe

Info

Publication number
JPH04351968A
JPH04351968A JP15399491A JP15399491A JPH04351968A JP H04351968 A JPH04351968 A JP H04351968A JP 15399491 A JP15399491 A JP 15399491A JP 15399491 A JP15399491 A JP 15399491A JP H04351968 A JPH04351968 A JP H04351968A
Authority
JP
Japan
Prior art keywords
probe
titanium
base material
hard
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15399491A
Other languages
Japanese (ja)
Inventor
Akira Oba
彰 大場
Seiji Oishi
政治 大石
Yoshifumi Ikuyama
生山 芳文
Katsuki Kakiyama
柿山 佳津樹
Masanori Maenozono
前之園 正則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP15399491A priority Critical patent/JPH04351968A/en
Publication of JPH04351968A publication Critical patent/JPH04351968A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an inexpensive probe having abrasion resistance and capable of reducing adhesion of foreign matters significantly. CONSTITUTION:A laminated coat 2 consisting of an adhesive layer 2a and a hard layer 2b is farmed on a probe 1 using stainless as its base material. The adhesive layer 2a as a backing coat of the laminated coat is formed of titanium by means of an ion plating method, and the hard layer 2b as a finish coat is formed of titanium nitride by means of the same method. The adhesive layer 2a can strengthen sticking force between the stainless base material and the hard later 2b, so that the surface of the probe 1 can be coated with the hard laser of the titanium nitride having excellent electrical conductivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、プリント基板や半導体
部品などの通電検査用テスターの先端に取り付けられる
電気接触端子であるプローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe which is an electrical contact terminal attached to the tip of a tester for testing electrical conductivity of printed circuit boards, semiconductor parts, etc.

【0002】0002

【従来の技術及びその問題点】従来のプローブは銅及び
銅合金基材の表面に、酸化防止のために金、白金及びロ
ジウム等の貴金属の被膜を施したものが知られている。 しかし、■基材、被膜ともに軟質であるため、接触を繰
り返して使用しているうちに、表面が摩耗したり、■被
検査物の半田とか、銀とかがプローバーに付着して、絶
縁性のごみとなり、接触不良となる。■又、プローバー
の先端についたごみを取ろうとすると、酸化防止のため
の貴金属の被膜まで落ちてしまうなどの問題があり、長
期の使用に耐えなかった。又、貴金属を使用するため、
コストが高くつくという問題もあった。
BACKGROUND OF THE INVENTION Conventional probes are known in which a coating of noble metals such as gold, platinum and rhodium is applied to the surface of a copper or copper alloy base material to prevent oxidation. However, ■Since both the base material and the coating are soft, repeated contact may cause the surface to wear out, or ■solder or silver from the object to be inspected may adhere to the prober, causing the insulating properties to deteriorate. It becomes garbage and causes poor contact. ■Furthermore, when attempting to remove dust from the tip of the prober, the noble metal coating for oxidation prevention also fell off, making it unsustainable for long-term use. In addition, since precious metals are used,
There was also the problem of high costs.

【0003】0003

【発明が解決しようとする問題点】本発明は、以上のよ
うな問題に鑑みてなされ、耐摩耗性に優れ、長寿命で、
かつ安価なプローブを提供することを目的としている。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned problems.
The aim is to provide an inexpensive probe.

【0004】0004

【問題点を解決するための手段】上記の目的は、基材に
特殊被膜を施したプローブにおいて、前記基材を比較的
硬い導電材で構成し、前記特殊被膜を比較的硬い導電性
の金属化合物を主成分とする上地被膜と、前記金属化合
物の成分である金属の下地被膜とからなる積層被膜とす
ることを特徴とするプローブによって達成される。
[Means for solving the problem] The above object is to provide a probe having a special coating on a base material, in which the base material is made of a relatively hard conductive material, and the special coating is made of a relatively hard conductive metal. This is achieved by a probe characterized in that it is a laminated film consisting of a top film containing a compound as a main component and a metal base film that is a component of the metal compound.

【0005】[0005]

【作用】以上のように構成されるプローブにおいては耐
摩耗性が向上し、又半田、銀等の付着も少なくなり、長
寿命になる上、コストも低くなる。
[Function] The probe constructed as described above has improved wear resistance, less adhesion of solder, silver, etc., long life, and low cost.

