JPH04350488A - Refrigerating plant - Google Patents

Refrigerating plant

Info

Publication number
JPH04350488A
JPH04350488A JP17255891A JP17255891A JPH04350488A JP H04350488 A JPH04350488 A JP H04350488A JP 17255891 A JP17255891 A JP 17255891A JP 17255891 A JP17255891 A JP 17255891A JP H04350488 A JPH04350488 A JP H04350488A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pipe
exchanger
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17255891A
Other languages
Japanese (ja)
Other versions
JPH071135B2 (en
Inventor
Daizaburo Kishimoto
岸本 大三郎
Tsutomu Tanaka
努 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17255891A priority Critical patent/JPH071135B2/en
Publication of JPH04350488A publication Critical patent/JPH04350488A/en
Publication of JPH071135B2 publication Critical patent/JPH071135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Abstract

PURPOSE:To prevent sleep of refrigerant by feeding part of refrigerant fed from a first heat exchanger to a second heat exchanger to other second heat exchanger at the time of defrosting the first exchanger. CONSTITUTION:A first heat exchanger 11 and a plurality of cooling units 18B-1-18B-n formed of second heat exchangers 5 connected in parallel with the exchanger 1 are piping-connected to a refrigerant compressor 19, one condenser 18A formed of a condenser 20. At the time of defrosting the exchanger 11 of each cooling unit, a cycle in which refrigerant is returned to the compressor 19 through the compressor 19, the condenser 20, a bypass circuit 32, an inner layer heat exchanger 11, a connecting pipe 33, a solenoid valve 37, a pressure reducing valve 29, an outer layer heat exchanger 5 and a gas/liquid separator 23, is formed. An equalizer is so connected as to feed part of the refrigerant from the arbitrary exchanger 11 to the exchanger 5 as a pair with the arbitrary exchanger to the exchanger 5 of the other cooling unit.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は蒸発器として作用させる
第1,第2の両熱交換器を有する冷却ユニットを複数備
えた冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system equipped with a plurality of cooling units each having a first heat exchanger and a second heat exchanger functioning as an evaporator.

【0002】0002

【従来の技術】本願出願人が先に出願した特願昭61−
211128号には低温ショーケース1台における運転
方法が記載されているが、この低温ショーケースを複数
台(n台)相互に並列的に連結し、1台の凝縮ユニット
(18A)にて運転するには、通常第8図に示す冷媒回
路を採用した冷凍装置となる。複数台連結した場合、各
低温ショーケース(1)の冷却ユニット(18B−1)
〜(18B−n)に高圧液冷媒を供給するための高圧液
管(25A)は、その冷却ユニット(18B−1)〜(
18B−n)の台数に見合った径となり太く長い物にな
る。
[Prior Art] Patent application filed earlier by the applicant in 1986-
No. 211128 describes a method of operating one low-temperature showcase, but multiple (n) low-temperature showcases are connected in parallel and operated with one condensing unit (18A). In this case, a refrigeration system usually employs the refrigerant circuit shown in FIG. When multiple units are connected, the cooling unit (18B-1) of each low temperature showcase (1)
The high pressure liquid pipe (25A) for supplying high pressure liquid refrigerant to the cooling units (18B-1) to (18B-n)
The diameter corresponds to the number of 18B-n), making it thick and long.

【0003】この冷凍装置における除霜方式は、この高
圧液管(25A)を用いて各冷却ユニットの第1の熱交
換器である内層用熱交換器(11)に凝縮器(20)か
らの高圧の気液混合冷媒を送り、その除霜を行う方式で
、この除霜で得られる凝縮液冷媒を第2の熱交換器であ
る外層用熱交換器(5)で蒸発気化させ、除霜時も貯蔵
室を冷却する。一方この除霜の終了は、除霜中に任意の
冷却ユニット例えば(18B−n)の内層用熱交換器(
11)から外層用熱交換器(5)へ流れる凝縮液冷媒の
温度が例えば復帰設定温度5℃以上になった場合冷却ユ
ニット(18B−n)への気液混合冷媒の送り込みを止
め、この冷却ユニット内の冷媒の回収をするとともに、
他の冷却ユニット(18B−1)〜(18B−4)の除
霜復帰を待つこととなる。
[0003] The defrosting method in this refrigeration system uses this high-pressure liquid pipe (25A) to transfer water from the condenser (20) to the inner layer heat exchanger (11), which is the first heat exchanger of each cooling unit. This is a method of defrosting by sending a high-pressure gas-liquid mixed refrigerant, and the condensed liquid refrigerant obtained by this defrosting is evaporated in the second heat exchanger, the outer layer heat exchanger (5), to defrost it. Also when cooling the storage room. On the other hand, the end of this defrosting can be done by using any cooling unit such as the inner layer heat exchanger (18B-n) during defrosting.
If the temperature of the condensed liquid refrigerant flowing from 11) to the outer layer heat exchanger (5) reaches, for example, the return set temperature 5°C or higher, the supply of the gas-liquid mixed refrigerant to the cooling unit (18B-n) is stopped, and this cooling is stopped. In addition to recovering the refrigerant in the unit,
The defrosting recovery of the other cooling units (18B-1) to (18B-4) will be awaited.

