JPH04351701A - Magnetic recording method for magnetic recording medium - Google Patents

Magnetic recording method for magnetic recording medium

Info

Publication number
JPH04351701A
JPH04351701A JP12413191A JP12413191A JPH04351701A JP H04351701 A JPH04351701 A JP H04351701A JP 12413191 A JP12413191 A JP 12413191A JP 12413191 A JP12413191 A JP 12413191A JP H04351701 A JPH04351701 A JP H04351701A
Authority
JP
Japan
Prior art keywords
magnetic
head
recording medium
magnetic recording
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12413191A
Other languages
Japanese (ja)
Inventor
Tatsuro Ishida
達朗 石田
Ryuji Sugita
龍二 杉田
Noriyasu Echigo
紀康 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12413191A priority Critical patent/JPH04351701A/en
Publication of JPH04351701A publication Critical patent/JPH04351701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To furthermore improve the recording and reproducing characteristic of a magnetic recording medium having an oblique anisotropy superior in high- density recording and reproducing characteristic. CONSTITUTION:A ring type magnetic head is used to record information on a magnetic recording medium which has an axis 4 of easy magnetization in the direction inclined to a substrate normal 3 on a nonmagnetic substrate 1. In this case, the saturation magnetic flux density of magnetic materials forming a trailing edge 5 of the ring type magnetic head is made higher than that forming a leading edge 6, and the direction of an arrow 11 of relative movement of the ring type magnetic head to the magnetic recording medium is so set that the inclination direction of a head magnetic field 9 in the vicinity of the trailing edge 5 of the ring type magnetic head approximately coincides with the direction of the axis 4 of easy magnetization of the magnetic recording medium.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高密度記録再生特性に
優れた磁気記録媒体への磁気記録方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for magnetic recording on a magnetic recording medium having excellent high-density recording and reproducing characteristics.

【0002】0002

【従来の技術】現在、磁気記録再生装置は小型化、高密
度化の傾向にあり、従来の面内磁気記録媒体の高密度化
の限界を越えるものとして、磁気記録媒体を形成する基
板の法線に対して傾斜した方向に磁化容易軸を有する斜
め異方性媒体がある。これは、基板面に対して垂直方向
の記録磁化成分を利用することにより、高密度特性を改
善したものである。
[Background Art] At present, magnetic recording and reproducing devices are becoming smaller and more densely packed. There are diagonally anisotropic media that have an axis of easy magnetization in a direction oblique to the line. This improves high-density characteristics by utilizing a recording magnetization component perpendicular to the substrate surface.

【0003】このような磁気記録媒体として、現在Co
−Ni−Oを主成分とする金属薄膜型媒体がVTR用の
磁気テープとして実用化されているほか、従来は面内磁
気異方性を有していた塗布型メタルテープにおいても、
針状磁性微粒子を基板面に対して斜めに配向させる技術
が確立され、斜め異方性媒体としての実用化が図られて
いる。また、次世代の高密度磁気記録媒体として注目さ
れているCo−Cr、Co−Oなどを主成分とする垂直
磁気記録媒体においても、リング型磁気ヘッドとの組合
せによる記録再生では面内方向の記録磁化成分の寄与に
より記録再生特性が顕著に改善されることがわかってお
り、斜方蒸着法による斜め異方性媒体としての開発も進
められている。
Currently, as such a magnetic recording medium, Co
-Metal thin film media mainly composed of -Ni-O have been put into practical use as magnetic tapes for VTRs, and coated metal tapes that previously had in-plane magnetic anisotropy have also been used.
A technique for orienting acicular magnetic fine particles obliquely to the substrate surface has been established, and efforts are being made to put it into practical use as an obliquely anisotropic medium. In addition, even in perpendicular magnetic recording media whose main components are Co-Cr, Co-O, etc., which are attracting attention as next-generation high-density magnetic recording media, recording and reproduction in combination with a ring-type magnetic head can be performed in the in-plane direction. It is known that the recording and reproducing characteristics are significantly improved by the contribution of the recording magnetization component, and development as an obliquely anisotropic medium using an oblique evaporation method is also progressing.