【0006】[0006]

【実施例】次に実施例について図面を参照して説明する
。図1に本発明の実施例にかかるプローブ1とその性能
を確かめるための試験材料としての発光ダイオードのリ
ード線3の拡大断面図を示す。
[Embodiment] Next, an embodiment will be explained with reference to the drawings. FIG. 1 shows an enlarged sectional view of a probe 1 according to an embodiment of the present invention and a lead wire 3 of a light emitting diode as a test material for confirming its performance.

【0007】プローブ1は、基材である金属の表面に導
電性があり、かつ比較的硬い積層被膜2を形成したもの
である。図2に、コーティングした積層被膜2の拡大断
面図を示すが、導電性があり、かつ真鍮より硬い金属で
あるステンレス(SUS304)の表面に下地被膜であ
るチタン(Ti)からなる密着層2aが形成され、その
上に上地被膜である、主として窒化チタン(TiN)か
らなる硬質層2bが形成されている。チタン及び窒化チ
タンはいずれも導電性があり、かつ硬いものである。更
にプローブの酸化を防止することができる。
[0007] The probe 1 has a conductive and relatively hard laminated film 2 formed on the surface of a metal base material. FIG. 2 shows an enlarged cross-sectional view of the coated laminated film 2. An adhesive layer 2a made of titanium (Ti), which is a base film, is formed on the surface of stainless steel (SUS304), which is conductive and harder than brass. A hard layer 2b mainly made of titanium nitride (TiN) is formed thereon as an upper film. Both titanium and titanium nitride are electrically conductive and hard. Furthermore, oxidation of the probe can be prevented.

【0008】基材表面上への積層被膜2の形成は以下の
ようなイオンプレーティングによって行なった。図3に
示すような、排気弁6を介して真空排気系(図示せず)
に接続される真空層5の中に設けられた支持板10にプ
ローブ1を取りつけた。プローブ1と対向する位置に蒸
発物質としてチタン(Ti)の入った水冷銅製ハース7
と中空陰極型電子銃8とを設けた。又、他のノズル9か
らは反応性ガスとして窒素ガスが供給される。
The laminated film 2 was formed on the surface of the base material by ion plating as described below. A vacuum exhaust system (not shown) via an exhaust valve 6 as shown in FIG.
The probe 1 was attached to a support plate 10 provided in a vacuum layer 5 connected to the vacuum layer 5. A water-cooled copper hearth 7 containing titanium (Ti) as an evaporative substance at a position facing the probe 1
and a hollow cathode type electron gun 8. Further, nitrogen gas is supplied from another nozzle 9 as a reactive gas.

【0009】まず、真空層5の内部を真空引きし5×1
0−5Torrとした。次いで中空陰極型電子銃8にア
ルゴンガスを流しながら(5×10−4Torrになる
)水冷銅製ハース7と電子銃8との間に直流電源RFス
ターター(DC・RF)により電圧をかけ、中空熱陰極
放電を起こしてチタンを蒸発させ、支持板10にバイア
ス電圧−50Vをかけると、プローブの表面にチタン被
膜が形成された。次いでノズル9から窒素ガスを導入し
、内部の真空度が2×10−3Torrになるように調
整すると、プローブ上には更に窒化チタン(TiN)被
膜が形成された。X線回折によって調べたところ、この
被膜は主として窒化チタン(TiN)からなり、その他
にチタン(Ti)も含まれていた。以上の方法によって
得られた密着層2aのチタン被膜の厚さはコンマ数μm
、窒化チタンを主とする硬質層2bの膜厚は約2μmで
あった。上記工程中の成膜速度は0.1〜0.3μm/
minであった。又、得られたプローブ1の硬質層2b
の上からマイクロビッカース硬度計で硬度を測定したと
ころ、約HV 1400であった。
First, the inside of the vacuum layer 5 is evacuated to form a 5×1
The pressure was set at 0-5 Torr. Next, while flowing argon gas through the hollow cathode type electron gun 8 (at 5 x 10-4 Torr), a voltage is applied between the water-cooled copper hearth 7 and the electron gun 8 using a DC power source RF starter (DC/RF) to heat the hollow cathode type electron gun 8. When cathodic discharge was generated to evaporate titanium and a bias voltage of -50V was applied to the support plate 10, a titanium film was formed on the surface of the probe. Next, nitrogen gas was introduced from the nozzle 9 to adjust the internal vacuum to 2 x 10-3 Torr, and a titanium nitride (TiN) film was further formed on the probe. When examined by X-ray diffraction, this film was found to be mainly composed of titanium nitride (TiN), and also contained titanium (Ti). The thickness of the titanium coating of the adhesive layer 2a obtained by the above method is several tenths of μm.
The thickness of the hard layer 2b mainly made of titanium nitride was about 2 μm. The film formation rate during the above process is 0.1 to 0.3 μm/
It was min. Moreover, the hard layer 2b of the obtained probe 1
The hardness was measured from above using a micro Vickers hardness meter and found to be approximately HV 1400.