【0004】0004

【発明が解決しようとする課題】上記従来技術では、例
えば5台以上多くは10台前後の冷却ユニット(18B
−1)〜(18B−4)を連結して運転しているため、
上述の如く太く長くなった高圧液管(25A)では気液
混合冷媒が、気液分離を起し、第8図に示す凝縮ユニッ
ト(18A)に近い冷却ユニット(18B−2)〜(1
8B−n)には除霜中、気相即ちガス冷媒が供給され、
質量が大きく除霜熱量の少ない液冷媒は凝縮ユニット(
18A)から最も遠い冷却ユニット(18B−1)に流
れ込む。そのため冷却ユニット(18B−1)の内層用
熱交換器(11)内には復帰設定値より低い液冷媒が溜
り込み即ち寝込み、容易にその温度が上昇しないため、
他の冷却ユニット(18B−2)〜(18B−n)より
極端に除霜復帰が遅れ、先に復帰した低温ショーケース
の貯蔵室温度が上昇するという課題が発生した。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, for example, five or more cooling units (18B
-1) to (18B-4) are connected and operated,
In the high-pressure liquid pipe (25A) which has become thick and long as described above, the gas-liquid mixed refrigerant causes gas-liquid separation, and the cooling units (18B-2) to (1) near the condensing unit (18A) shown in FIG.
8B-n) is supplied with a gas phase refrigerant during defrosting,
Liquid refrigerants with large mass and low defrosting heat are used in condensing units (
18A) into the furthest cooling unit (18B-1). Therefore, liquid refrigerant lower than the reset setting value accumulates in the inner layer heat exchanger (11) of the cooling unit (18B-1), and its temperature does not rise easily.
A problem occurred in that defrosting recovery was extremely delayed compared to other cooling units (18B-2) to (18B-n), and the storage room temperature of the low-temperature showcase that returned first rose.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、冷媒圧縮機、凝縮器からなる1台の凝縮ユ
ニットに対し、第1の熱交換器と、この第1の熱交換器
に並列接続された第2の熱交換器とからなる複数の冷却
ユニットを配管接続し、各冷却ユニットの第1の熱交換
器の除霜運転時には、冷媒が冷媒圧縮機−凝縮器−バイ
パス回路−第1の熱交換器−連絡管−減圧弁−第2の熱
交換器−気液分離器を通り前記冷媒圧縮機に帰還するよ
う配管接続すると共に、任意の第1の熱交換器からこの
任意の第1の熱交換器と対をなす第2の熱交換器に至る
冷媒の一部が他の冷却ユニットの第2の熱交換器に流れ
るよう均圧管にて接続してなる冷凍装置を提供する。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a first heat exchanger and a first heat exchanger for one condensing unit consisting of a refrigerant compressor and a condenser. A plurality of cooling units consisting of a second heat exchanger and a second heat exchanger connected in parallel are connected by piping, and during defrosting operation of the first heat exchanger of each cooling unit, the refrigerant is transferred from the refrigerant compressor to the condenser to the bypass. A circuit - first heat exchanger - communication pipe - pressure reducing valve - second heat exchanger - piping is connected to return to the refrigerant compressor through a gas-liquid separator, and from any first heat exchanger. A refrigeration system connected by a pressure equalizing pipe so that a part of the refrigerant reaching the second heat exchanger paired with this arbitrary first heat exchanger flows to the second heat exchanger of another cooling unit. I will provide a.

【0006】[0006]

【作用】実施例によれば均圧管(45)を設ける事によ
り、除霜時に任意の冷却ユニット(18B−1)の第1
の熱交換器(11)内の液冷媒が溜り込んで所謂冷媒の
寝込みが起きやすくなった場合、均圧管(45)を通し
て冷媒の一部が圧力の低い他の冷却ユニット(18B−
2)〜(18B−n)の第2の熱交換器(5)ヘ流れ、
冷却ユニット(18B−1)の液冷媒が少なくなって第
1の熱交換器(11)の温度が上昇しやすくなるととも
に、液冷媒が不足し、庫内温度が上昇しやすくなってい
た冷却ユニット(18B−n)の第2の熱交換器(5)
に冷媒が流れ蒸発気化され、冷却作用を付与できる。
[Function] According to the embodiment, by providing the pressure equalizing pipe (45), the first
If the liquid refrigerant in the heat exchanger (11) accumulates and so-called refrigerant stagnation tends to occur, part of the refrigerant is transferred to another cooling unit (18B-) with lower pressure through the pressure equalization pipe (45).
2) to (18B-n) flow to the second heat exchanger (5),
A cooling unit in which the liquid refrigerant in the cooling unit (18B-1) is running low, causing the temperature of the first heat exchanger (11) to rise easily, and the liquid refrigerant running out, causing the temperature inside the refrigerator to rise easily. (18B-n) second heat exchanger (5)
The refrigerant flows and is evaporated, providing a cooling effect.

【0007】[0007]

【実施例】以下図面に基づいて本発明の実施例を説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below based on the drawings.

