JPH043515B2 - - Google Patents

Info

Publication number
JPH043515B2
JPH043515B2 JP57083904A JP8390482A JPH043515B2 JP H043515 B2 JPH043515 B2 JP H043515B2 JP 57083904 A JP57083904 A JP 57083904A JP 8390482 A JP8390482 A JP 8390482A JP H043515 B2 JPH043515 B2 JP H043515B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
annular
producing
outer portion
batches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57083904A
Other languages
Japanese (ja)
Other versions
JPS5832194A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of JPS5832194A publication Critical patent/JPS5832194A/en
Publication of JPH043515B2 publication Critical patent/JPH043515B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/623Oxide fuels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glanulating (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

【発明の詳細な説明】 本発明は、核燃料要素用ペレツトの製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pellets for nuclear fuel elements.

核燃料は現在ふつうペレツトと呼ばれるセラミ
ツク核物質(たとえば二酸化ウラン、二酸化トリ
ウム、二酸化プルトニウム、またはこれらの混合
物)の小さな正円形円筒として製造されている。
例えば、室温に於てダイス型で粉末セラミツク化
合物をコンパクト化し、得られるコンパクトを高
温で焼結し、ペレツトであるち密な均一セラミツ
クボデーをつくることによつて、これらのペレツ
トはふつう製造される。しかし、ペレツト形で核
燃料から増加した利点を得るためには、ペレツト
を中心部分とこれを囲む外側環状部分とから構成
すべきであり、この両部分の組成は異なるべきで
あることが提案されてきた。このような核燃料ペ
レツトを以下環状層ペレツトと呼ぶことにする。
Nuclear fuel is currently produced as small round cylinders of ceramic nuclear material (eg, uranium dioxide, thorium dioxide, plutonium dioxide, or mixtures thereof) called pellets.
For example, these pellets are commonly produced by compacting a powdered ceramic compound in a die at room temperature and sintering the resulting compact at high temperatures to produce a compact, uniform ceramic body of the pellet. However, in order to obtain increased benefits from nuclear fuel in pellet form, it has been proposed that the pellet should consist of a central part and an outer annular part surrounding it, the composition of which should be different. Ta. Such nuclear fuel pellets will hereinafter be referred to as annular layer pellets.

本発明は、各ペレツトの中心部分と環状部分と
を焼結中一緒に係合する環状層ペレツトの製造法
を提供するものである。
The present invention provides a method of making annular layer pellets in which the central portion and annular portion of each pellet are engaged together during sintering.

本発明に従えば、中心部分とこれを囲む外側環
状部分とから本質的になる環状層核燃料ペレツト
の製造法は、造粒した粉末耐火物をプレスして組
成の互に異なる中心部分と外側環状部分を別々に
形成し、上記部分を一緒に組立て
(assembling)、この集合体をコンパクト化し、
このコンパクトを焼結する工程からなる。
According to the present invention, a method for producing an annular layer nuclear fuel pellet consisting essentially of a central portion and an outer annular portion surrounding the central portion is to press a granulated powder refractory to form a central portion and an outer annular portion having mutually different compositions. forming parts separately, assembling the parts together, and compacting this assembly;
The process consists of sintering this compact.

組成の差異とは、密度および同位元素濃縮
(enrichment)における差異および化学的差異を
含むと考えるべきである。これらの性質の一つ以
上の差異があり得る。
Compositional differences should be considered to include differences in density and isotopic enrichment as well as chemical differences. There may be differences in one or more of these properties.