【0010】以上のように密着層2aを設けることによ
って被膜の固着力が増加する。密着層2aを設けずに直
接硬質層2bを形成すると固着力が弱く、使用している
うちに剥離してしまう。密着層の厚さは1μm以下でも
充分であった。
[0010] As described above, by providing the adhesive layer 2a, the adhesive strength of the coating is increased. If the hard layer 2b is directly formed without providing the adhesive layer 2a, the adhesive strength will be weak and it will peel off during use. It was sufficient that the thickness of the adhesive layer was 1 μm or less.

【0011】従来のプローブと本実施例のプローブとを
各々、発光ダイオードの発光テスト装置に組み込んで以
下の比較実験を行なった。
The conventional probe and the probe of this embodiment were each incorporated into a light emitting diode light emitting test device, and the following comparative experiment was conducted.

【0012】従来のプローブは、真鍮製の金属ピンの表
面にニッケル(Ni)と金(Au)の積層被膜を湿式メ
ッキで形成したものである。図1に示すようにプローブ
を発光ダイオードのリード線3に一定荷重で押しつけ、
電流を数回流すことを1サイクルとして、100サイク
ルづつ行なった。実験後の従来プローブ及び本実施例プ
ローブの接触した面をそれぞれ図4のA及び図4のBに
示す。従来プローブは図4のAに示すように表面に半田
の付着が生じ、その付着部の一部に黒色部が見られた。 又、付着部以外にも、黒色部が見られた。これらの黒色
部は、金被膜が接触するプローブの荷重によってプロー
ブから剥離し、ニッケル又は真鍮が酸化して生じたもの
と考えられる。更に外部からのごみ及び半田も付着して
いると考えられる。
[0012] A conventional probe has a laminated film of nickel (Ni) and gold (Au) formed on the surface of a brass metal pin by wet plating. As shown in Figure 1, press the probe against the lead wire 3 of the light emitting diode with a constant load,
One cycle consisted of passing the current several times, and 100 cycles were performed each time. The contact surfaces of the conventional probe and the probe of this example after the experiment are shown in FIGS. 4A and 4B, respectively. As shown in FIG. 4A, the conventional probe has solder adhesion on its surface, and a black part can be seen in a part of the adhesion part. In addition, black areas were observed in addition to the adhered areas. These black parts are thought to be caused by the gold coating being peeled off from the probe due to the load of the contacting probe, and the nickel or brass being oxidized. Furthermore, it is thought that dust and solder from the outside are also attached.

【0013】一方本実施例によって得られたプローブは
図4のBに示すように変色がなく、初期状態と全く同等
であった。又、発光ダイオードの特性に関しては従来の
プローブを用いた時と差がなかった。
On the other hand, the probe obtained in this example had no discoloration, as shown in FIG. 4B, and was completely the same as the initial state. Furthermore, there was no difference in the characteristics of the light emitting diode compared to when a conventional probe was used.

【0014】なお、従来のプローブでは、100サイク
ルの実験をした時点で接触部に不具合の生じるものが3
%あったが、本実施例のプローブでは不具合は発生しな
かった。
[0014] In addition, with conventional probes, after 100 cycles of experiment, there were 3 cases where problems occurred in the contact part.
%, but no problem occurred with the probe of this example.

【0015】次に両プローブで電気特性に差があるかど
うかを調べるために次の実験を行なった。
Next, the following experiment was conducted to examine whether there is a difference in electrical characteristics between the two probes.

【0016】初期状態の従来プローブと本実施例プロー
ブのそれぞれに一定の電圧をかけ、負荷抵抗を変えて0
.092〜0.75mAの電流を流し、相関係数を求め
たところ、0.999という値が得られ、両プローブで
は電気特性上の差は認められなかった。
A constant voltage is applied to each of the conventional probe and the probe of this embodiment in the initial state, and the load resistance is changed to zero.
.. When a current of 0.092 to 0.75 mA was applied and the correlation coefficient was determined, a value of 0.999 was obtained, and no difference in electrical characteristics was observed between the two probes.