【0004】斜め異方性媒体にリング型磁気ヘッドを用
いて記録する場合、その記録再生特性は磁気記録媒体と
磁気ヘッドの相対移動の向きによって異なる。現在実用
化されているMEテープと呼ばれるCo−Ni−O斜方
蒸着テープでは、磁気記録媒体と磁気ヘッドとの相対移
動の向きを、図3に示すように、リング型磁気ヘッドの
リーディングエッジ6近傍のヘッド磁界9の傾斜方向が
磁気記録媒体の磁化容易軸4方向と略一致する向きとし
て記録が行われている。これとは逆に、磁気ヘッドと磁
気記録媒体の相対移動の向き11を、図4に示すように
、磁気ヘッドのトレイリングエッジ6近傍のヘッド磁界
9の傾斜方向が磁気記録媒体の磁化容易軸4方向と略一
致する向きとして記録を行うと、高密度特性は顕著に劣
化してしまう。
When recording on a diagonally anisotropic medium using a ring-shaped magnetic head, the recording and reproducing characteristics differ depending on the direction of relative movement between the magnetic recording medium and the magnetic head. In the Co-Ni-O oblique vapor deposition tape called ME tape that is currently in practical use, the direction of relative movement between the magnetic recording medium and the magnetic head is set at the leading edge 6 of the ring-shaped magnetic head, as shown in FIG. Recording is performed with the direction of inclination of the nearby head magnetic field 9 substantially coinciding with the direction of the easy axis of magnetization 4 of the magnetic recording medium. On the contrary, the direction 11 of the relative movement between the magnetic head and the magnetic recording medium is such that, as shown in FIG. If recording is performed in a direction that substantially coincides with the four directions, the high-density characteristics will be significantly degraded.

【0005】この理由は以下のように考えられる。図4
に示す配置の場合、磁化容易軸4の傾斜方向がトレイリ
ングエッジ5近傍のヘッド磁界9の傾斜方向にほぼ一致
しているため、磁化反転は主にヘッド磁界9のトレイリ
ング側で決定されるものと考えられる。このため、ある
時点での記録磁化10は、その後のトレイリング側の反
転磁界によって強い減磁作用を受け、短波長記録領域で
の再生出力が低下してしまうのである。一方、図3に示
す配置の場合、磁化容易軸4の傾斜方向はリーディング
エッジ6近傍のヘッド磁界9の傾斜方向にほぼ一致して
おり、トレイリングエッジ5近傍のヘッド磁界9の傾斜
方向は媒体の困難軸方向に近い。つまり、リーディング
エッジ6近傍のヘッド磁界9による記録磁化10は、ト
レイリング側のヘッド磁界9による減磁作用を受けにく
いため、優れた高密度特性を有するものと考えられる。
[0005] The reason for this is thought to be as follows. Figure 4
In the case of the arrangement shown in , since the direction of inclination of the axis of easy magnetization 4 almost coincides with the direction of inclination of the head magnetic field 9 near the trailing edge 5, magnetization reversal is mainly determined on the trailing side of the head magnetic field 9. considered to be a thing. For this reason, the recorded magnetization 10 at a certain point in time is subjected to a strong demagnetizing effect by the subsequent reversal magnetic field on the trailing side, and the reproduction output in the short wavelength recording region is reduced. On the other hand, in the case of the arrangement shown in FIG. 3, the direction of inclination of the axis of easy magnetization 4 almost coincides with the direction of inclination of the head magnetic field 9 near the leading edge 6, and the direction of inclination of the head magnetic field 9 near the trailing edge 5 corresponds to the direction of inclination of the magnetic field 9 near the trailing edge 5. Difficulty close to the axial direction. In other words, the recorded magnetization 10 caused by the head magnetic field 9 near the leading edge 6 is less susceptible to the demagnetizing effect caused by the head magnetic field 9 on the trailing side, and is therefore considered to have excellent high-density characteristics.