【0008】第2図に示す(1)は前面に商品の収納及
び取出用の開口(3)を形成した断熱壁(2)にて本体
を構成してなる開放形の低温ショーケースで、前記断熱
壁の内壁より適当間隔を存して後述する内層側に開くダ
ンパ(4A)、このダンパにて閉塞される窓(4C)を
備えた断熱性の第1区画板(4)を配設して背部区域に
位置するプレートフィン型の第2の熱交換器(5)と軸
流型の外層用送風機(6)とを配置する外層(7)と、
前記開口の上縁に沿って位置する外層用吹出口(8)と
、前記開口の下縁に沿って位置し、前記外層用吹出口に
相対向する外層用吸込口(9)とを形成し、又前記第1
区画板の内壁より適当間隔を存して金属製の第2区画板
(10)を配設して背部区域に位置し、前記第2の熱交
換器(5)よりも低位置となるプレートフィン型の第1
の熱交換器(11)と軸流型の内層用送風機(12)と
を配置する内層(13)と、前記開口の上縁で且つ外層
用吹出口(8)の内方に並設された内層用吹出口(14
)と、前記開口の下縁で外層用吸込口(9)の内方に並
設され、前記内層用吹出口に相対向する内層用吸込口(
15)と、複数段の棚(16)を配置した貯蔵室(17
)とを形成している。前記ダンパは熱絶縁材、例えば樹
脂からなる板状のもの或いは金属板に断熱シートを貼着
したものからなるものであり、開放時その先端が第2区
画板(10)の外壁に当接することが好ましい。前記第
2の熱交換器(5)はダンパ(4A)から見て循環空気
の流れ方向下流側に位置する様、外層(5)内に配置さ
れており、又第1の熱交換器(11)はダンパ(4A)
からみて循環空気の流れ方向上流側となる内層(13)
内に配置されている。前記ダンパ(4A)は減速機構を
備えたギアモータ(M)、このギアモータの回動運動を
往復直線運動に変換する細長いアーム(A)等からなる
駆動装置によって開閉されるものである。
[0008] (1) shown in Fig. 2 is an open-type low-temperature showcase whose main body is composed of an insulating wall (2) with an opening (3) for storing and taking out products in the front. A heat-insulating first partition plate (4) is disposed at an appropriate distance from the inner wall of the heat-insulating wall, and includes a damper (4A) that opens toward the inner layer, which will be described later, and a window (4C) that is closed by this damper. an outer layer (7) in which a second heat exchanger (5) of plate fin type located in the back area and an outer layer blower (6) of axial flow type are arranged;
an outer layer air outlet (8) located along the upper edge of the opening; and an outer layer suction port (9) located along the lower edge of the opening and opposed to the outer layer air outlet. , and the first
A second partition plate (10) made of metal is arranged at an appropriate distance from the inner wall of the partition plate, and the plate fin is located in the back area and is located at a lower position than the second heat exchanger (5). Type 1
an inner layer (13) in which a heat exchanger (11) and an axial type inner layer blower (12) are arranged; Inner layer outlet (14
) and an inner layer suction port (
15) and a storage room (17) with multiple shelves (16).
). The damper is made of a heat insulating material, such as a plate-shaped material made of resin or a metal plate with a heat insulating sheet attached, and when opened, the tip thereof comes into contact with the outer wall of the second partition plate (10). is preferred. The second heat exchanger (5) is arranged in the outer layer (5) so as to be located downstream in the flow direction of the circulating air when viewed from the damper (4A), and the second heat exchanger (11 ) is the damper (4A)
Inner layer (13) on the upstream side in the flow direction of the circulating air when viewed from the
located within. The damper (4A) is opened and closed by a drive device consisting of a gear motor (M) equipped with a speed reduction mechanism, an elongated arm (A) that converts rotational motion of the gear motor into reciprocating linear motion, and the like.