【0017】図5に0.38〜0.75mAのプロット
した実例を示す。
FIG. 5 shows an example in which 0.38 to 0.75 mA is plotted.

【0018】なお、本実施例のプローブはステンレス(
SUS304)の基材の頭部表面のみにチタン及び窒化
チタンの積層被膜2が形成された構造であるので、プロ
ーブの下部の被膜を設けていない部分を半田付けするこ
とができる(窒化チタンには半田付けができない)。
Note that the probe of this example is made of stainless steel (
Since it has a structure in which the laminated coating 2 of titanium and titanium nitride is formed only on the head surface of the base material (SUS304), the lower part of the probe where no coating is provided can be soldered (titanium nitride has no coating). cannot be soldered).

【0019】本発明のプローブを引き続き5000サイ
クルの連続試験を行なったところ、ほんの少しの変色が
認められた。これを紙やすりでこすると、変色部のみき
れいに落ち、新品同様となった。
When the probe of the present invention was subsequently subjected to a continuous test of 5000 cycles, only a slight discoloration was observed. When I rubbed this with sandpaper, only the discolored parts were removed and it looked like new.

【0020】窒化チタン膜の上に半田が付着した後酸化
したのが変色部であり、紙やすりでこすることにより窒
化チタン膜上の半田はきれいに落ち、窒化チタン膜は紙
やすりより硬いので、落ちないためプローブの表面は新
品同様となる。
[0020] The discolored part is where the solder adheres to the titanium nitride film and then oxidizes. By rubbing it with sandpaper, the solder on the titanium nitride film comes off cleanly. Since the titanium nitride film is harder than sandpaper, Since it will not fall off, the surface of the probe will be as good as new.

【0021】以上のように、本発明は、従来品より非常
に優れた特性を示した。
[0021] As described above, the present invention exhibited characteristics that were much superior to conventional products.

【0022】本発明の金属化合物として適切なものは比
較的硬く、かつ導電性の高いものである。図6は各種化
合物の硬さと融点の関係を示す図であり、図7は各種化
合物の電気比抵抗を示す図であるが、硬度がヌープ硬度
(HN )で約1200以上、かつ電気比抵抗が約10
−4Ω・cm以下であればよく、具体的にはチタン(T
i)、ハフニウム(Hf)、タンタル(Ta)、ニッケ
ル(Ni)、ニオブ(Nb)、バナジウム(v)、ジル
コニウム(Zr)の窒化物、炭化物又は硼化物が使用で
きる。これらはいずれも酸化しにくいものであり、母材
の酸化を防ぐためにも有効である。
Suitable metal compounds for the present invention are those that are relatively hard and highly conductive. Figure 6 is a diagram showing the relationship between the hardness and melting point of various compounds, and Figure 7 is a diagram showing the electrical resistivity of various compounds. about 10
-4Ω・cm or less, specifically titanium (T
i) Nitride, carbide or boride of hafnium (Hf), tantalum (Ta), nickel (Ni), niobium (Nb), vanadium (v), zirconium (Zr) can be used. All of these are difficult to oxidize and are also effective in preventing oxidation of the base material.

【0023】前記実施例のチタン及び窒素ガスを変えた
以外は全く同一の条件で、次のような実験を行なった。 基材にステンレス(SUS304)を用いた点も同様で
ある。
The following experiment was conducted under exactly the same conditions as in the previous example except that the titanium and nitrogen gases were changed. The same applies to the use of stainless steel (SUS304) as the base material.

【0024】(1)金属としてチタン(Ti)を用い、
窒素ガスの代わりにメタンガスを導入して、チタンから
なる密着層と、炭化チタン(TiC)を主とする硬質層
を形成した。
(1) Using titanium (Ti) as the metal,
Methane gas was introduced instead of nitrogen gas to form an adhesion layer made of titanium and a hard layer mainly made of titanium carbide (TiC).

【0025】(2)金属としてチタンの代わりにハフニ
ウム(Hf)を用い、窒素ガスを導入してハフニウムか
らなる密着層と、窒化ハフニウム(HfN)を主とする
硬質層を形成した。
(2) Hafnium (Hf) was used instead of titanium as the metal, and nitrogen gas was introduced to form an adhesive layer made of hafnium and a hard layer mainly made of hafnium nitride (HfN).

