JPH0435185A - Video signal optical transmission system - Google Patents
Video signal optical transmission systemInfo
- Publication number
- JPH0435185A JPH0435185A JP2135910A JP13591090A JPH0435185A JP H0435185 A JPH0435185 A JP H0435185A JP 2135910 A JP2135910 A JP 2135910A JP 13591090 A JP13591090 A JP 13591090A JP H0435185 A JPH0435185 A JP H0435185A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- pulse
- pfm
- video signal
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 42
- 230000005540 biological transmission Effects 0.000 title claims description 21
- 239000000835 fiber Substances 0.000 claims abstract description 17
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 13
- 230000008054 signal transmission Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明(よ 映像信号を予めパルス化アナログ変調し
さらに半導体レーザで光パルス信号に変換して伝送する
映像信号光伝送方式に関するものである。[Detailed Description of the Invention] The present invention is applicable to the industrial field of application.
Furthermore, the present invention relates to a video signal optical transmission system in which a semiconductor laser is used to convert the signal into an optical pulse signal and transmit the signal.
従来の技術
映像信号を光伝送する一方式として、アナログ方式があ
る。アナログ方式のブロック図を第5図に その要部波
形図を第6図に示す。アナログ方式でば 入力端子1に
入力する映像ベースバンド信号またはRF信号50を、
半導体レーザ駆動部10と半導体レーザ(LD)11を
用いて光信号に変換し シングルモードファイバ(SM
F)]2で伝送する。ここで、シングルモードファイバ
12の途中で屈折率が変化する点(例えはコネクタ等)
があると、その点で光信号の反射現象か生し 発生した
反射光は発光素子であるLD]、I側に戻って来る。L
DIIに戻って来る反射光を反射戻り光と呼)4%
反射戻り光かある場合 L D 11から出力される光
信号に反射戻り光が重なり、信号は51に示すように雑
音や歪の多い信号となり、信号品質を著しく劣化させる
。2. Description of the Related Art One method for optically transmitting video signals is an analog method. Figure 5 shows a block diagram of the analog system, and Figure 6 shows its main waveform diagram. In the analog system, the video baseband signal or RF signal 50 input to input terminal 1 is
A semiconductor laser drive unit 10 and a semiconductor laser (LD) 11 are used to convert the signal into an optical signal and connect it to a single mode fiber (SM).
F)]2. Here, the point where the refractive index changes in the middle of the single mode fiber 12 (for example, at a connector, etc.)
If there is, a reflection phenomenon of the optical signal occurs at that point, and the generated reflected light returns to the light emitting element (LD) and I side. L
The reflected light that returns to DII is called reflected return light) 4%
If there is reflected return light, the reflected return light overlaps the optical signal output from the LD 11, and the signal becomes a signal with a lot of noise and distortion as shown at 51, significantly degrading the signal quality.
このたム アナログ伝送では反射戻り光対策は極めて重
要である。具体的対策として(友1)LDとファイバ間
に反射戻り光防止用のアイソレータ30の挿入、
2)融着(スプライス)または反射減衰量の大きいコネ
クタを用いたファイバ接読
3)受光素子との結合部に斜めコネクター3の採用
などを行っている。以−ヒの対策を施したシングルモー
ドファイバを伝搬した光信号で(戴 52に示すように
雑音や歪はほとんど発生しない。光信号52(友 受光
素子14と光/電気変換部15で元の電気信号(出力信
号)53に変換され 出力端子2より出力される。Measures against reflected light are extremely important in analog transmission. Specific measures include (friend 1) inserting an isolator 30 between the LD and the fiber to prevent reflected return light, 2) direct reading of the fiber using a splice or a connector with high return loss, and 3) connecting the light receiving element to the fiber. Diagonal connectors 3 are used in the joints. An optical signal propagated through a single-mode fiber with the measures described below (as shown in Figure 52) generates almost no noise or distortion. It is converted into an electrical signal (output signal) 53 and output from the output terminal 2.