酸化物と炭化物の両者は核燃料ペレツトで使う
のに適した耐火物と考えられ、本発明で使用でき
る。しかし、本発明で使う耐火物の選択において
は、当該両部分に対し類似の活性の対火粉末を提
供することにより通常の用心をはらうと共に、ま
た (a) 当該両部分は互に化学的に両立
(compatible)でありまた焼結雰囲気と化学的
に両立できるもの(compatible)であること、 (b) 両部分の熱膨張特性が両立できるものである
こと、 (c) 当該どちらの部分も焼結中経験する温度範囲
で容積変化を起す相変化を行なわないこと、 (d) 当該両部分は焼結中同一量でまたほぼ同一速
度で収縮する程度にセラミツクス的に同一であ
ること を理解する必要がある。
Both oxides and carbides are considered suitable refractories for use in nuclear fuel pellets and can be used in the present invention. However, in selecting the refractories for use in this invention, normal precautions are taken by providing both parts with refractory powders of similar activity, and (a) both parts are chemically compatible with each other. (b) the thermal expansion properties of both parts are compatible; (c) both parts are compatible with the sintering atmosphere; (b) the thermal expansion properties of both parts are compatible; (d) understand that both parts are ceramically identical to the extent that they shrink by the same amount and at approximately the same rate during sintering; There is a need.

本発明に於て、前記(a)及び(b)にいう、化学的及
び熱膨張特性において「両立性を有する」とは、
当該両部分が化学的特性及び物理的特性において
実質的に同一であるということを意味する。
In the present invention, "having compatibility" in terms of chemical and thermal expansion properties mentioned in (a) and (b) above means:
It is meant that the two moieties are substantially identical in chemical and physical properties.

また、前記(d)いう、「セラミツク的に同一」と
は、両部分の前駆体が焼結時、同一量でかつ同一
割合で収縮する、2つのセラミツクスのように挙
動するということを意味する。
In addition, the phrase "ceramically identical" in (d) above means that the precursors of both parts shrink by the same amount and at the same rate during sintering, and behave like two ceramics. .

本発明において好ましい耐火物は、二酸化ウラ
ンであり、これに焼結を助け、粒度/成長を増す
ため、または密度を制御する細孔をつくるため他
物質を添加でき、および核特性を与える添加剤、
たとえば二酸化プルトニウムを添加できる。
The preferred refractory in this invention is uranium dioxide, to which other materials may be added to aid sintering, increase grain size/growth or create pores to control density, and additives to provide nuclear properties. ,
For example, plutonium dioxide can be added.

本発明に従い当該部分を一緒に結合した環状層
ペレツトの利点は、当該部分間に明瞭な区分があ
り、互に当該部分の固定した位置があり、燃料ペ
レツトに役立つ空間を完全利用できることであ
る。
The advantage of the annular layer pellet with the parts joined together according to the invention is that there is a clear division between the parts, a fixed position of the parts with respect to each other, and full utilization of the space available for the fuel pellets.