【0026】(3)金属としてチタンの代わりにニッケ
ル(Ni)を用い、窒素ガスを導入してニッケルからな
る密着層と、窒化ニッケル(Ni3 N2 )を主とす
る硬質層を形成した。
(3) Nickel (Ni) was used instead of titanium as the metal, and nitrogen gas was introduced to form an adhesive layer made of nickel and a hard layer mainly made of nickel nitride (Ni3 N2).

【0027】(4)金属としてチタン(Ti)を用い、
ステンレス(SUS304)にチタン(Ti)膜を3〜
5μm形成し、イオン注入にて硼素を注入することによ
って、チタン膜の表面に硼化チタン(TiB)を主とす
る硬質層を形成した。
(4) Using titanium (Ti) as the metal,
3~ Titanium (Ti) film on stainless steel (SUS304)
A hard layer mainly made of titanium boride (TiB) was formed on the surface of the titanium film by forming a layer with a thickness of 5 μm and implanting boron by ion implantation.

【0028】以上のような積層被膜を形成したプローブ
を用い、発光ダイオードの導通を繰り返す操作を行なっ
たが、いずれも先の実施例の場合と同様、変色及び付着
もなく、良好な結果が得られた。
[0028] Using the probe on which the laminated film was formed as described above, the operation of making the light emitting diode conductive was repeated, but as in the previous example, there was no discoloration or adhesion, and good results were obtained. It was done.

【0029】以上、本発明の実施例について説明したが
、勿論、本発明はこれに限定されることなく、本発明の
技術的思想に基き種々の変形が可能である。
Although the embodiments of the present invention have been described above, the present invention is of course not limited thereto, and various modifications can be made based on the technical idea of the present invention.

【0030】例えば、実施例ではイオンプレーティング
法によって積層被膜を形成したが、スパッタ法によって
もよい。
For example, in the embodiment, the laminated film was formed by an ion plating method, but a sputtering method may also be used.

【0031】積層被膜の材質と厚さは、硬度と電気特性
を考慮し、目的に応じて選定できるが、厚さについては
コンマ数μm〜10μmの範囲で変えられる。
The material and thickness of the laminated coating can be selected depending on the purpose, taking into consideration hardness and electrical properties, and the thickness can be varied within the range of a few tenths of a micrometer to 10 micrometers.

【0032】プローブの材質は実施例ではステンレス(
SUS304)を用いたが、代わりにステンレス以外の
鉄合金、ニッケル合金及び銅合金、アルミニウム合金や
、タングステン、モリブデンも使用できる。
The material of the probe is stainless steel (
SUS304) was used, but iron alloys other than stainless steel, nickel alloys, copper alloys, aluminum alloys, tungsten, and molybdenum can also be used instead.

【0033】又、積層被膜は密着層と硬質層とからなっ
ているが、被測定物とのなじみを良くする必要がある場
合には、更にその上に金や白金の被膜を形成してもよい
。この場合は蒸着やスパッタにより膜厚を100〜80
0Å程度にすればよい。
[0033]Although the laminated film consists of an adhesive layer and a hard layer, if it is necessary to improve the compatibility with the object to be measured, a gold or platinum film may be further formed on top of it. good. In this case, the film thickness is 100 to 80% by vapor deposition or sputtering.
The thickness may be approximately 0 Å.

【0034】又、実施例では図1及び図2に示すプラン
ジャスタイルのものを用いたが、図8のA、B及びCに
示すプランジャスタイルのものでも適用が可能であり、
ここに示す形状以外のものについても当然適用できる。
In addition, although the plunger styles shown in FIGS. 1 and 2 were used in the embodiment, plunger styles shown in A, B, and C of FIG. 8 may also be used.
Of course, the present invention can also be applied to shapes other than those shown here.

【0035】[0035]

【発明の効果】本発明は以上のような構成であるので、
プローブ表面に半田、ごみ等の異物が付着しにくく、又
それが長時間の使用により付着しても、プローブ表面が
硬く、紙やすり等でこするだけで異物を容易に除去する
ことができ、プローブ表面もそれにより摩耗することが
なく、長寿命で、かつ電気特性の問題がないプローブが
安価に得られる。又、本発明のプローブの特殊被膜をつ
けていない所は半田付けもできるので、使い勝手もよい
[Effects of the Invention] Since the present invention has the above configuration,
It is difficult for foreign matter such as solder or dust to adhere to the probe surface, and even if it does adhere to it after long-term use, the probe surface is hard and can be easily removed by simply rubbing it with sandpaper. The surface of the probe is not worn out thereby, and a probe with a long life and no problems with electrical characteristics can be obtained at low cost. Furthermore, the parts of the probe of the present invention that are not coated with the special coating can be soldered, making it easy to use.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例にかかるプローブと、それに接
触する発光ダイオードのリード線の拡大断面図である。
FIG. 1 is an enlarged sectional view of a probe according to an embodiment of the present invention and a lead wire of a light emitting diode in contact with the probe.