【0006】なお、図3および図4において、1は非磁
性基板、2は磁性層、3は基板法線、8は金属磁性膜で
、金属磁性膜8はヘッドギャップを境にリーディング側
およびトレイリング側の両方に形成されている。
In FIGS. 3 and 4, 1 is a nonmagnetic substrate, 2 is a magnetic layer, 3 is a normal line to the substrate, and 8 is a metal magnetic film. Formed on both ring sides.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、長波長
記録領域においては、図4に示す構成による記録再生に
おいて、図3に示す構成によるものと同等以上の再生出
力が得られる。これは、長波長記録になるほど、記録磁
化モードが面内記録に近づくためであると考えられる。 すなわち、図3に示す構成においても、磁化反転はヘッ
ド磁界9のギャップ中心線7に近い部分で決定され、リ
ーディング側のヘッド磁界9による記録磁化10の垂直
方向成分は、トレイリング側のヘッド磁界9で相殺され
易い。このように面内記録に近い場合には、図4に示す
構成による記録の方が記録効率が良く、また長波長記録
においては記録減磁作用の影響も少なくなるため、高い
再生出力が得られるものと考えられる。以上のことから
、図3に示す構成による現在の磁気記録方法では、特に
長波長領域において斜め異方性媒体の有する性能を十分
に発揮しきれていない可能性が高い。
However, in the long wavelength recording region, in recording and reproducing with the configuration shown in FIG. 4, a reproduction output equal to or higher than that with the configuration shown in FIG. 3 can be obtained. This is thought to be because the recording magnetization mode approaches longitudinal recording as the wavelength becomes longer. That is, even in the configuration shown in FIG. 3, magnetization reversal is determined at a portion of the head magnetic field 9 close to the gap center line 7, and the vertical component of the recording magnetization 10 due to the head magnetic field 9 on the leading side is determined by the head magnetic field 9 on the trailing side. It is easy to cancel out with 9. In cases similar to in-plane recording, recording with the configuration shown in Figure 4 has better recording efficiency, and in long wavelength recording, the influence of recording demagnetization is reduced, so high reproduction output can be obtained. considered to be a thing. From the above, it is highly likely that the current magnetic recording method with the configuration shown in FIG. 3 is unable to fully demonstrate the performance of the obliquely anisotropic medium, especially in the long wavelength region.

【0008】本発明は上記問題を解決するもので、斜め
異方性媒体の記録再生特性を向上させる磁気記録媒体へ
の磁気記録方法を提供することを目的とするものである
The present invention solves the above-mentioned problems, and aims to provide a method for magnetic recording on a magnetic recording medium that improves the recording and reproducing characteristics of an obliquely anisotropic medium.

【0009】[0009]

【課題を解決するための手段】上記問題を解決するため
に本発明の磁気記録媒体への磁気記録方法は、非磁性基
板上に基板法線に対して傾斜した方向に磁化容易軸を有
する磁気記録媒体にリング型磁気ヘッドを用いて記録す
る際、前記リング型磁気ヘッドのトレイリングエッジを
形成する磁性材料の飽和磁束密度がリーディングエッジ
を形成する磁性材料の飽和磁束密度より大きく、かつ前
記磁気記録媒体と前記リング型磁気ヘッドの相対移動の
向きを、前記リング型磁気ヘッドのトレイリングエッジ
近傍のヘッド磁界の傾斜方向が前記磁気記録媒体の磁化
容易軸方向とほぼ一致する向きとするものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the magnetic recording method for a magnetic recording medium of the present invention includes a magnetic recording medium having an easy axis of magnetization on a non-magnetic substrate in a direction inclined with respect to the normal line of the substrate. When recording on a recording medium using a ring-shaped magnetic head, the saturation magnetic flux density of the magnetic material forming the trailing edge of the ring-shaped magnetic head is greater than the saturation magnetic flux density of the magnetic material forming the leading edge, and The direction of relative movement between the recording medium and the ring-shaped magnetic head is such that the direction of inclination of the head magnetic field near the trailing edge of the ring-shaped magnetic head substantially coincides with the direction of the easy axis of magnetization of the magnetic recording medium. be.

