JPH043511B2 - - Google Patents

Info

Publication number
JPH043511B2
JPH043511B2 JP16931282A JP16931282A JPH043511B2 JP H043511 B2 JPH043511 B2 JP H043511B2 JP 16931282 A JP16931282 A JP 16931282A JP 16931282 A JP16931282 A JP 16931282A JP H043511 B2 JPH043511 B2 JP H043511B2
Authority
JP
Japan
Prior art keywords
doppler sensor
electric field
field strength
vmax
vmin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16931282A
Other languages
Japanese (ja)
Other versions
JPS5957182A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16931282A priority Critical patent/JPS5957182A/en
Publication of JPS5957182A publication Critical patent/JPS5957182A/en
Publication of JPH043511B2 publication Critical patent/JPH043511B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Description

【発明の詳細な説明】 本発明はマイクロ波ドツプラーセンサで検出し
た出力により反射物体の形状を知る方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the shape of a reflective object based on the output detected by a microwave Doppler sensor.

従来、目視不能状態での離隔位置からの物体有
無の検知はできても、物体の外形形状まで識別す
ることは実用的にできないこともあつて、検知物
体が目標とする物体であるかどうかを識別するた
めには、目標物体のみに生ずる特別の条件を見出
して検知するしかないという欠点があつた。
Conventionally, although it has been possible to detect the presence or absence of an object from a remote location when it is impossible to see it visually, it is not practical to identify the external shape of the object, so it has been difficult to determine whether the detected object is the target object or not. The disadvantage is that the only way to identify the target object is to find and detect special conditions that occur only with the target object.

本発明の目的は、静止した被測定物体に向けて
ドツプラセンサよりマイクロ波を放射し、その被
測定物体からの反射波の位相と大きさを求める操
作を、多数の測定点で行い、そこで得られた一連
のデータにフーリエ変換操作を行うことによつ
て、比較的簡単に物体の外形形状を離隔位置から
容易に識別することができる物体形状識別方法を
提供することによつて、前記従来の欠点を除去す
ることにある。
The purpose of the present invention is to emit microwaves from a Doppler sensor toward a stationary object to be measured, and to obtain the phase and magnitude of the reflected waves from the object at a large number of measurement points. By providing an object shape identification method that can relatively easily identify the external shape of an object from a remote position by performing a Fourier transform operation on a series of data, the above-mentioned drawbacks of the conventional method can be solved. The goal is to eliminate the

次に、本発明の一実施例の構成及び作用を原理
とともに図面によつて説明する。
Next, the structure and operation of an embodiment of the present invention will be explained with reference to the drawings together with the principle.

第1図において、形状識別用目標物体1の位置
する直線L1のマイクロ波反射特性をg(x1)と
したとき、直線L1と平行な直線L2に沿つて
cos2の指向特性をもつマイクロ波ドツプラーセン
サ2を移動する。
In Fig. 1, when the microwave reflection characteristic of the straight line L1 on which the shape identification target object 1 is located is g(x1), along the straight line L2 parallel to the straight line L1,
A microwave Doppler sensor 2 having a directional characteristic of cos 2 is moved.

このとき、 t1(x2)を直線L1上の一点(x1)位置に放射
されたマイクロ波の電界強度、 r(x2)を直線L1より反射されてドツプラー
センサ2に入射するマイクロ波の全合成電界強度
とすると、r(x2)は次のように表わされる。
At this time, t1(x2) is the electric field strength of the microwave radiated to a point (x1) on the straight line L1, and r(x2) is the total synthesis of the microwave reflected from the straight line L1 and incident on the Doppler sensor 2. In terms of electric field strength, r(x2) is expressed as follows.

ここで −w〜+wを放射波の有効反射区間 αをドツプラーセンサ2に取付けられたホーン
アンテナ3のアンテナ定数 λをマイクロ波の波長 とする。
Here, −w to +w is the effective reflection interval of the radiated wave, α is the antenna constant of the horn antenna 3 attached to the Doppler sensor 2, and λ is the wavelength of the microwave.