以上に述べたアナログ方式で(友 回路構成は簡単であ
る力(反則によって発生する雑音や歪が直接伝送品質を
劣化させるた八 反射戻り光対策として高価なアイソレ
ータの使用などミ 上記1)〜3)の条件が必須となる
。In the analog system described above, the circuit configuration is simple (the noise and distortion generated by the noise directly degrades the transmission quality), and the use of expensive isolators as a countermeasure against reflected light returns (1) to 3 above. ) conditions are required.
これに対し パルス化アナログ方式では映像信号を予め
繰り返しパルス信号の周波数やパルス1低またはパルス
位置に変mL その後L Dで光パルス信号に変換し
て伝送する。受信部でζよ 受信した光パルス信号を一
定振幅のパルス信号に増幅した後、ある一定レベルで識
別(スライス)して、パルス信号のu H″′ L″
を再生し 元の映像信号を復調している。このため、伝
送する光パルス信号の11 HI+またはIILI+
レベルに重畳される雑音や歪(上 受信部の識別部で取
り除くことができる。したがってパルス化アナログ方式
(よ 伝送系で発生する雑音や歪の影響を受は難いとい
う長所を有し また回路構成も比較的簡単なた教 短〜
中距離(10〜20km程度)の映像信号伝送にしばし
ば用いられている。On the other hand, in the pulsed analog system, the video signal is changed in advance to the repeating pulse signal frequency, pulse 1 low or pulse position, and then converted into an optical pulse signal by the LD and transmitted. In the receiving section, the received optical pulse signal is amplified into a pulse signal with a constant amplitude, and then it is identified (sliced) at a certain level, and the u H'''L'' of the pulse signal is
and demodulates the original video signal. Therefore, 11 HI+ or IILI+ of the optical pulse signal to be transmitted
Noise and distortion superimposed on the level can be removed by the identification section of the receiver. Therefore, the pulsed analog method (as compared to the pulsed analog method) has the advantage of being less susceptible to the effects of noise and distortion generated in the transmission system. It is also a relatively simple and short lesson.
It is often used for medium-distance (about 10 to 20 km) video signal transmission.
発明が解決しようとする課題
以上に述べたパルス化アナログ方式では 伝送系で発生
ずる雑音や歪の影響を受は難いため、伝送品質に対する
反射戻り光の影響については特に注意が払われていなか
っム しかしながら本方式でζよ 光パルス信号の繰り
返し周波数やパルス幅・パルス位置、言い換えるとパル
スの立ち上がりまたは立ち下がりの時刻をアナログ的に
変調して、映像信号を伝送するた八 伝送路から反射戻
り光があると、光パルス信号の立ち」二かりまたは立ち
下がりの時刻にゆらぎが生し このゆらぎが雑音として
伝送する映像信号の伝送品質を劣化させることになる。Problems to be Solved by the Invention Since the pulsed analog system described above is not easily affected by noise and distortion generated in the transmission system, no particular attention has been paid to the influence of reflected return light on transmission quality. However, in this method, the repetition frequency, pulse width, and pulse position of the optical pulse signal, in other words, the time of rise or fall of the pulse, are modulated in an analog manner, and the video signal is transmitted. If this happens, fluctuations will occur at the rising or falling edges of the optical pulse signal, and this fluctuation will degrade the transmission quality of the transmitted video signal as noise.