【図2】図1におけるプローブを更に拡大したプローブ
の積層被膜の断面図である。
FIG. 2 is a cross-sectional view of the laminated coating of the probe in FIG. 1, further enlarged.

【図3】積層被膜を形成するための装置の概略模式図で
ある。
FIG. 3 is a schematic diagram of an apparatus for forming a laminated film.

【図4】A及びBは従来例のプローブと、本発明の実施
例のプローブについて導通試験を100回行なった後の
接触した面を示す。
FIGS. 4A and 4B show the contact surfaces of the conventional probe and the probe of the embodiment of the present invention after conducting continuity tests 100 times;

【図5】従来例のプローブと本発明の実施例のプローブ
について、電気特性を比較したグラフである。
FIG. 5 is a graph comparing electrical characteristics of a conventional probe and a probe of an embodiment of the present invention.

【図6】各種化合物の硬さと融点の関係を示す図である
FIG. 6 is a diagram showing the relationship between hardness and melting point of various compounds.

【図7】各種化合物の電気比抵抗を示す図である。FIG. 7 is a diagram showing the electrical resistivity of various compounds.

【図8】A、B及びCは本実施例以外におけるプローブ
の代表的な形状の一部を示す図である。
FIGS. 8A, 8B, and 8C are diagrams showing some typical shapes of probes other than this example.

【符号の説明】[Explanation of symbols]

1    プローブ 2    積層被膜 2a  密着層 2b  硬質層 1 Probe 2 Laminated film 2a Adhesion layer 2b Hard layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  基材に特殊被膜を施したプローブにお
いて、前記基材を比較的硬い導電材で構成し、前記特殊
被膜を比較的硬い導電性の金属化合物を主成分とする上
地被膜と、前記金属化合物の成分である金属の下地被膜
とからなる積層被膜とすることを特徴とするプローブ。
1. A probe in which a special coating is applied to a base material, wherein the base material is made of a relatively hard conductive material, and the special coating is a top coat containing a relatively hard conductive metal compound as a main component. A probe characterized in that it is a laminated film consisting of a base film of a metal which is a component of the metal compound.
【請求項2】  前記基材が銅合金、鉄合金、ニッケル
合金、アルミニウム合金、タングステン、モリブデンの
うちいずれか1つである請求項1に記載のプローブ。
2. The probe according to claim 1, wherein the base material is any one of copper alloy, iron alloy, nickel alloy, aluminum alloy, tungsten, and molybdenum.
【請求項3】  前記金属がチタン、タンタル、ニッケ
ル、二オブ、バナジウム、ジルコニウム、ハフニウムの
うちいずれか1つであり、前記金属化合物が前記金属の
窒化物、炭化物又は硼化物である請求項1又は2に記載
のプローブ。
3. The metal is any one of titanium, tantalum, nickel, niobium, vanadium, zirconium, and hafnium, and the metal compound is a nitride, carbide, or boride of the metal. Or the probe according to 2.
JP15399491A 1991-05-29 1991-05-29 Probe Pending JPH04351968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15399491A JPH04351968A (en) 1991-05-29 1991-05-29 Probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15399491A JPH04351968A (en) 1991-05-29 1991-05-29 Probe

Publications (1)

Publication Number Publication Date
JPH04351968A true JPH04351968A (en) 1992-12-07

Family

ID=15574596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15399491A Pending JPH04351968A (en) 1991-05-29 1991-05-29 Probe

Country Status (1)