次に、ここでt(x2)を、第1図の直線L2の
位置x2に置かれたドツプラセンサ2に組付けら
れたアンテナ3より放射される電界の中心軸上で
の強度、即ち、放射電界強度(x2に関係なく一
定)とすると、t(x2)とt1(x2)との関係は と表わされる。従つて(1)(2)より ただしθ=tan-1x2−x1/D (参考文献、小沢 孝夫著「電気回路」P32〜
P34、昭晃堂、昭和55.5.30初版) 次に、a(x1)をホーンアンテナ3のアンテナ
特性(ホーンアンテナ3の放射角により決まる定
数)とし、 と定めると、 r(x2)=g(x1)*a(x1) と表わされる。
Next, let t(x2) be the intensity on the central axis of the electric field radiated from the antenna 3 attached to the Doppler sensor 2 placed at the position x2 of the straight line L2 in FIG. Assuming the strength (constant regardless of x2), the relationship between t(x2) and t1(x2) is It is expressed as Therefore, from (1) and (2) However, θ=tan -1 x2−x1/D (References, “Electrical Circuits” by Takao Ozawa, P32~
P34, Shokodo, first edition on May 30, 1982) Next, let a(x1) be the antenna characteristic of the horn antenna 3 (a constant determined by the radiation angle of the horn antenna 3), Then, it is expressed as r(x2)=g(x1)*a(x1).

そこで、r(x2)、g(x1)、a(x1)のフーリエ
変換をR(ξ)、G(ξ)、A(ξ)で表わせば、合
成定理より、 R(ξ)=F〔g(x1)*a(x1)〕 =G(ξ)・A(ξ) 従つて、 g(x1)=F-1〔G(ξ)〕=F-1〔R(ξ)
/A(ξ)〕=F-1〔F〔r(x2)〕/F〔a(x1)〕
〕……(5) ここで最右項は、反射波データr(x2)のフー
リエ変換F〔r(x2)〕とアンテナ特性a(x1)の
フーリエ変換F〔a(x1)〕との比の逆フーリエ変
換が反射特性g(x1)となることを示していま
す。
Therefore, if the Fourier transforms of r(x2), g(x1), and a(x1) are expressed as R(ξ), G(ξ), and A(ξ), then from the composition theorem, R(ξ)=F[g (x1) * a (x1)] = G (ξ)・A (ξ) Therefore, g (x1) = F -1 [G (ξ)] = F -1 [R (ξ)
/A(ξ)]=F -1 [F[r(x2)]/F[a(x1)]
]...(5) Here, the rightmost term is the ratio between the Fourier transform F[r(x2)] of the reflected wave data r(x2) and the Fourier transform F[a(x1)] of the antenna characteristic a(x1). It shows that the inverse Fourier transform of is the reflection characteristic g(x1).

このことは、第4図のX線上の0からX2にい
たるΔxづつ離れた多数の測定点x2において、そ
れぞれの反射波データr(x2)を求め、そのフー
リエ変換F〔r(x2)〕を求めることが必要なこと
を示しております。また、求められる反射特性g
(x1)はx1の関数となり、ある範囲のx1に対応す
る複数のデータが得られる。即ち、第6図に示す
ように、Z軸上の測定値V(x2)の最大値Vmax
と最小値Vminから(6)式を用いてr(x2)を求め、
この操作により、第7図に示すように、X軸上0
からx2に至るΔx離れた点x20、x21、x22…につ
いてr(x20)、r(x21)、r(X22)…を求め、更
に、第8図に示すように、r(x2)={r(x20)、
r(x21)、r(X22)…}とアンテナ特性a(x1)
より(5)式を用いてg(x1)を求めることができ
る。
This means that each reflected wave data r(x2) is obtained at a large number of measurement points x2 separated by Δx from 0 to X2 on the X-ray in Figure 4, and its Fourier transform F[r(x2)] is calculated. It shows what you need to ask for. Also, the required reflection property g
(x1) is a function of x1, and multiple data corresponding to a certain range of x1 can be obtained. That is, as shown in FIG. 6, the maximum value Vmax of the measured value V(x2) on the Z axis
and the minimum value Vmin, use equation (6) to find r(x2),
By this operation, as shown in FIG.
Find r(x20), r(x21), r(X22)... for points x20, x21, x22... separated by Δx from (x20),
r(x21), r(X22)...} and antenna characteristics a(x1)
From this, g(x1) can be found using equation (5).