本発明はかかる点に鑑みてなされたもので、無反射型の
シングルモードファイバと斜めコネクタを用いることに
より、高品質な映像信号を伝送することができる映像信
号光伝送方式を提供することを目的としている。The present invention has been made in view of the above, and an object of the present invention is to provide a video signal optical transmission system that can transmit high-quality video signals by using a non-reflective single mode fiber and a diagonal connector. It is said that
課題を解決するための手段
本発明は上記問題点を解決するた取
1)映像信号で変調されたパルス化アナログ信号を半導
体レーザ(LD)を用いて光パルス信号に変換し 前記
光パルス信号を無反射型のシングルモードファイバ(S
MF)で伝送した後、斜めコネクタを用いて受光素子に
入力し 受光素子で前記光パルス信号をパルス化アナロ
グ信号に変換して元の映像信号を復調することを特徴と
する映像信号光伝送方式と、
2)上記1)記載の信号伝送方式において、輝度信号と
2つの色差信号から成るコンポーネント映像信号を、輝
度信号はパルス周波数変調(PFM)を行い、 そのP
FM信号のパルス幅を、前記2つの色差信号で交互にパ
ルス幅変調(PWM)して、前記コンポーネント映像信
号を1つのパルス列信号(PFWM)とし 前記PFW
M信号を半導体レーザ(LD)を用いて光パルス信号に
変換する映像信号光伝送方式である。Means for Solving the Problems The present invention solves the above problems by 1) converting a pulsed analog signal modulated by a video signal into an optical pulse signal using a semiconductor laser (LD), and converting the optical pulse signal into an optical pulse signal. Non-reflective single mode fiber (S
MF), the optical pulse signal is input to a light-receiving element using a diagonal connector, the light-receiving element converts the optical pulse signal into a pulsed analog signal, and demodulates the original video signal. and 2) In the signal transmission method described in 1) above, a component video signal consisting of a luminance signal and two color difference signals is subjected to pulse frequency modulation (PFM) on the luminance signal, and its P
The pulse width of the FM signal is alternately pulse width modulated (PWM) with the two color difference signals to make the component video signal one pulse train signal (PFWM), and the PFW
This is a video signal optical transmission system that converts the M signal into an optical pulse signal using a semiconductor laser (LD).
作用
本発明は上記した方法により、反射によって発生する光
パルス信号の立ち上がりまたは立ち下がり時刻のゆらぎ
を抑圧するたム 高品質な映像信号を安定で精度良く伝
送することが出来る。Effect of the Invention The present invention uses the method described above to suppress fluctuations in the rise or fall times of optical pulse signals caused by reflection, and can stably and accurately transmit high-quality video signals.
実施例
パルス化アナログ伝送方式の一例として、パルス周波数
変調(PFM)の場合を側番ミ 本発明の映像信号光
伝送方式に用いる回路の一実施例のブロック図を第1図
に示1′o 第1図において、 20はPFM変調皿
21はPFM復調部である。また 第4図と同じ構成
要素には同じ番号をイ」シ説明を省略する。Embodiment As an example of a pulsed analog transmission system, the case of pulse frequency modulation (PFM) is shown in FIG. In FIG. 1, 20 is a PFM modulation plate, and 21 is a PFM demodulation section. Also, the same components as in FIG. 4 are designated by the same numbers and their explanations will be omitted.
以下で(よ 同回路の要部波形を示す第2図を用いて、
動作の詳細を説明する。In the following, using Figure 2 which shows the waveforms of the main parts of the same circuit,
The details of the operation will be explained.
PFM変調部20は入力信号50を入力LPFM信号6
1に変換する。PFM信号61ではパルス幅は一定で、
パルス繰り返し周波数が入力信号50の信号振幅に比例
して変化する。半導体レーザ駆動部10で+;!、PF
M信号61を入力して半導体レーザ11を駆動し 光パ
ルス信号を出力する。The PFM modulator 20 converts the input signal 50 into an input LPFM signal 6
Convert to 1. In the PFM signal 61, the pulse width is constant,
The pulse repetition frequency varies proportionally to the signal amplitude of the input signal 50. +;! in the semiconductor laser drive unit 10; , P.F.
The M signal 61 is input to drive the semiconductor laser 11 and output an optical pulse signal.
ここて 伝送路のシングルモードファイバ12中にコネ
クタ等があり、そのコネクタ等からLDllへ反射戻り
光があると、LDIIより出力した光パルス信号と反射
戻り光が重なり、受信端では光信号62のように立ち」
二かりまたは立ち下がり時刻のゆらいだ波形となる(図
中 斜線部)。Here, if there is a connector etc. in the single mode fiber 12 of the transmission line and there is reflected return light from the connector etc. to the LDII, the optical pulse signal output from the LDII and the reflected return light overlap, and at the receiving end, the optical signal 62 is "Stand like that."