本発明を実施する好ましい例では、3.52%およ
び0.387%濃縮の二酸化ウラン粉末の2バツチを
とる。まづ3.52%濃縮粉末を、この酸化物からつ
くつたペレツトの最終焼結密度を5%だけ下げる
のに十分な一時的細孔形成剤と配合した。一時的
細孔形成剤としては、公知のデキストリン、デン
プン、シユウ酸化合物を同等に使用することがで
きた。0.387%濃縮酸化物には添加しなかつた。
粉末を別々に0.75te/cm2で予備コンパクト化し、
寸法1200ミクロンのふるいを通し造粒した。この
粒状物の両バツチに潤滑剤としてステアリン酸亜
鉛0.2%を添加し、ついでダイス型で1.5te/cm2
プレスして密度4.9〜5.2g/cm3のペレツトの中心
部分と環状部分を形成した。3.52%濃縮物質(外
側部分の前駆体)を外側環状部分に使い、0.382
%濃縮物質を(中心部分の前駆体)を中心に使つ
た。外側環状部分を除去可能な心棒と共にダイス
型でプレスし、プレス後抜いて孔を残した。中心
部分を各外側部分の孔に挿入し、ついで平トツプ
ポンチを使つて4te/cm2の圧力で集合体部分を5.6
〜5.8g/cm3の最終生(green)密度にプレスし
た。この複合コンパクトを1700℃で約5時間焼結
した。こうすると理論の95.2〜95.6%範囲の全体
としての密度を有する凝集ペレツトを得た。環状
部分および中心部分は、後者(中心部分)が約
98.7%および前者(環状部分)が約93.7%)の密
度を有していた。
In a preferred embodiment of the present invention, two batches of uranium dioxide powder are taken, with concentrations of 3.52% and 0.387%. First, the 3.52% concentrated powder was blended with enough temporary pore former to reduce the final sintered density of pellets made from this oxide by 5%. As temporary pore-forming agents, known dextrins, starches, and oxalic acid compounds could equally be used. It was not added to the 0.387% concentrated oxide.
Pre-compact the powder separately at 0.75te/ cm2 ,
It was granulated through a 1200 micron size sieve. 0.2% zinc stearate was added as a lubricant to both batches of the granules, which were then pressed in a die at 1.5 te/cm 2 to form a central and annular portion of pellets with a density of 4.9 to 5.2 g/cm 3 . did. 3.52% concentrated material (precursor for the outer part) was used for the outer annular part, and 0.382
% concentrated material (precursor in the central part) was used mainly. The outer annular portion was pressed in a die with a removable mandrel and removed after pressing, leaving a hole. Insert the center section into the hole in each outer section and then use a flat top punch to punch the aggregate section at 4 te/ cm2 pressure.
Pressed to a final green density of ˜5.8 g/cm 3 . This composite compact was sintered at 1700°C for about 5 hours. This resulted in agglomerated pellets having an overall density in the range of 95.2-95.6% of theory. The annular portion and the central portion are such that the latter (central portion) is approximately
98.7% and the former (annular part) had a density of about 93.7%).

本発明に於て低く濃縮されている中心部分は、
核分裂性が低い。しかし、それは核分裂物質の原
料源となりうる(親燃料性;fertile)。すなわち、
高密度の親燃料性中心部分は、中性子の捕獲が極
限まで増加し、親燃料性物質を核分裂性物質に変
換する。
The central part that is low in concentration in the present invention is
Low fissionability. However, it can be a source of fissile material (fertile). That is,
The dense fuel-philic core increases the capture of neutrons to a maximum, converting the fuel-philic material into fissile material.

また低密度核分裂性外側(環状)部分は、核分
裂性物質(製品)の膨張を調節する。
The low density fissile outer (annular) portion also controls the expansion of the fissile material (product).

このように核燃料ペレツトの低密度の外側で核
分裂性製品の膨張が起るような、複合燃料ペレツ
トの部分を有することは非常に望ましいことであ
る。
It is thus highly desirable to have a portion of the composite fuel pellet where expansion of the fissile product occurs outside of the low density of the nuclear fuel pellet.

組立てた中心部分および外側環状部分をプレス
するために、固定心棒を有するダイス型を使つて
同様に中心孔を有する環状層ペレツトを製造する
ことができる。
To press the assembled center part and outer annular part, a die with a fixed mandrel can be used to produce an annular layer pellet with a central hole as well.

Claims (1)