その結果、(5)式より、ドツプラセンサ2入射全
合成電界強度r(x2)を測定することによりアン
テナ特性a(x1)を使つて(t(x2)=1として計
算可能)g(x1)を求めることができる。
As a result, from equation (5), by measuring the total combined electric field strength r(x2) incident on the Doppler sensor 2, g(x1) can be calculated using the antenna characteristic a(x1) (can be calculated as t(x2) = 1). You can ask for it.

従つて、反射特性g(x1)から目標物体1の形
状を知ることができる。
Therefore, the shape of the target object 1 can be known from the reflection characteristic g(x1).

そこで、ドツプラーセンサ2入射全合成電界強
度r(x2)は次のようにして測定される(参考文
献、小沢 孝夫著「電気回路」P97、P108、昭
晃堂、昭和55.5.30初版)。
Therefore, the total combined electric field strength r(x2) incident on the Doppler sensor 2 is measured as follows (Reference, Takao Ozawa, "Electric Circuit", P97, P108, Shokodo, first edition on May 30, 1982).

ドツプラーセンサ2の検出信号V(x2)は入射
全合成電界r(x2)と放射電界t(x2)を用いて
次のように表わせる。
The detection signal V(x2) of the Doppler sensor 2 can be expressed as follows using the total incident electric field r(x2) and the radiated electric field t(x2).

V(x2)=K|t(x2)+r(x2)|2 (Kは定数)、このt(x2)とr(x2)の関係ベ
クトル図を第2図に示す。
V(x2)=K|t(x2)+r(x2)| 2 (K is a constant), and the relationship vector diagram between t(x2) and r(x2) is shown in FIG.

ここで、目標物体1と検出点との距離Dについ
てはD≫λ/4を満足するとき、Dが±λ/4の範囲で 変化しても、|r(x2)|の変化は実験結果では数
%以下にとどまる。しかるにθはほぼ一π〜十π
の範囲で変化する。θ=0のときV(x2)は極大
値Vmaxをとり、θ=±πのとき、V(x2)は極
小値Vminをとる。
Here, when the distance D between the target object 1 and the detection point satisfies D≫λ/4, even if D changes within the range of ±λ/4, the change in |r(x2)| However, it remains below a few percent. However, θ is approximately 1π to 11π
Varies within the range of . When θ=0, V(x2) takes the maximum value Vmax, and when θ=±π, V(x2) takes the minimum value Vmin.

このとき Vmax=K|t(x2)+r(x2)|2 =K{|t(x2)|2+2|t(x2)| ・|r(x2)|+|r(x2)|2} Vmim=K|t(x2)−r(x2)|2 =K{|t(x2)|2−2|t(x2)| ・|r(x2)|+|r(x2)|2} ∴Vmax−Vmin=4K|t(x2)|・|r(x2)
| ∴|r(x2)|=Vmax−Vmin/4K|t(x2)|……(6
) となり、ドツプラーセンサ2入射全合成電界強度
r(x2)を求めることができる。
In this case, Vmax=K|t(x2)+r(x2)| 2 = K{|t(x2)| 2 +2|t(x2)| ・|r(x2)|+|r(x2)| 2 } Vmim = K | t (x2) - r ( x2 ) | 2 = K | −Vmin=4K|t(x2)|・|r(x2)
| ∴|r(x2)|=Vmax−Vmin/4K|t(x2)|……(6
), and the total combined electric field strength r(x2) incident on the Doppler sensor 2 can be obtained.