This results in a waveform with fluctuating double or fall times (shaded area in the figure).
このようなパルス信号の立ち上がりまたは立ち下がり時
刻のゆらぎ(訳 通常″′ジッタ″と呼ばれパルス化ア
ナログ伝送方式では雑音として、伝送する映像信号の信
号対雑音比を支配する。Such fluctuations in the rise or fall times of pulse signals (usually called ``jitter'') are noise in pulsed analog transmission systems and dominate the signal-to-noise ratio of the transmitted video signal.
このため、シングルモードファイバ12の接続に(よ
融着または反射減衰量の大きい斜めコネクタ等を用いて
ファイバを無反射型とし さらに受光素子14との結合
に斜めコネクタ13を用いることにより、反射戻り光を
防止する。パルス化アナログ方式でよ アナログ方式に
比べて伝送系の非直線歪の影響を受は難いため、反射戻
り光対策として高価なアイソレータは不要であり、無反
射型ファイバの受信端に斜めコネクタを用いることで実
用上十分な特性が得られる。Therefore, when connecting the single mode fiber 12,
By making the fiber non-reflective by using fusion bonding or by using a diagonal connector with a large return loss, and by using the diagonal connector 13 for coupling with the light-receiving element 14, reflected return light is prevented. The pulsed analog method is less susceptible to the effects of non-linear distortion in the transmission system than the analog method, so there is no need for an expensive isolator as a countermeasure against reflected return light, and a diagonal connector is used at the receiving end of the non-reflective fiber. This provides practically sufficient characteristics.
その結果、受信端では光パルス信号は信号63のように
ジッタの極めて小さい波形となる。As a result, at the receiving end, the optical pulse signal has a waveform with extremely small jitter, such as signal 63.
光パルス信号63(よ 受光素子14と光/電気変換部
15で再生パルス信号64に変換され さらにPFM復
調部21でもとの映像信号(出力信号)53が復調され
る。すなわち、反射によるジッタを防止することにより
、パルス化アナログ方式で高品質な映像信号を伝送する
ことが出来る。The optical pulse signal 63 is converted into a reproduced pulse signal 64 by the light receiving element 14 and the optical/electrical converter 15, and then the original video signal (output signal) 53 is demodulated by the PFM demodulator 21. That is, the jitter due to reflection is By preventing this, high-quality video signals can be transmitted using a pulsed analog method.
また 他の実施例として第3図にコンポーネント映像信
号を1つのパルス列に多重するPFWM方式の変調部6
0を、第4図にその要部波形図を示す。As another example, FIG. 3 shows a PFWM modulation unit 6 that multiplexes component video signals into one pulse train.
FIG. 4 shows a waveform diagram of the main part of the waveform.
PFWM方式で(よ 輝度信号と2つの色差信号からな
るコンポーネント映像信号のうち、輝度信号はパルス周
波数変調(PFM)を行しく そのPFM信号のパルス
幅を2つの色差信号で交互にパルス幅変調(PWM)し
て、 1つのパルス列にコンポーネント信号を多重して
伝送する。In the PFWM method (of the component video signal consisting of a luminance signal and two color difference signals, the luminance signal is subjected to pulse frequency modulation (PFM)), and the pulse width of the PFM signal is alternately pulse width modulated ( PWM) to multiplex component signals into one pulse train and transmit it.
ま咀 PFWM変調器60ば コンポーネント映像信号
Y、Pb、Prをそれぞれ変調し さらに多重して1つ
のPFWM信号70を出力する。半導体レーザ駆動部1
0で(よ PFWM信号70を入力して半導体レーザ1
1を駆動部 光パルス信号71を出力する。The PFWM modulator 60 modulates the component video signals Y, Pb, and Pr, respectively, and multiplexes them to output one PFWM signal 70. Semiconductor laser drive unit 1
0 (Yo) Input the PFWM signal 70 and turn on the semiconductor laser 1.