Country Link
JP (1) JPH04351968A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965943A (en) * 1997-10-01 1999-10-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with bonding pad electrode
US6016061A (en) * 1997-07-24 2000-01-18 Mitsubishi Denki Kabushiki Kaisha Cantilever type probe needle for probe card and method of fabrication and control thereof
WO2003005042A1 (en) * 2001-07-02 2003-01-16 Nhk Spring Co., Ltd. Conductive contact
WO2003035541A2 (en) * 2001-10-15 2003-05-01 Infineon Technologies Ag Probe needle for testing semiconductor chips and method for producing said probe needle
JP2007218675A (en) * 2006-02-15 2007-08-30 Fujitsu Ltd Probe, and manufacturing method of probe
JP2008185596A (en) * 1994-02-21 2008-08-14 Renesas Technology Corp Connection device
CN105158531A (en) * 2014-06-06 2015-12-16 旺矽科技股份有限公司 Probe and probe manufacturing method
KR20170017095A (en) * 2015-08-05 2017-02-15 주식회사 유진텍 Zirconia-nickel pin for voltage measuring terminal of fuel cell and the method of manufacturing the same
US9835653B2 (en) 2014-05-13 2017-12-05 International Business Machines Corporation Solder bump array probe tip structure for laser cleaning
TWI679425B (en) * 2014-12-30 2019-12-11 義大利商技術探測股份有限公司 Contact probe for testing head

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185596A (en) * 1994-02-21 2008-08-14 Renesas Technology Corp Connection device
US6016061A (en) * 1997-07-24 2000-01-18 Mitsubishi Denki Kabushiki Kaisha Cantilever type probe needle for probe card and method of fabrication and control thereof
US5965943A (en) * 1997-10-01 1999-10-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with bonding pad electrode
US7081767B2 (en) 2001-07-02 2006-07-25 Nhk Spring Co., Ltd. Electroconductive contact unit
WO2003005042A1 (en) * 2001-07-02 2003-01-16 Nhk Spring Co., Ltd. Conductive contact
DE10150291A1 (en) * 2001-10-15 2003-05-08 Infineon Technologies Ag Probe needle for testing semiconductor chips and process for their manufacture
WO2003035541A3 (en) * 2001-10-15 2003-08-14 Infineon Technologies Ag Probe needle for testing semiconductor chips and method for producing said probe needle
WO2003035541A2 (en) * 2001-10-15 2003-05-01 Infineon Technologies Ag Probe needle for testing semiconductor chips and method for producing said probe needle
US7212019B2 (en) 2001-10-15 2007-05-01 Infineon Technologies Ag Probe needle for testing semiconductor chips and method for producing said probe needle
JP2007218675A (en) * 2006-02-15 2007-08-30 Fujitsu Ltd Probe, and manufacturing method of probe
US9835653B2 (en) 2014-05-13 2017-12-05 International Business Machines Corporation Solder bump array probe tip structure for laser cleaning
US10571490B2 (en) 2014-05-13 2020-02-25 International Business Machines Corporation Solder bump array probe tip structure for laser cleaning
CN105158531A (en) * 2014-06-06 2015-12-16 旺矽科技股份有限公司 Probe and probe manufacturing method
TWI679425B (en) * 2014-12-30 2019-12-11 義大利商技術探測股份有限公司 Contact probe for testing head
KR20170017095A (en) * 2015-08-05 2017-02-15 주식회사 유진텍 Zirconia-nickel pin for voltage measuring terminal of fuel cell and the method of manufacturing the same

Similar Documents

Publication Publication Date Title
US9116173B2 (en) Contact probe having carbon film on surface thereof
US5892223A (en) Multilayer microtip probe and method
US6352454B1 (en) Wear-resistant spring contacts
TWI411786B (en) Electric contact member
JP5667350B2 (en) Contact probe pin
JPH04351968A (en) Probe
TWI451092B (en) Contact probe pin
JPS59103216A (en) Electric contact
JP2001289874A (en) Probe and probe card using the probe
JP3215452B2 (en) Electrode
KR101781312B1 (en) Electrical contact member
JP3164535B2 (en) How to modify the probe tip
JP2002318247A (en) Connection device
TW503316B (en) Probe needle for probe card
JP2012112681A (en) Contact probe pin and inspection method
JPH01169367A (en) Probe for measuring fine electrode resistance
JPH03192605A (en) Conducting terminal
JP2003167003A (en) Probe needle for probe card
SU1105950A1 (en) Contact part for hermetically sealed ferreed contact
JPH05304230A (en) Test probe for lcd
JPH08240598A (en) Conductive probe
JPS62195815A (en) Manufacture of electric contact parts
JPS60212847A (en) Diamond parts
JPH07220788A (en) Ic socket use terminal and manufacture thereof
JP2551806B2 (en) Mating ring