【0009】第3図に示す(18)は、前記低温ショー
ケース(1)を1台冷却するための冷凍装置で、冷媒圧
縮機(19)、水冷又は空冷式の凝縮器(20)、受液
器(21)、感温部(22A)を有する膨張弁等からな
る減圧弁(22)、内層用熱交換器(11)、気液分離
器(23)を高圧ガス管(24)、高圧液管(25)、
第1低圧液管(26)及び低圧ガス管(27)でもって
環状に接続する一方で、前記高圧液管(25)の途中に
入口が接続される高圧液枝管(28)、感温部(29A
)を有する膨張弁等からなる減圧弁(29)、第2低圧
液管(30)、前記低圧ガス管(27)の途中に出口が
接続される低圧ガス枝管(31)でもって第2の熱交換
器(5)が第1の熱交換器(11)に対して並列接続さ
れている。(32)は高圧冷媒を第1の熱交換器(11
)に導くバイパス回路で、第1及び第2両バイパス管(
32A)(32B)からなり、第1バイパス管(32A
)の入口は前記凝縮器(20)と受液器(21)との間
の高圧液管(25)中に接続され、又出口は前記受液器
(21)と減圧弁(22)との間に高圧液管(25)中
の受液器(21)寄りに接続され、又第2バイパス管(
32B)の入口は前記第1バイパス管(32A)の出口
よりも冷媒の流れ方向下流側に位置するよう前記受液器
(21)と減圧弁(22)との間の高圧液管(25)中
に接続され、又出口は前記第1低圧液管(26)の途中
に接続されている。前記第1バイパス管(32A)の出
口と、第2バイパス管(32B)の出口とを高圧液管(
25)に接続することにより、この高圧液管の一部は共
用管路(25A)となり、バイパス回路(32)の一部
を構成することになる。この共用管路(25A)及び低
圧ガス管(27)は低温ショーケース(1)を複数台接
続した場合には、その長さが数メートル乃至数十メート
ルに及ぶ。(33)は前記第1の熱交換器(11)の除
霜運転時、この第1の熱交換器の高圧液冷媒を第2の熱
交換器(5)に導く連絡管で、その入口は前記第1の熱
交換器(11)と気液分離器(23)との間の低圧ガス
管(27)中に接続され、又出口は前記高圧液枝管(2
8)の途中に接続されている。(34)〜(39)は必
要に応じて開閉され、循環冷媒の流路を切り替える第1
乃至第6電磁弁である。前記第1電磁弁(34)は減圧
弁(22)と、共用管路(25A)との間の高圧液管(
25)中に設けられており、第1の熱交換器(11)の
冷却運転時及び第1、第2の両熱交換器(11)(5)
の冷却運転時には開放され、又、第1の熱交換器(11
)の除霜運転時及びポンプダウン運転時には閉塞される
。又、前記第2電磁弁(35)は連絡管(33)の入口
と、低圧ガス枝管(31)の出口との間の低圧ガス管(
27)中に設けられており、その開閉動作は前記第1電
磁弁(34)と同じである。又、前記第3電磁弁(36
)は第2バイパス管(32B)中に設けられており、第
1の熱交換器(11)の除霜運転時のみ後述する制御器
により開放される一方、第1の熱交換器(11)の出口
の冷媒温度を検知する温度スイッチ(36A)によって
閉鎖される。又、前記第4電磁弁(37)は連絡管(3
3)の出口と、減圧弁(29)との間の高圧液枝管(2
8)中に設けられており、第1の熱交換器(11)の冷
却運転時のみ以外に開放される。又、前記第5電磁弁(
38)は第1バイパス管(32A)中に設けられており
、その開閉動作は第3電磁弁(36)と同じであり、第
1の熱交換器(11)の除霜運転時のみ開放される。又
、前記第6電磁弁(39)は受液器(21)と、共用管
路(25A)との間の高圧液管(25)中に設けられて
おり、その開閉動作は前記第1,第2両電磁弁(34)
(35)と同じである。(40)は前記第1バイパス管
(32A)の入口と、受液器(21)との間の高圧液管
(25)中に設けられた逆止弁で、第1の熱交換器(1
1)の除霜運転時、前記受液器(21)内の貯溜冷媒が
バイパス回路(32)を流れる高圧冷媒によるエジェク
タ効果によって第1バイパス管(32A)の入口方向に
逆流するのを阻止する。(41)は前記連絡管(33)
中に設けられた逆止弁で、第1の熱交換器(11)及び
第1,第2の両熱交換器(11)(5)の冷却運転時、
高圧液管(25)又は及び高圧液枝管(28)を通過中
の高圧液冷媒が連絡管(33)から低圧ガス管(27)
に流れるのを阻止する。
Reference numeral (18) shown in FIG. 3 is a refrigeration system for cooling one low-temperature showcase (1), which includes a refrigerant compressor (19), a water-cooled or air-cooled condenser (20), and a receiver. A liquid container (21), a pressure reducing valve (22) consisting of an expansion valve etc. having a temperature sensing part (22A), an inner layer heat exchanger (11), a gas-liquid separator (23), and a high pressure gas pipe (24), a high pressure liquid pipe (25),
A high-pressure liquid branch pipe (28) connected in an annular manner with a first low-pressure liquid pipe (26) and a low-pressure gas pipe (27), and an inlet connected to the middle of the high-pressure liquid pipe (25), and a temperature sensing section. (29A
), a second low-pressure liquid pipe (30), and a low-pressure gas branch pipe (31) whose outlet is connected to the middle of the low-pressure gas pipe (27). A heat exchanger (5) is connected in parallel to the first heat exchanger (11). (32) transfers the high-pressure refrigerant to the first heat exchanger (11
) is a bypass circuit that leads to both the first and second bypass pipes (
32A) (32B), and the first bypass pipe (32A
) is connected to the high pressure liquid pipe (25) between the condenser (20) and the liquid receiver (21), and the outlet is connected to the high pressure liquid pipe (25) between the liquid receiver (21) and the pressure reducing valve (22). In between, it is connected to the liquid receiver (21) in the high pressure liquid pipe (25), and the second bypass pipe (
The high-pressure liquid pipe (25) is connected between the liquid receiver (21) and the pressure reducing valve (22) so that the inlet of the liquid pipe (32B) is located downstream in the flow direction of the refrigerant from the outlet of the first bypass pipe (32A). The outlet is connected to the middle of the first low pressure liquid pipe (26). The outlet of the first bypass pipe (32A) and the outlet of the second bypass pipe (32B) are connected to a high pressure liquid pipe (
25), a part of this high-pressure liquid pipe becomes a shared pipe line (25A) and constitutes a part of the bypass circuit (32). When a plurality of low-temperature showcases (1) are connected, the length of the common pipe line (25A) and the low-pressure gas pipe (27) ranges from several meters to several tens of meters. (33) is a connecting pipe that guides the high-pressure liquid refrigerant of the first heat exchanger to the second heat exchanger (5) during the defrosting operation of the first heat exchanger (11), and its inlet is It is connected to the low pressure gas pipe (27) between the first heat exchanger (11) and the gas-liquid separator (23), and the outlet is connected to the high pressure liquid branch pipe (27).
8) is connected in the middle. (34) to (39) are opened and closed as necessary to switch the flow path of the circulating refrigerant.
to sixth solenoid valves. The first solenoid valve (34) is a high pressure liquid pipe (
25) during the cooling operation of the first heat exchanger (11) and both the first and second heat exchangers (11) (5).
The first heat exchanger (11
) is blocked during defrosting operation and pump down operation. Further, the second electromagnetic valve (35) is connected to a low pressure gas pipe (
27), and its opening/closing operation is the same as that of the first solenoid valve (34). Further, the third solenoid valve (36
) is provided in the second bypass pipe (32B), and is opened by a controller described later only during defrosting operation of the first heat exchanger (11). is closed by a temperature switch (36A) that detects the refrigerant temperature at the outlet of the refrigerant. Further, the fourth solenoid valve (37) is connected to the connecting pipe (3
3) and the pressure reducing valve (29).
8) and is opened only during cooling operation of the first heat exchanger (11). Further, the fifth solenoid valve (
38) is provided in the first bypass pipe (32A), and its opening/closing operation is the same as that of the third solenoid valve (36), and is opened only during defrosting operation of the first heat exchanger (11). Ru. Further, the sixth solenoid valve (39) is provided in the high-pressure liquid pipe (25) between the liquid receiver (21) and the common pipe line (25A), and its opening/closing operation is controlled by the first, 2nd double solenoid valve (34)
This is the same as (35). (40) is a check valve installed in the high-pressure liquid pipe (25) between the inlet of the first bypass pipe (32A) and the liquid receiver (21), and
During the defrosting operation of 1), the refrigerant stored in the receiver (21) is prevented from flowing back toward the inlet of the first bypass pipe (32A) due to the ejector effect of the high-pressure refrigerant flowing through the bypass circuit (32). . (41) is the connecting pipe (33)
During the cooling operation of the first heat exchanger (11) and both the first and second heat exchangers (11) (5),
The high pressure liquid refrigerant passing through the high pressure liquid pipe (25) or the high pressure liquid branch pipe (28) is transferred from the communication pipe (33) to the low pressure gas pipe (27).
prevent it from flowing.