【特許請求の範囲】 1 造粒した2バツチの核燃料物質の粉末を準備
し、該バツチから中心部分と外側部分の前駆体を
別々に作り、中心部分の前駆体と外側部分の前駆
体を一緒に組立て、この集合体をプレスして複合
コンパクトを形成し、かつ該複合コンパクトを焼
結するという各工程からなる、中心部分とそれを
とり囲む外側環状部分とから本質的になる環状層
各燃料ペレツトの製造法において、 (イ) 当該2バツチの核燃料物質は同位元素の濃縮
度に於てペレツトの外側部分は中心部分より高
くし、かつ化学的特性および熱膨張特性におい
て両立性を有するようにし、 (ロ) 造粒した2バツチの各々を別々にプレスして
前記中心部分および外側部分の前駆体を形成
し、前記中心部分および外側部分の前駆体が焼
結時同一量でかつほぼ同一割合で収縮する程度
にセラミツクスとして実質的に同一にし、 (ハ) 外側部分の最終密度を低下せしめるために外
側部分の前駆体形成用バツチに、一時的細孔形
成剤を添加すること、 を特徴とする、上記環状層核燃料ペレツトの製造
法。 2 2バツチの双方に同一に核燃料物質を使用す
る特許請求の範囲第1項記載の環状層核燃料ペレ
ツトの製造法。 3 2バツチの造粒した核燃料物質が同一寸法の
ふるいを通しふるわれたものである特許請求の範
囲第2項記載の環状層核燃料ペレツトの製造法。 4 添加される一時的細孔形成剤の量が、外側部
分の最終密度を5%まで低下させる量である特許
請求の範囲第1項記載の環状層核燃料ペレツトの
製造法。 5 中心部分および外側部分がそれぞれ二酸化ウ
ランからなる特許請求の範囲第1項乃至第4項の
いずれか1項に記載の環状層核燃料ペレツトの製
造法。 6 二酸化プルトニウムが中心部分および外側部
分の少くとも一方に含まれる特許請求の範囲第1
項乃至第5項のいずれか1項に記載の環状層核燃
料ペレツトの製造法。 7 核特性を与える添加剤含有二酸化ウランを使
用することからなる特許請求の範囲第1項記載の
環状層核燃料ペレツトの製造法。 8 環状−環状層、核燃料ペレツトを形成するた
めに中心部分が環状である特許請求の範囲第1項
乃至第7項のいずれか1項に記載の環状層核燃料
ペレツトの製造法。
[Claims] 1. Prepare two batches of granulated nuclear fuel material powder, prepare precursors for the center portion and outer portion separately from the batches, and combine the precursors for the center portion and the outer portion. an annular layer consisting essentially of a central portion and an outer annular portion surrounding it; pressing the assembly to form a composite compact; and sintering the composite compact. In the method for producing pellets, (a) the two batches of nuclear fuel material are such that the isotope enrichment is higher in the outer part of the pellet than in the central part, and the chemical properties and thermal expansion properties are compatible; (b) Pressing each of the two granulated batches separately to form precursors for the center portion and outer portion, such that the precursors for the center portion and outer portion are in the same amount and in approximately the same proportion during sintering. (c) adding a temporary pore-forming agent to the precursor forming batch of the outer portion to reduce the final density of the outer portion; A method for producing the annular layer nuclear fuel pellets described above. 2. The method for producing annular layer nuclear fuel pellets according to claim 1, wherein the same nuclear fuel material is used in both batches. 3. The method for producing annular layer nuclear fuel pellets according to claim 2, wherein two batches of granulated nuclear fuel material are sieved through sieves of the same size. 4. The method of claim 1, wherein the amount of temporary pore-forming agent added is such that the final density of the outer portion is reduced by up to 5%. 5. The method for producing an annular layer nuclear fuel pellet according to any one of claims 1 to 4, wherein the central portion and the outer portion are each made of uranium dioxide. 6 Claim 1 in which plutonium dioxide is contained in at least one of the central portion and the outer portion
6. A method for producing annular bed nuclear fuel pellets according to any one of items 5 to 5. 7. A method for producing annular bed nuclear fuel pellets according to claim 1, which comprises using uranium dioxide containing additives that impart nuclear properties. 8. Annular - A method for producing an annular layer nuclear fuel pellet according to any one of claims 1 to 7, wherein the central portion is annular to form an annular layer, nuclear fuel pellet.
JP57083904A 1981-05-19 1982-05-18 Method of making pellet for nuclear fuel element Granted JPS5832194A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8115360 1981-05-19
GB8115360 1981-05-19

Publications (2)

Publication Number Publication Date
JPS5832194A JPS5832194A (en) 1983-02-25
JPH043515B2 true JPH043515B2 (en) 1992-01-23