【0010】0010

【作用】上記構成により、ヘッド磁界はギャップ中心線
に対して非対称となり、磁化反転を主に決定すると考え
られるトレイリングエッジ近傍のヘッド磁界は、相対的
に垂直方向成分が大きくなる。このため、長波長記録領
域においては、垂直方向の記録磁化成分の寄与により高
い再生出力を得ることが出来る。また、短波長記録領域
においては、さらに記録磁化の垂直方向成分が増すこと
により減磁作用が抑制され、従来の磁気記録方法と比べ
て同等以上の再生出力が得られる。
[Operation] With the above configuration, the head magnetic field becomes asymmetrical with respect to the gap center line, and the head magnetic field near the trailing edge, which is considered to mainly determine magnetization reversal, has a relatively large vertical component. Therefore, in the long wavelength recording region, high reproduction output can be obtained due to the contribution of the recording magnetization component in the perpendicular direction. Furthermore, in the short wavelength recording region, the perpendicular component of the recorded magnetization further increases, thereby suppressing the demagnetizing effect, and it is possible to obtain a reproduction output equal to or higher than that of conventional magnetic recording methods.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。本発明の一実施例を図1に示す。なお、従来と同部
材には同じ符号を付し、その説明は省略する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. An embodiment of the present invention is shown in FIG. Note that the same members as those in the prior art are given the same reference numerals, and their explanations will be omitted.

【0012】図1に示すように、リング型磁気ヘッド、
例えばフェライトヘッドのギャップ部に高飽和磁束密度
を有する金属磁性膜8を形成したメタルインギャップタ
イプの磁気ヘッド(以下、MIGヘッドと略する)にお
いて、金属磁性膜8をトレイリング側のみに形成してい
る。つまり、通常、金属磁性膜8はヘッドギャップを境
にリーディング側、トレイリング側の両方に形成され(
以下、両方に金属磁性膜8が形成されたものを両MIG
ヘッドと略する)、このような両MIGヘッドでは、ギ
ャップ中心線7に対して線対称なヘッド磁界が得られる
が、この実施例においては金属磁性膜8をトレイリング
側のみに形成する(以下、これを片MIGヘッドと称す
る)ことにより、トレイリング側のフェライトの飽和磁
束密度がリーディング側のフェライトの飽和磁束密度よ
り大きいリング型磁気ヘッドを得ている。
As shown in FIG. 1, a ring-type magnetic head,
For example, in a metal-in-gap type magnetic head (hereinafter referred to as an MIG head) in which a metal magnetic film 8 having a high saturation magnetic flux density is formed in the gap portion of a ferrite head, the metal magnetic film 8 is formed only on the trailing side. ing. In other words, the metal magnetic film 8 is usually formed on both the leading side and the trailing side with the head gap as the boundary (
Hereinafter, both MIGs with metal magnetic films 8 formed on both sides will be described.
In both of these MIG heads, a head magnetic field that is axisymmetric with respect to the gap center line 7 can be obtained, but in this embodiment, the metal magnetic film 8 is formed only on the trailing side (hereinafter referred to as head). , this is referred to as a single MIG head), thereby obtaining a ring-shaped magnetic head in which the saturation magnetic flux density of the ferrite on the trailing side is greater than the saturation magnetic flux density of the ferrite on the leading side.

【0013】磁気記録媒体としては、既に実用化されて
いるMEテープや針状磁性微粒子を基板面に対して斜め
に配向させた塗布型のメタルテープの他、Co−Cr、
Co−Oを主成分とする斜方蒸着膜、あるいはこれらの
膜を組み合わせて積層構造としたものなど、基板法線3
に対して傾斜した方向に磁化容易軸4を有する磁気記録
媒体であれば、本発明の効果が顕著に得られる。また必
要に応じて、非磁性基板1と磁性層2との間に下地層を
設けたり、複数層よりなる磁性層2の間に中間層を設け
た場合においても、本発明の方法は有効である。
As magnetic recording media, in addition to ME tape, which has already been put into practical use, and coated metal tape in which acicular magnetic fine particles are oriented obliquely to the substrate surface, Co--Cr,
Substrate normal 3
The effects of the present invention can be obtained significantly if the magnetic recording medium has the axis of easy magnetization 4 in a direction inclined to the magnetic recording medium. Furthermore, the method of the present invention is effective even when an underlayer is provided between the non-magnetic substrate 1 and the magnetic layer 2, or an intermediate layer is provided between the magnetic layers 2 consisting of multiple layers, if necessary. be.