このことから、目標物体1の形状の識別は第3
図〜第5図のようにして行われる。
From this, the identification of the shape of the target object 1 is the third step.
This is carried out as shown in FIGS.

即ち、ドツプラーセンサ2から電磁波、例えば
マイクロ波を放射させることによる目標物体1か
らの反射波と前記放射波との合成電界強度に対応
したドツプラーセンサ2からの出力は第3図に示
すように、バツフアアンプ4とA/Dコンバータ
5を経てマイクロコンピユータ6に入力されると
ともに、このマイクロ波放射状態においてドツプ
ラーセンサ2を第4図X軸方向0〜X2上Δx×n
の各位置(x2)に移動させ、この各位置(x2)
においてドツプラーセンサ2を目標物体1と対向
するZ軸方向前後に変位させて前記各位置(x2)
における電界強度の最大値Vmaxと最小値Vmin
を測定し、この電界強度Vmax、Vminと放射電
界強度t(x2)と定数Kとからドツプラーセンサ
2に入射される全合成電界強度|r(x2)|=
Vmax−Vmin/4K・|t(x2)|を求め、更に、該全合成
電界強 度r(x2)とドツプラーセンサ2のアンテナ特性
a(x1)とから目標物体1のマイクロ波反射特性
g(x1)=F-1〔F〔r(x2)〕/F〔a(x1)〕〕を
求めるとともに、 このマイクロ波反射特性g(x1)をドツプラーセ
ンサ2をX軸、Y軸線上のΔx、Δy移動させた各
測定位置に従つてプロツトすることによつて目標
物体1の形状を求めることができる。
That is, the output from the Doppler sensor 2 corresponding to the combined electric field strength of the reflected wave from the target object 1 and the radiated wave caused by emitting electromagnetic waves, such as microwaves, from the Doppler sensor 2 is as shown in FIG. is inputted to the microcomputer 6 via the buffer amplifier 4 and the A/D converter 5, and in this microwave radiation state, the Doppler sensor 2 is input to the
to each position (x2), and this each position (x2)
, the Doppler sensor 2 is displaced back and forth in the Z-axis direction facing the target object 1 to obtain each of the above positions (x2).
Maximum value Vmax and minimum value Vmin of electric field strength at
The total combined electric field intensity |r(x2)|=
Vmax−Vmin/4K・|t(x2)| is determined, and further, the microwave reflection characteristic g( x1)=F -1 [F[r(x2)]/F[a(x1)]], and calculate this microwave reflection characteristic g(x1) by Δx on the X-axis and Y-axis of the Doppler sensor 2. , the shape of the target object 1 can be determined by plotting according to each measurement position moved by .DELTA.y.

なお、電磁波の周波数を任意に変化させること
によつて、夜間及び火中における物体の形状、ま
た、地下に埋設された物体の形状、例えばガス
管、水道管の太さ等を識別することができる。
By arbitrarily changing the frequency of electromagnetic waves, it is possible to identify the shape of objects at night or under fire, as well as the shape of objects buried underground, such as the thickness of gas pipes and water pipes. can.

次に、本発明の効果について説明する。 Next, the effects of the present invention will be explained.