【0010】前記冷凍装置(18)は上述の如く構成さ
れており、第3図乃至第6図の鎖線(18A)で示す部
分は店舗の機械室に設置される凝縮ユニット、鎖線(1
8B)で示す部分は店舗の店内に設置される冷却ユニッ
トとして分けられている関係上、第1図に示す如く低温
ショーケース(1)を複数台連結接続した場合には、両
ユニットをつなぐ共用管路(25A)及び低圧ガス管(
27)は店舗によっては数十メートルの長さになること
もある。この場合、1台の凝縮ユニット(18A)に対
して相互に並列接続された複数台の冷却ユニット(18
B−1)〜(18B−n)が接続されることになる。 前記各冷却ユニット(18B−1)〜(18B−n)の
並列接続に伴ない、この各冷却ユニットの減圧弁(29
)と第4電磁弁(37)との間に均圧管(45)の分岐
管(45−1)〜(45−n)が対応接続される。 (42)はタイマーを内蔵した制御器で、前記第1乃至
第6電磁弁(34)〜(39)及びギアモータ(39)
を所定時間作動させるための開又は閉信号を各信号ライ
ン(a)〜(g)から送るものである。
The refrigeration system (18) is constructed as described above, and the part indicated by the chain line (18A) in FIGS. 3 to 6 is the condensation unit installed in the machine room of the store,
Since the part indicated by 8B) is divided into cooling units installed inside the store, if multiple low-temperature showcases (1) are connected together as shown in Figure 1, the part indicated by 8B) can be used as a shared cooling unit to connect both units. Pipe line (25A) and low pressure gas pipe (
27) can be several tens of meters long depending on the store. In this case, multiple cooling units (18A) are connected in parallel to one condensing unit (18A).
B-1) to (18B-n) will be connected. Along with the parallel connection of each cooling unit (18B-1) to (18B-n), the pressure reducing valve (29
) and the fourth solenoid valve (37), branch pipes (45-1) to (45-n) of the pressure equalizing pipe (45) are connected correspondingly. (42) is a controller with a built-in timer, which controls the first to sixth solenoid valves (34) to (39) and the gear motor (39).
An open or close signal for operating the switch for a predetermined period of time is sent from each signal line (a) to (g).

【0011】前記低温ショーケース(1)は第1の熱交
換器(11)の除霜運転時、この第1の熱交換器を通過
した高圧冷媒及び循環空気を第2の熱交換器(5)に導
く関係から空気循環を冷媒循環よりも優先させるように
しており、このため第1の熱交換器(11)を第2の熱
交換器(5)よりも低い位置に配置している。又、第7
図に示す如く前記第1の熱交換器(11)の上部入口に
は分岐した複数の分流管(43)を介して第1低圧液管
(26)の出口が接続され、又下部出口には分岐した複
数の集合管(44)を介して低圧ガス管(27)の入口
が接続されており、第1の熱交換器(11)を通過する
冷媒は矢印の如く上部から下部に向って流れ、第1の熱
交換器(11)を通過する循環空気の流れとは逆方向と
なる。又前記第2の熱交換器(5)も第1の熱交換器(
11)と同様に上部から冷媒を導き、下部から冷媒を排
出する構成となっている。
During the defrosting operation of the first heat exchanger (11), the low temperature showcase (1) transfers the high pressure refrigerant and circulating air that has passed through the first heat exchanger to the second heat exchanger (5). ), air circulation is given priority over refrigerant circulation, and for this reason, the first heat exchanger (11) is placed at a lower position than the second heat exchanger (5). Also, the seventh
As shown in the figure, the upper inlet of the first heat exchanger (11) is connected to the outlet of the first low pressure liquid pipe (26) via a plurality of branched branch pipes (43), and the lower outlet is connected to the outlet of the first low pressure liquid pipe (26). The inlet of the low pressure gas pipe (27) is connected through a plurality of branched collecting pipes (44), and the refrigerant passing through the first heat exchanger (11) flows from the top to the bottom as shown by the arrow. , in the opposite direction to the flow of circulating air passing through the first heat exchanger (11). Further, the second heat exchanger (5) is also the same as the first heat exchanger (
Similar to 11), the refrigerant is introduced from the top and discharged from the bottom.