1 is a drive unit that outputs an optical pulse signal 71;
光パルス信号71で(よ パルスの立ち上がりと立ち下
がりの両方を利用してコンポーネント映像信号を伝送す
る。このた八 反射により生ずるジッタ(よ 伝送する
コンポーネント映像信号の信号対雑音比を支配するだけ
でなく、ジッタによる波形歪が各コンポーネント映像信
号の直線性やコンポーネント映像信号間の漏洩(クロス
ト−り)特性を劣化させる。したがって、 PFWM方
式において、伝送路を無反射型のシングルモードファイ
バと斜めコネクタで構成することによる反射戻り光対策
(よ 伝送品質の改善に極めて有効である。The optical pulse signal 71 uses both the rising and falling edges of the pulse to transmit the component video signal. The waveform distortion caused by jitter deteriorates the linearity of each component video signal and the leakage (crosstalk) characteristics between component video signals.Therefore, in the PFWM method, the transmission path is constructed using a non-reflection single mode fiber and a diagonal connector. This is extremely effective in improving transmission quality as a countermeasure against reflected return light.
発明の効果
以上述べてきたよう艮 本発明によればL Dで変調し
たパルス化アナログ信号を、受信端を斜めコネクタとし
た無反射型のシングルモードファイバで伝送することに
より、高価なアイソレータを用いることなく高品質な映
像信号を伝送することができ、実用上極めて有用な映像
信号光伝送方式を提供することが出来る。Effects of the Invention As described above, according to the present invention, an expensive isolator is used by transmitting a pulsed analog signal modulated by an LD through a non-reflection type single mode fiber with a diagonal connector at the receiving end. Therefore, it is possible to provide a video signal optical transmission system that is extremely useful in practice and can transmit high-quality video signals without any interference.
第1図は本発明の映像信号光伝送方式に用いる回路の一
実施例のブロックは 第2図は同回路の要部波形型 第
3図はPFWM伝送方式に用いる回路の一実施例のブロ
ック+21. 第4図は同回路の要部波形医 第5図
はアナログ方式に用いる回路のブロック1恩 第6図は
同回路の要部波形図である。
0・・・・・・半導体レーザ駆動部、
■・・・・・・半導体レーザ、
2・・・・・・無反則型シングルモードファイバλ3・
・・・・・斜めコネクタ
4・・・・・・受光素子、
5・・・・・・光/電気変換部\
21・・・・・・PFM復調部
20・・・・・・))FM変調部、
40・・・・・・PFWM変調部θ
代理人の氏名 弁理士 粟野重孝 はか1名もう
図
第
しし
図
図
にθFigure 1 shows the blocks of an embodiment of the circuit used in the video signal optical transmission system of the present invention. Figure 2 shows the main waveforms of the circuit. Figure 3 shows the blocks +21 of an embodiment of the circuit used in the PFWM transmission system. .. Figure 4 shows waveforms of the main parts of the same circuit. Figure 5 shows block 1 of the circuit used in the analog system. Figure 6 shows waveforms of the main parts of the circuit. 0... Semiconductor laser drive unit, ■... Semiconductor laser, 2... Non-fouling single mode fiber λ3.
...Diagonal connector 4 ... Light receiving element, 5 ... Optical/electrical converter \ 21 ... PFM demodulator 20 ...)) FM Modulation section, 40... PFWM modulation section θ Name of agent Patent attorney Shigetaka Awano There is already one person in the figure and the figure is θ
Claims (2)
導体レーザを用いて光パルス信号に変換し、前記光パル
ス信号を無反射型のシングルモードファイバで伝送した
後、斜めコネクタを用いて受光素子に入力し、受光素子
で前記光パルス信号をパルス化アナログ信号に変換して
元の映像信号を復調することを特徴とする映像信号光伝
送方式。(1) Convert a pulsed analog signal modulated by a video signal into an optical pulse signal using a semiconductor laser, transmit the optical pulse signal through a non-reflective single mode fiber, and then connect it to a light receiving element using a diagonal connector. 1. A video signal optical transmission system characterized in that the optical pulse signal is input to a light receiving element, and a light receiving element converts the optical pulse signal into a pulsed analog signal to demodulate the original video signal.