本発明は形状検出用物体と任意距離隔てて対向
させたドツプラーセンサを、物体とドツプラーセ
ンサとを結ぶ直線とほぼ直交する面に沿つて移動
させるとともに、この移動途上の各位置(x2)
においてドツプラーセンサから電磁波を放射させ
ながらドツプラーセンサを物体と対向する方向に
前後に変位させて前記各位置における電界強度の
最大値Vmaxと最小値Vminを測定するとともに、
この電界強度Vmax、Vminと放射電界強度t
(x2)と定数Kとからドツプラーセンサに入射さ
れる全合成電界強度|r(x2)|=
Vmax−Vmin/4K・|t(x2)|を求め、更に、該全合成
電界強 度r(x2)とドツプラーセンサのアンテナ特性a
(x1)とから物体の電磁波反射特性g(x1)=F-1
〔F〔r(x2)〕/F〔a(x1)〕〕を求めるとともに
、この電磁波 反射特性g(x1)をドツプラーセンサを移動させ
た各測定位置に従つてプロツトする物体形状識別
方法にある。
The present invention moves a Doppler sensor facing a shape detection object at an arbitrary distance along a plane substantially perpendicular to a straight line connecting the object and the Doppler sensor, and at each position (x2) along the way.
, while emitting electromagnetic waves from the Doppler sensor, displace the Doppler sensor back and forth in a direction facing the object and measure the maximum value Vmax and minimum value Vmin of the electric field strength at each position, and
This electric field strength Vmax, Vmin and radiation electric field strength t
Total combined electric field strength incident on the Doppler sensor from (x2) and constant K |r(x2)|=
Vmax−Vmin/4K・|t(x2)| is determined, and further, the total combined electric field strength r(x2) and the antenna characteristic a of the Doppler sensor
(x1) and the electromagnetic wave reflection property of the object g(x1) = F -1
An object shape identification method that calculates [F[r(x2)]/F[a(x1)]] and plots this electromagnetic wave reflection characteristic g(x1) according to each measurement position where the Doppler sensor is moved. be.

これによつて、本発明は目視不能状態での離隔
位置から物体の外形形状を容易に識別することが
できる効果がある。
As a result, the present invention has the effect that the external shape of an object can be easily identified from a remote position in a state where it is not visible to the naked eye.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の原理説明図、第2
図はその原理説明のための電界強度のベクトル
図、第3図はその電気系統図、第4図と第6図〜
第8図はその測定状況を示す説明図、第5図はそ
の測定のマイクロ制御用フローチヤート図であ
る。 1……目標物体、2……ドツプラーセンサ、3
……ホーンアンテナ、4……バツフアアンプ、5
……A/Dコンバータ、6……マイクロコンピユ
ータ。
Figure 1 is a diagram explaining the principle of one embodiment of the present invention, Figure 2 is a diagram explaining the principle of an embodiment of the present invention.
The figure is a vector diagram of electric field strength to explain the principle, Figure 3 is the electrical system diagram, Figures 4 and 6~
FIG. 8 is an explanatory diagram showing the measurement situation, and FIG. 5 is a flow chart for microcontrol of the measurement. 1...Target object, 2...Doppler sensor, 3
……Horn antenna, 4……Battery amplifier, 5
...A/D converter, 6...Microcomputer.

Claims (1)

【特許請求の範囲】 1 形状検出用物体と任意距離隔てて対向させた
ドツプラーセンサを、物体とドツプラーセンサと
を結ぶ直線とほぼ直交する面に沿つて移動させる
とともに、この移動途上の各位置(x2)におい
てドツプラーセンサから電磁波を放射させながら
ドツプラーセンサを物体と対向する方向に前後に
変位させて前記各位置における電界強度の最大値
Vmaxと最小値Vminを測定するとともに、この
電界強度Vmax、Vminと放射電界強度t(x2)
と定数Kとからドツプラーセンサに入射される全
合成電界強度|r(x2)|=Vmax−Vmin/4K・|t(x2
)|を 求め、更に、該全合成電界強度r(x2)とドツプ
ラーセンサのアンテナ特性a(x1)とから物体の
電磁波反射特性g(x1)=F-1〔F〔r(x2)〕/F〔
a(x1)〕〕を求 めるとともに、この電磁波反射特性g(x1)をド
ツプラーセンサを移動させた各測定位置に従つて
プロツトすることを特徴とする物体形状識別方
法。
[Scope of Claims] 1. A Doppler sensor facing a shape detection object at an arbitrary distance is moved along a plane substantially perpendicular to a straight line connecting the object and the Doppler sensor, and each point along the way is moved. While emitting electromagnetic waves from the Doppler sensor at position (x2), the Doppler sensor is displaced back and forth in the direction facing the object, and the maximum value of the electric field strength at each of the above positions is determined.
Measure Vmax and minimum value Vmin, and calculate the electric field strength Vmax, Vmin and the radiated electric field strength t(x2)
The total combined electric field strength incident on the Doppler sensor from
)|, and further, from the total combined electric field strength r(x2) and the antenna characteristic a(x1) of the Doppler sensor, the electromagnetic wave reflection characteristic of the object g(x1)=F -1 [F[r(x2)] /F [
a(x1)] and plotting this electromagnetic wave reflection characteristic g(x1) according to each measurement position to which a Doppler sensor is moved.
JP16931282A 1982-09-27 1982-09-27 Identification of shape of object Granted JPS5957182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16931282A JPS5957182A (en) 1982-09-27 1982-09-27 Identification of shape of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16931282A JPS5957182A (en) 1982-09-27 1982-09-27 Identification of shape of object