【0012】次に各低温ショーケース(1)の運転につ
いて説明する。
Next, the operation of each low temperature showcase (1) will be explained.

【0013】いま、ダンパ(4A)は閉じており、第2
図に示すように内層(13)及び外層(7)は夫々独立
している。この時、第1,第2及び第6各電磁弁(34
)(35)(39)が開、第3,第4及び第5各電磁弁
(36)(37)(38)が閉となっており、かゝる状
態で、冷媒圧縮機(19)を稼動させると、冷凍装置(
18)の冷媒は第3図太線で示す如く圧縮機(19)−
凝縮器(20)−受液器(21)−第6電磁弁(39)
−第1電磁弁(34)−減圧弁(22)−蒸発器となる
第1の熱交換器(11)−第2電磁弁(35)−気液分
離器(23)−圧縮機(19)と流れる周知の第1のサ
イクルを形成し、この間凝縮ユニット(18A)の凝縮
器(20)で凝縮液化、各冷却ユニット(18B−1)
〜(18B−n)の減圧弁(22)で減圧、第1の熱交
換器(11)で蒸発気化される。この冷却運転(例えば
4時間)において、内層用送風機(12)でもって、内
層(13)を通過中の循環空気は、第1の熱交換器(1
1)を通過中の例えば−15℃の蒸発温度の低圧液冷媒
と熱交換されて例えば−6℃の冷却空気となり、第2図
実線矢印に示す如く開口(3)に冷たいエアーカーテン
(CA)を形成して貯蔵室(17)の温度を−4℃に維
持する冷却を図り貯蔵品を氷温(0℃以下でしかも細胞
を生かしておける温度帯)例えば−2℃に維持する。こ
の間各冷却ユニット(18B−1)〜(18B−n)に
おいては、第1,第2両電磁弁(34)(35)は貯蔵
室(17)の温度を検出する温度検出器によって同時に
開閉を繰り返し、貯蔵室(17)の温度を適温(氷温)
に維持する。一方、外層用送風機(6)でもって外層(
7)を通過中の循環空気は、第2図実線矢印の如く開口
(3)において冷たいエアーカーテン(CA)の外側に
沿って流れ、この冷たいエアーカーテンの影響を受けて
低温ショーケース(1)を包囲する外気より漸低い温度
となり、前記の冷たいエアーカーテン(CA)と外気と
の接触を阻止する保護エアーカーテン(GA)として作
用する。
[0013] Now, the damper (4A) is closed and the second damper (4A) is closed.
As shown in the figure, the inner layer (13) and outer layer (7) are each independent. At this time, each of the first, second and sixth solenoid valves (34
) (35) and (39) are open, and the third, fourth, and fifth solenoid valves (36), (37, and 38) are closed, and in such a state, the refrigerant compressor (19) is When activated, the refrigeration system (
The refrigerant of 18) is transferred to the compressor (19)- as shown by the thick line in Figure 3.
Condenser (20) - Receiver (21) - Sixth solenoid valve (39)
- First solenoid valve (34) - Pressure reducing valve (22) - First heat exchanger (11) serving as an evaporator - Second solenoid valve (35) - Gas-liquid separator (23) - Compressor (19) During this period, the condensation is condensed and liquefied in the condenser (20) of the condensation unit (18A), and each cooling unit (18B-1)
The pressure is reduced by the pressure reducing valve (22) of ~(18B-n) and evaporated by the first heat exchanger (11). During this cooling operation (for example, 4 hours), the circulating air passing through the inner layer (13) with the inner layer blower (12) is transferred to the first heat exchanger (1
1), heat is exchanged with the low-pressure liquid refrigerant having an evaporation temperature of, for example, -15°C, and the cooling air becomes, for example, -6°C, and a cold air curtain (CA) is formed in the opening (3) as shown by the solid line arrow in Figure 2. The temperature of the storage chamber (17) is maintained at -4°C by forming a cooling system, and the stored items are maintained at an ice temperature (a temperature range of 0°C or lower and in which cells can be kept alive), for example, -2°C. During this time, in each cooling unit (18B-1) to (18B-n), both the first and second solenoid valves (34) and (35) are simultaneously opened and closed by a temperature sensor that detects the temperature of the storage room (17). Repeatedly set the temperature of the storage room (17) to the appropriate temperature (ice temperature)
to be maintained. On the other hand, the outer layer (
The circulating air passing through 7) flows along the outside of the cold air curtain (CA) at the opening (3) as shown by the solid line arrow in Figure 2, and is influenced by this cold air curtain into the low temperature showcase (1). The temperature becomes gradually lower than the outside air surrounding the air curtain, and acts as a protective air curtain (GA) that prevents the cold air curtain (CA) from contacting the outside air.