【0014】以下に、本発明の一実施例として、金属磁
性膜8としてセンダスト膜を有するMIGヘッドにより
Co−O斜方蒸着テープに記録再生を行った結果につい
て、従来例と比較して述べる。
Below, as an embodiment of the present invention, the results of recording and reproducing on a Co--O obliquely deposited tape using an MIG head having a sendust film as the metal magnetic film 8 will be described in comparison with a conventional example.

【0015】(実施例1)上記構成(図1に示す構成)
により、センダスト片MIGヘッドによるCo−O斜方
蒸着テープの記録密度特性を測定した。センダスト片M
IGヘッドは、ギャップ長を0.22μm、トラック幅
を15μmとした。このヘッドのリーディングエッジ6
を形成するフェライトの飽和磁束密度は5000Gau
ss、トレイリングエッジ5を形成するセンダスト膜の
飽和磁束密度は11000Gaussである。Co−O
斜方蒸着テープは、厚さ10μmの高分子基板1上に反
応蒸着によりCo−O膜(磁性層2)を形成したもので
ある。Co−O膜の飽和磁化は620emu/cc、膜
厚は200nmである。なお、比較例1として、センダ
スト片MIGヘッドの媒体に対する相対移動の向きを逆
転した図2に示す構成によっても測定を行った。
(Example 1) The above configuration (configuration shown in FIG. 1)
The recording density characteristics of the Co--O obliquely evaporated tape were measured using a Sendust piece MIG head. Sendust piece M
The IG head had a gap length of 0.22 μm and a track width of 15 μm. Leading edge 6 of this head
The saturation magnetic flux density of the ferrite that forms is 5000 Gau
ss, the saturation magnetic flux density of the sendust film forming the trailing edge 5 is 11000 Gauss. Co-O
The oblique vapor deposition tape has a Co--O film (magnetic layer 2) formed on a polymer substrate 1 with a thickness of 10 μm by reactive vapor deposition. The Co-O film has a saturation magnetization of 620 emu/cc and a film thickness of 200 nm. As Comparative Example 1, measurements were also conducted using the configuration shown in FIG. 2 in which the direction of relative movement of the sendust piece MIG head with respect to the medium was reversed.

【0016】また従来例として、同じCo−O斜方蒸着
テープの記録密度特性を、センダスト両MIGヘッドを
用いて図3に示す構成において測定し、上記実施例1お
よび比較例1と比較した。このセンダスト両MIGヘッ
ドのギャップ長、トラック幅、巻線数、およびフェライ
トとセンダストの飽和磁束密度は、すべて上記のセンダ
スト片MIGヘッドと同じである。さらに、比較例2と
して、従来例においてセンダスト両MIGヘッドの媒体
に対する相対移動の向きを逆転した図4に示す構成のも
のについても測定を行った。
As a conventional example, the recording density characteristics of the same Co--O obliquely evaporated tape were measured using a Sendust dual MIG head with the configuration shown in FIG. 3, and compared with Example 1 and Comparative Example 1 described above. The gap length, track width, number of windings, and saturation magnetic flux densities of the ferrite and Sendust of this Sendust MIG head are all the same as the Sendust single MIG head described above. Furthermore, as Comparative Example 2, measurements were also performed on a configuration shown in FIG. 4 in which the relative movement directions of both Sendust MIG heads with respect to the medium were reversed in the conventional example.