度信号と2つの色差信号から成るコンポーネント映像信
号を、輝度信号はパルス周波数変調(PFM)を行い、
このパルス周波数変調信号のパルス幅を、前記2つの色
差信号で交互にパルス幅変調して、前記コンポーネント
映像信号を1つのパルス列信号とし、このパルス列信号
を半導体レーザを用いて光パルス信号に変換することを
特徴とする映像信号光伝送方式。(2) In the signal transmission method according to claim 1, a component video signal consisting of a luminance signal and two color difference signals is subjected to pulse frequency modulation (PFM), and the luminance signal is subjected to pulse frequency modulation (PFM).
The pulse width of this pulse frequency modulation signal is alternately pulse width modulated with the two color difference signals to convert the component video signal into one pulse train signal, and this pulse train signal is converted into an optical pulse signal using a semiconductor laser. A video signal optical transmission system characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2135910A JPH0435185A (en) | 1990-05-25 | 1990-05-25 | Video signal optical transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2135910A JPH0435185A (en) | 1990-05-25 | 1990-05-25 | Video signal optical transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0435185A true JPH0435185A (en) | 1992-02-05 |
Family
ID=15162695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2135910A Pending JPH0435185A (en) | 1990-05-25 | 1990-05-25 | Video signal optical transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0435185A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS639323A (en) * | 1986-06-30 | 1988-01-16 | Matsushita Electric Ind Co Ltd | Optical signal transmission system |
JPH02104194A (en) * | 1988-10-13 | 1990-04-17 | Matsushita Electric Ind Co Ltd | Signal transmission system |
-
1990
- 1990-05-25 JP JP2135910A patent/JPH0435185A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS639323A (en) * | 1986-06-30 | 1988-01-16 | Matsushita Electric Ind Co Ltd | Optical signal transmission system |
JPH02104194A (en) * | 1988-10-13 | 1990-04-17 | Matsushita Electric Ind Co Ltd | Signal transmission system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6556327B1 (en) | Signal converter, optical transmitter and optical fiber transmission system | |
US4677608A (en) | Method of transferring an additional information channel across a transmission medium | |
JPS63500693A (en) | optical transmitter | |
US7176447B2 (en) | Electro-optic delay line frequency discriminator | |
EP0718989B1 (en) | A low-bias heterodyne fiber-optic communication link | |
JPH0435185A (en) | Video signal optical transmission system | |
JPS624899B2 (en) | ||
US7133621B1 (en) | Optical communication with phase encoding and phase shifting | |
JPH0580855B2 (en) | ||
WO2001043318A1 (en) | Optical transmitter/receiver | |
JP2751162B2 (en) | Optical transmission system | |
Cowen | Fiber optic video transmission system employing pulse frequency modulation | |
US7515835B1 (en) | System, method and apparatus for clockless PPM optical communication | |
JPH01221031A (en) | Optical receiver | |
JPH01206737A (en) | Optical space transmission device | |
JPH10126339A (en) | Optical transmission system | |
JP3733423B2 (en) | Optical receiver, optical communication system, optical reception method, and optical communication method | |
JPH0758697A (en) | Coherent optical heterodyne transmission system | |
JPS6212221A (en) | Optical transmission system | |
AU680983B2 (en) | Optical transmission method with PM/AM conversion | |
Ghassemlooy et al. | Optical fibre transmission of a broadband subcarrier multiplexed signal using PTM techniques | |
JPH04160825A (en) | System for monitoring optical repeater | |
JPS5871740A (en) | Monitoring system for optical fiber line | |
DE60201569D1 (en) | Phase controlled optical signal transmission system | |
JPS59160343A (en) | Optical image signal transmitter |