【0014】冷却運転の進行に伴ない第1の熱交換器(
11)への着霜が多くなると、制御器(42)からの信
号で第4電磁弁(37)が開き、第1電磁弁(34)か
らの液冷媒の一部は高圧液枝管(28)に分流される。 この分流された液冷媒は、減圧弁(29)で減圧され、
蒸発器となる第2の熱交換器(5)で蒸発気化して低圧
ガス枝管(31)を通り、低圧ガス管(27)に流れ、
第1の熱交換器(11)を通過した低圧ガス冷媒と合流
し圧縮機(19)に流れる第4図太線で示す第2のサイ
クルを形成する。この第2のサイクルは冷却運転終了前
、即ち冷却運転から除霜運転に切り替る直前に数十秒乃
至数分間にわたって行なわれ、この運転によって、第1
の熱交換器(11)と同様に第2の熱交換器(5)も低
温となり、外層(7)を通過中の循環空気は、第2の熱
交換器(5)を通過中の低圧液冷媒(蒸発温度は−20
℃)と熱交換され、内層(13)を循環中の冷却空気と
略同じ乃至若干高い温度(−4℃前後)に維持される。 尚、この冷却運転においては外層用送風機(6)の運転
を停止してもよい。
As the cooling operation progresses, the first heat exchanger (
11), the fourth solenoid valve (37) opens in response to a signal from the controller (42), and a portion of the liquid refrigerant from the first solenoid valve (34) flows into the high-pressure liquid branch pipe (28). ). This divided liquid refrigerant is depressurized by a pressure reducing valve (29),
It is evaporated in a second heat exchanger (5) serving as an evaporator, passes through a low pressure gas branch pipe (31), and flows into a low pressure gas pipe (27).
It joins with the low-pressure gas refrigerant that has passed through the first heat exchanger (11) and flows to the compressor (19), forming a second cycle shown by the thick line in FIG. 4. This second cycle is carried out for several tens of seconds to several minutes before the end of the cooling operation, that is, immediately before switching from cooling operation to defrosting operation, and this operation causes the first
Similarly to the heat exchanger (11), the second heat exchanger (5) also has a low temperature, and the circulating air passing through the outer layer (7) is lowered by the low pressure liquid passing through the second heat exchanger (5). Refrigerant (evaporation temperature is -20
C), and is maintained at approximately the same to slightly higher temperature (around -4 C) as the cooling air circulating through the inner layer (13). Note that during this cooling operation, the operation of the outer layer blower (6) may be stopped.

【0015】この冷却運転中、制御器(42)から除霜
開始信号が出力され第1,第2及び第6各電磁弁(34
)(35)(39)が閉まり、第3及び第5両電磁弁(
36)(38)が開き、又ダンパ(4A)が第2図鎖線
の如く開くと、各冷却ユニット(18B−1)〜(18
B−n)は除霜運転に切り換わり、凝縮器(20)から
の高圧冷媒、即ち高圧の気液混合冷媒は、バイパス回路
(32)−第1の熱交換器(11)−連絡管(33)−
第4電磁弁(37)−減圧弁(29)−第2の熱交換器
(5)−気液分離器(23)−圧縮機(19)と流れる
第5図太線で示す第3のサイクルを形成する。この第3
のサイクルは例えば10分乃至20分間行なわれる第1
の熱交換器(11)の除霜運転サイクルであり、バイパ
ス回路(32)からの高圧の気液混合冷媒は第1の熱交
換器(11)の上部から下部に向って流れる間、循環空
気と熱交換されて5℃程度の過冷却液となりつゝ且つそ
の顕熱でもって第1の熱交換器(11)の霜を徐々に解
かした後、連絡管(33)、第4電磁弁(37)を通っ
て第2の熱交換器(5)に至ると共に、例えば冷却ユニ
ット(18B−1)の第1の熱交換器(11)よりも他
の冷却ユニット(18B−2)〜(18B−n)の第1
の熱交換器(11)の冷媒圧力が低い場合には、均圧管
(45)を通って冷却ユニット(18B−2)〜(18
B−n)の第2の熱交換器(5)にその一部が流れる。 一方、この第1の熱交換器を通過した循環空気はダンパ
(4A)により内層(13)における流れを中断されて
窓(4C)から外層(7)に流れ、第2の熱交換器(5
)を通過中の低圧冷媒と熱交換されて−4℃前後の温度
に冷却される。この冷却された循環空気は外層用吹出口
(8)から開口(3)に向けて吹き出され、冷却運転時
におけるエアーカーテン(CA)よりも若干温度の高い
0℃前後の中温エアーカーテン(MA)を形成し、内層
用吸込口(15)から内層(13)に帰還する第2図鎖
線矢印の循環を繰り返す。
During this cooling operation, a defrosting start signal is output from the controller (42), and the first, second and sixth solenoid valves (34)
) (35) and (39) are closed, and both the third and fifth solenoid valves (
36) (38) opens and the damper (4A) opens as shown by the chain line in Figure 2, each cooling unit (18B-1) to (18
B-n) switches to defrosting operation, and the high-pressure refrigerant from the condenser (20), that is, the high-pressure gas-liquid mixed refrigerant, flows through the bypass circuit (32) - the first heat exchanger (11) - the connecting pipe ( 33)-
The third cycle shown in bold line in Figure 5, which flows from the fourth solenoid valve (37) - the pressure reducing valve (29) - the second heat exchanger (5) - the gas-liquid separator (23) - the compressor (19), is Form. This third
The first cycle is carried out for 10 to 20 minutes, for example.
This is the defrosting operation cycle of the first heat exchanger (11), and while the high pressure gas-liquid mixed refrigerant from the bypass circuit (32) flows from the top to the bottom of the first heat exchanger (11), the circulating air After being heat exchanged with the liquid and becoming a supercooled liquid of approximately 5°C, and gradually melting the frost in the first heat exchanger (11) with its sensible heat, the connecting pipe (33) and the fourth solenoid valve ( 37) to the second heat exchanger (5), and for example, other cooling units (18B-2) to (18B) than the first heat exchanger (11) of the cooling unit (18B-1). -n) first
When the refrigerant pressure in the heat exchanger (11) is low, it passes through the pressure equalization pipe (45) to the cooling units (18B-2) to (18).
A part of it flows to the second heat exchanger (5) of B-n). On the other hand, the circulation air that has passed through the first heat exchanger is interrupted from flowing in the inner layer (13) by the damper (4A), flows through the window (4C) to the outer layer (7), and is then transferred to the second heat exchanger (5).
) and is cooled to a temperature of around -4°C by exchanging heat with the low-pressure refrigerant passing through the refrigerant. This cooled circulating air is blown out from the outer layer air outlet (8) toward the opening (3), and is created as a medium-temperature air curtain (MA) around 0°C, which has a slightly higher temperature than the air curtain (CA) during cooling operation. is formed, and the cycle of return from the inner layer suction port (15) to the inner layer (13) as indicated by the chain line arrow in FIG. 2 is repeated.