【0017】測定結果を図5に示す。上記実施例1によ
る再生出力(実線で示す)は、特に長波長記録領域で従
来例による再生出力(破線で示す)よりも顕著に改善さ
れていることがわかる。ここで、上記実施例1の構成に
よる再生出力が長波長領域で比較例1よりも高いのは、
比較例2の長波長領域の再生出力が従来例よりも高い現
象と同様の理由によるものと考えられる。しかしながら
、短波長領域では逆に比較例2の出力が従来例よりも顕
著に減少しているのとは異なり、上記実施例1の構成に
よる再生出力は比較例1よりもわずかに低くなっている
に過ぎない。これは、短波長記録領域においては、さら
に記録磁化の垂直方向成分が増すことにより減磁作用が
抑制されることによるところが大きいと考えられる。 従って、比較例1においても従来例に対する優位性があ
ることは明かであるが、実用帯域におけるS/Nを考慮
すれば、実施例1の構成が最も優れている。
The measurement results are shown in FIG. It can be seen that the reproduction output according to the first embodiment (indicated by the solid line) is significantly improved over the reproduction output according to the conventional example (indicated by the broken line), especially in the long wavelength recording region. Here, the reason why the reproduction output according to the configuration of Example 1 is higher than that of Comparative Example 1 in the long wavelength region is because
This is thought to be due to the same reason as the phenomenon in which the reproduction output in the long wavelength region of Comparative Example 2 is higher than that of the conventional example. However, in the short wavelength region, the output of Comparative Example 2 is significantly lower than that of the conventional example, whereas the reproduction output of the configuration of Example 1 is slightly lower than that of Comparative Example 1. It's nothing more than that. This is thought to be largely due to the fact that in the short wavelength recording region, the perpendicular component of recorded magnetization further increases, thereby suppressing the demagnetizing effect. Therefore, it is clear that Comparative Example 1 also has superiority over the conventional example, but when considering the S/N in the practical band, the configuration of Example 1 is the most superior.

【0018】(実施例2)図5に示す測定結果から、上
記実施例1の構成において磁気ヘッドのギャップ長をさ
らに小さくすることにより、低域出力を従来例と同等程
度まで低下させ、さらに高記録密度領域における再生出
力を改善できる可能性が高いことが推測される。そこで
ギャップ長を0.18μmまで小さくしたしたセンダス
トヘッドを用いて実施例1と同様の測定を行い、その記
録密度特性を上記実施例1における従来例(ギャップ長
が0.22μmのセンダスト両MIGヘッドによる測定
データ)と比較した。ヘッドのギャップ長を変えた以外
、磁気ヘッド、磁気記録媒体の諸元および測定条件は実
施例1と同じである。
(Example 2) From the measurement results shown in FIG. 5, by further reducing the gap length of the magnetic head in the configuration of Example 1, the low-frequency output was reduced to the same level as the conventional example, and the low-frequency output was further reduced. It is presumed that there is a high possibility that the reproduction output in the recording density area can be improved. Therefore, the same measurements as in Example 1 were carried out using a Sendust head with a gap length of 0.18 μm, and the recording density characteristics were compared with the conventional example of Example 1 (Sendust MIG head with a gap length of 0.22 μm). (measured data). The specifications and measurement conditions of the magnetic head and magnetic recording medium were the same as in Example 1, except that the gap length of the head was changed.

【0019】測定結果を図6に示す。ギャップ長を小さ
くすることにより、長波長記録領域における従来例に対
する優位性は実施例1よりも小さくなっている。一方で
短波長記録領域においては、ギャップロスの減少により
、実施例1では見られなかった従来例に対する顕著な優
位性が確認された。すなわち、低域出力が既に充分であ
る磁気記録系では、本発明の磁気記録方法においてギャ
ップ長を小さくすることによって高密度特性を顕著に改
善することができるのである。
The measurement results are shown in FIG. By reducing the gap length, the superiority over the conventional example in the long wavelength recording region is smaller than in Example 1. On the other hand, in the short wavelength recording region, significant superiority over the conventional example, which was not observed in Example 1, was confirmed due to the reduction in gap loss. That is, in a magnetic recording system that already has sufficient low-frequency output, the high-density characteristics can be significantly improved by reducing the gap length in the magnetic recording method of the present invention.

【0020】以上は、自己録再による測定結果であるが
、再生ヘッドとして他のヘッドを用い、録再分離による
測定を行っても、上記実験例と同様の効果が確認できた
。また、MEテープ、Co−Cr斜方蒸着テープなど、
他の斜め異方性媒体に対しても、上記実験例と同様の効
果が十分に得られた。
The above are the measurement results obtained by self-recording and reproducing. However, even when another head was used as the reproducing head and the recording and reproducing separation was performed, the same effect as in the above experimental example was confirmed. In addition, ME tape, Co-Cr oblique vapor deposition tape, etc.
The same effects as in the above experimental example were sufficiently obtained for other diagonally anisotropic media.