Family

ID=10521911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57083904A Granted JPS5832194A (en) 1981-05-19 1982-05-18 Method of making pellet for nuclear fuel element

Country Status (8)

Country Link
JP (1) JPS5832194A (en)
AU (1) AU548688B2 (en)
BE (1) BE893238A (en)
DE (1) DE3218779A1 (en)
ES (1) ES512301A0 (en)
FR (1) FR2506497B1 (en)
IT (1) IT1157012B (en)
SE (1) SE448328B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8406208D0 (en) * 1984-03-09 1984-05-10 British Nuclear Fuels Plc Fabrication of nuclear fuel pellets
DE19846019C1 (en) * 1998-10-06 2000-04-13 Siemens Ag Fuel tablet with layer structure
DE19912824A1 (en) * 1999-03-22 2000-09-28 Siemens Ag Fuel element used for a nuclear reactor consists of fuel rods filled with pellets of partially splittable material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB831679A (en) * 1957-05-21 1960-03-30 Norton Grinding Wheel Co Ltd Ceramic nuclear fuel element
BE622326A (en) * 1961-09-11
GB1134746A (en) * 1964-12-14 1968-11-27 Atomic Energy Authority Uk Improvements in or relating to the manufacture of moulded bodies
FR1434251A (en) * 1965-02-22 1966-04-08 Commissariat Energie Atomique Improvements in sintered nuclear fuels, in particular uranium dioxide, and their preparation processes
GB1397014A (en) * 1972-04-13 1975-06-11 Atomic Energy Of Australia Fabrication process for nuclear fuel pellets

Also Published As

Publication number Publication date
FR2506497B1 (en) 1985-12-20
IT8267652A0 (en) 1982-05-18
FR2506497A1 (en) 1982-11-26
DE3218779A1 (en) 1982-12-09
AU548688B2 (en) 1986-01-02
SE448328B (en) 1987-02-09
ES8402973A1 (en) 1984-03-01
SE8203044L (en) 1982-11-20
BE893238A (en) 1982-11-18
AU8377882A (en) 1983-11-24
ES512301A0 (en) 1984-03-01
IT1157012B (en) 1987-02-11
JPS5832194A (en) 1983-02-25

Similar Documents

Publication Publication Date Title
JP3291049B2 (en) Zirconia ceramic and method for producing the same
DE3877444T2 (en) METHOD FOR PRODUCING A CERAMIC / METAL HEAT STORAGE MATERIAL AND CORRESPONDING PRODUCT.
US6251310B1 (en) Method of manufacturing a nuclear fuel pellet by recycling an irradiated oxide fuel pellet
DE3210987C2 (en)
EP0087926B1 (en) Burnable neutron absorbers
JPH0244787B2 (en)
DE1286650B (en) Process for the production of dense, relatively non-porous, fissile-laden carbon bodies for nuclear reactors
US3806565A (en) Method of preparing relatively low density oxide fuel for a nuclear reactor
JP2004538475A5 (en)
KR950001789B1 (en) Uo2 pellet fabrication process
GB2098787A (en) Production of pellets for nuclear fuel elements
DE2923729C2 (en)
JPH043515B2 (en)
JPH0380749B2 (en)
US3375306A (en) Method of producing dense,sintered bodies of uo2 or uo2-puo2 mixtures
EP0103456B1 (en) Method of making a burnable neutron absorber body for a nuclear reactor
US3168479A (en) Process for producing high density nuclear fuel particles
KR100521638B1 (en) Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method
US3761546A (en) Method of making uranium dioxide bodies
US3976735A (en) Fabrication of boron articles
US3025137A (en) Production of sintered compacts of beryllia
KR20040047522A (en) Nuclear fuel body including tungsten network and method of manufacturing the same
US3291869A (en) Nuclear fuel
JPH0295298A (en) Manufacture of oxide nuclear fuel sintered body
JP2911866B1 (en) Method for producing nuclear fuel pellets