Publications (2)

Publication Number Publication Date
JPS5957182A JPS5957182A (en) 1984-04-02
JPH043511B2 true JPH043511B2 (en) 1992-01-23

Family

ID=15884196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16931282A Granted JPS5957182A (en) 1982-09-27 1982-09-27 Identification of shape of object

Country Status (1)

Country Link
JP (1) JPS5957182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720355C1 (en) * 2019-08-09 2020-04-29 Михаил Васильевич Захаров Target recognition radiolocation station
WO2023021763A1 (en) * 2021-08-20 2023-02-23 コニカミノルタ株式会社 State detection system and state detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513246B (en) * 2013-10-09 2015-11-04 中国科学院空间科学与应用研究中心 A kind of system and method for sub-wavelength imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720355C1 (en) * 2019-08-09 2020-04-29 Михаил Васильевич Захаров Target recognition radiolocation station
WO2023021763A1 (en) * 2021-08-20 2023-02-23 コニカミノルタ株式会社 State detection system and state detection method

Also Published As

Publication number Publication date
JPS5957182A (en) 1984-04-02

Similar Documents

Publication Publication Date Title
AU703330B2 (en) A method for simultaneously measuring the positions of more than one surface in metallurgic processes
US3430243A (en) Method of and apparatus for determining the distance and/or angles between objects with the aid of radiant energy
US3715748A (en) Method and apparatus for measuring the intensity of atmospheric turbulence
EP0879425A1 (en) Collision warning system
KR100799275B1 (en) Distance measuring device, distance measuring equipment and distance measuring method
Sizov et al. Forward scattering radar power budget analysis for ground targets
US2837738A (en) Passive range measuring device
US20090128395A1 (en) Method for analysing a substance in a container
US20090066966A1 (en) Method and device for contactless level and interface detection
US5130543A (en) Direction sensitive energy detecting apparatus
CN108981623B (en) Remote micro-displacement detection method based on microwave signals
JPS60142285A (en) Radar equipment
US6070461A (en) System for detection and measurement of atmospheric movement
US5585799A (en) Microwave doppler radar system for detection and kinematic measurements of river ice
Yamaguchi et al. Synthetic aperture FM-CW radar applied to the detection of objects buried in snowpack
Morrow et al. Effective imaging of buried dielectric objects
US8064737B2 (en) Spatial bandwidth imaging of structural interiors
Polivka An overview of microwave sensor technology
JPH043511B2 (en)
US5808741A (en) Method for remotely determining sea surface roughness and wind speed at a water surface
US4130791A (en) Automatic pipe depth locator
Emhemmed et al. Analysis of RCS and Evaluation of PO Approximation's Accuracy for Simple Targets
RU2709705C1 (en) Method of detecting an object on a convex metal surface behind a line of its horizon
RU2304289C1 (en) Method for restoring radiolocation images of objects with stationary rotation center
Fuks et al. A multifrequency scintillation method for ocean flow measurement