【0021】[0021]

【発明の効果】以上のように本発明によれば、非磁性基
板上に基板法線に対して傾斜した方向に磁化容易軸を有
する磁気記録媒体にリング型磁気ヘッドを用いて記録す
る際、前記リング型磁気ヘッドのトレイリングエッジを
形成する磁性材料の飽和磁束密度がリーディングエッジ
を形成する磁性材料の飽和磁束密度より大きく、かつ前
記磁気記録媒体に対する前記リング型磁気ヘッドの相対
移動の向きを、前記リング型磁気ヘッドのトレイリング
エッジ近傍のヘッド磁界の傾斜方向が前記磁気記録媒体
の磁化容易軸方向とほぼ一致する向きとすることにより
、基板法線に対して傾斜した方向に磁化容易軸を有する
斜め異方性媒体の性能を充分に発揮させ、その優れた高
密度記録再生特性をさらに改善することができる。
As described above, according to the present invention, when recording using a ring-shaped magnetic head on a magnetic recording medium having an axis of easy magnetization on a non-magnetic substrate in a direction inclined with respect to the normal line of the substrate, The saturation magnetic flux density of the magnetic material forming the trailing edge of the ring-shaped magnetic head is greater than the saturation magnetic flux density of the magnetic material forming the leading edge, and the direction of relative movement of the ring-shaped magnetic head with respect to the magnetic recording medium is , the direction of inclination of the head magnetic field in the vicinity of the trailing edge of the ring-shaped magnetic head is oriented almost in the same direction as the direction of the easy axis of magnetization of the magnetic recording medium, so that the axis of easy magnetization is set in a direction inclined with respect to the normal line of the substrate. It is possible to fully demonstrate the performance of the obliquely anisotropic medium having the following characteristics, and further improve its excellent high-density recording and reproducing characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例に係る磁気記録媒体への磁気
記録方法の構成を示す概略図である。
FIG. 1 is a schematic diagram showing the configuration of a magnetic recording method for a magnetic recording medium according to an embodiment of the present invention.

【図2】磁気記録媒体への磁気記録方法の比較例1の構
成を示す概略図である。
FIG. 2 is a schematic diagram showing the configuration of Comparative Example 1 of a magnetic recording method for a magnetic recording medium.

【図3】従来の磁気記録媒体への磁気記録方法の構成の
一例を示す概略図である。
FIG. 3 is a schematic diagram showing an example of the configuration of a conventional magnetic recording method for a magnetic recording medium.

【図4】磁気記録媒体への磁気記録方法の比較例2の構
成を示す概略図である。
FIG. 4 is a schematic diagram showing the configuration of Comparative Example 2 of a magnetic recording method on a magnetic recording medium.

【図5】実施例1と比較例1,2と従来例との各記録密
度特性を示す図である。
FIG. 5 is a diagram showing recording density characteristics of Example 1, Comparative Examples 1 and 2, and a conventional example.

【図6】実施例2と従来例との各記録密度特性を示す図
である。
FIG. 6 is a diagram showing recording density characteristics of Example 2 and a conventional example.

【符号の説明】[Explanation of symbols]

1      非磁性基板 2      磁性層 3      基板法線 4      磁化容易軸 5      トレイリングエッジ 6      リーディングエッジ 7      ヘッドギャップの中心線8      
金属磁性膜 9      ヘッド磁界 11    相対移動の向き
1 Nonmagnetic substrate 2 Magnetic layer 3 Substrate normal 4 Axis of easy magnetization 5 Trailing edge 6 Leading edge 7 Center line of head gap 8
Metal magnetic film 9 Head magnetic field 11 Direction of relative movement

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  非磁性基板上に基板法線に対して傾斜
した方向に磁化容易軸を有する磁気記録媒体にリング型
磁気ヘッドを用いて記録する際、前記リング型磁気ヘッ
ドのトレイリングエッジを形成する磁性材料の飽和磁束
密度がリーディングエッジを形成する磁性材料の飽和磁
束密度より大きく、かつ前記磁気記録媒体に対する前記
リング型磁気ヘッドの相対移動の向きを、前記リング型
磁気ヘッドのトレイリングエッジ近傍のヘッド磁界の傾
斜方向が前記磁気記録媒体の磁化容易軸方向とほぼ一致
する向きとする磁気記録媒体への磁気記録方法。
1. When a ring-shaped magnetic head is used to record on a magnetic recording medium having an axis of easy magnetization in a direction inclined to the normal to the substrate on a non-magnetic substrate, the trailing edge of the ring-shaped magnetic head is The trailing edge of the ring-shaped magnetic head is set such that the saturation magnetic flux density of the magnetic material forming the leading edge is greater than the saturation magnetic flux density of the magnetic material forming the leading edge, and the direction of relative movement of the ring-shaped magnetic head with respect to the magnetic recording medium is set at the trailing edge of the ring-shaped magnetic head. A magnetic recording method for a magnetic recording medium in which the direction of inclination of a nearby head magnetic field substantially coincides with the direction of the easy axis of magnetization of the magnetic recording medium.
JP12413191A 1991-05-29 1991-05-29 Magnetic recording method for magnetic recording medium Pending JPH04351701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12413191A JPH04351701A (en) 1991-05-29 1991-05-29 Magnetic recording method for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12413191A JPH04351701A (en) 1991-05-29 1991-05-29 Magnetic recording method for magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH04351701A true JPH04351701A (en) 1992-12-07

Family

ID=14877689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12413191A Pending JPH04351701A (en) 1991-05-29 1991-05-29 Magnetic recording method for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH04351701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0675485A1 (en) * 1994-03-31 1995-10-04 Matsushita Electric Industrial Co., Ltd. Magnetic recording and reproduction apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0675485A1 (en) * 1994-03-31 1995-10-04 Matsushita Electric Industrial Co., Ltd. Magnetic recording and reproduction apparatus
US5901012A (en) * 1994-03-31 1999-05-04 Matsushita Electric Industrial Co., Ltd. Magnetic recording and reproduction apparatus ring-type magnetic head for recording signals to recording medium having oblique axis of easy magnetization
US5912783A (en) * 1994-03-31 1999-06-15 Matsushita Electric Industrial Co., Ltd. Magnetic recording and reproducing apparatus having ring-type magnetic head with metallic soft magnetic films of differing thicknesses

Similar Documents

Publication Publication Date Title
JP2002100007A (en) Perpendicular recording head and perpendicular magnetic recorder
US5875082A (en) Magnetic recording media, magnetic heads and magnetic read-write apparatus using the same
JPH0415521B2 (en)
Iwasaki et al. Gbit/in/sup 2/perpendicular recording using double layer medium and MIG head
Suzuki Perpendicular magnetic recording--Its basics and potential for the future
Ohmori et al. Low noise Co/Pd multilayer perpendicular media with granular seed layer
JP3447164B2 (en) Magnetic recording / reproducing device
JPH04351701A (en) Magnetic recording method for magnetic recording medium
Ishida et al. More than 1 Gb/in/sup 2/recording on obliquely oriented thin film tape
JPH0376524B2 (en)
WO2004019322A1 (en) Lining magnetic film
JP2615144B2 (en) Magnetic recording media
JPH0234083B2 (en)
JP3050421B2 (en) Magnetic recording media
JP3281292B2 (en) Magnetic recording / reproducing device
JP2810457B2 (en) Perpendicular magnetic recording medium and its recording device
JP2795705B2 (en) Flying magnetic head
JPH05101310A (en) Magnetic recording method
JP2558770B2 (en) Magnetic recording media
JPH06203303A (en) Magnetic recording and reproducing method and magnetic head
JPH05101301A (en) Magnetic recorder
YOSHIDA et al. Digital recording characteristics of Co-O thin film with carbon protective layer
JP2003059007A (en) Magnetic head and magnetic recording/reproducing device
JPH0250309A (en) Magnetic head core
JPH04251406A (en) Magnetic recording system