【0016】除霜運転の進行に伴ない凝縮ユニット(1
8A)に1番近い冷却ユニット(18B−n)の第1の
熱交換器(11)の霜が解けると、この冷却ユニットに
設けられた温度スイッチ(36A)が例えば5℃の冷媒
温度で動作して第1,第2及び第6各電磁弁(34)(
35)(39)の閉状態が継続したまゝで、第3電磁弁
(36)が先ず閉じて第1の熱交換器(11)への冷媒
供給を停止する。次に冷却ユニット(18B−4),(
18B−3),(18B−2)〜(18B−1)の第3
電磁弁(36)が順次同様に動作し、最後に制御器(4
2)からの除霜終了信号で第5電磁弁(38)が閉じる
と除霜熱源となる高圧の気液混合冷媒が各冷却ユニット
(18B−1)〜(18B−n)に供給されなくなり、
各冷却ユニット(18B−1)〜(18B−n)の第1
の熱交換器(11)内の残留液冷媒(一部飽和ガスを含
む)を受液器(21)に回収する所謂ポンプダウン運転
となり、各第1の熱交換器(11)内の液冷媒は第6図
太線で示す如く連絡管(33)、第4電磁弁(37)、
減圧弁(29)を通り第2の熱交換器(5)を経て気液
分離器(23)、圧縮機(19)、凝縮器(20)、受
液器(21)と流れ、この受液器(21)に高圧液冷媒
として貯えられる。このポンプダウン運転は第1の熱交
換器(11)の除霜運転の終了に伴ない数分乃至十数分
行なわれ、この間例えば冷却ユニット(18B−n)の
第1の熱交換器(11)内の冷媒のうち飽和ガス、液冷
媒を順次連絡管(33)を通して直接対応する第2の熱
交換器(5)に吸引し、又一方均圧管(45)を通して
他の冷却ユニット(18B−1)の残留液冷媒を間接的
に第2の熱交換器(5)に吸引することにより、第1の
熱交換器(11)でその一部が蒸発気化してこの蒸発潜
熱でもって第1の熱交換器(11)に冷却作用を付与で
きることに併わせて残留液冷媒量の多い冷却ユニット(
18B−1)の冷媒回収が早くなり、且つ液冷媒のまゝ
で減圧弁(29)から又は均圧管(45)及び減圧弁(
29)から第2の熱交換器(5)に流れた冷媒は低圧液
冷媒となってこの第2の熱交換器を通過するうちに蒸発
気化してこの蒸発潜熱でもって第2の熱交換器(5)に
冷却作用を付与することになる。又、このポンプダウン
運転は第1の熱交換器(11)に付着した露の水切り時
間でもある。
As the defrosting operation progresses, the condensing unit (1
When the frost in the first heat exchanger (11) of the cooling unit (18B-n) closest to 8A) melts, the temperature switch (36A) provided in this cooling unit operates at a refrigerant temperature of, for example, 5°C. and the first, second and sixth solenoid valves (34) (
35) While the closed state of (39) continues, the third solenoid valve (36) first closes to stop the refrigerant supply to the first heat exchanger (11). Next, the cooling unit (18B-4), (
18B-3), (18B-2) to (18B-1) 3rd
The solenoid valve (36) operates in the same way in sequence, and finally the controller (4)
When the fifth solenoid valve (38) closes in response to the defrosting end signal from 2), the high-pressure gas-liquid mixed refrigerant serving as the defrosting heat source is no longer supplied to each cooling unit (18B-1) to (18B-n).
The first of each cooling unit (18B-1) to (18B-n)
This is a so-called pump-down operation in which the residual liquid refrigerant (including some saturated gas) in the first heat exchanger (11) is recovered to the liquid receiver (21), and the liquid refrigerant in each first heat exchanger (11) is recovered. As shown by the bold line in Figure 6, the connecting pipe (33), the fourth solenoid valve (37),
The liquid flows through the pressure reducing valve (29), the second heat exchanger (5), the gas-liquid separator (23), the compressor (19), the condenser (20), and the liquid receiver (21). The refrigerant is stored as a high-pressure liquid refrigerant in the container (21). This pump-down operation is performed for several minutes to more than ten minutes as the defrosting operation of the first heat exchanger (11) ends, and during this time, for example, the first heat exchanger (11) of the cooling unit (18B-n) ) Among the refrigerants, saturated gas and liquid refrigerant are sequentially drawn into the corresponding second heat exchanger (5) through the communication pipe (33), and are also drawn into the other cooling unit (18B-) through the pressure equalization pipe (45). By indirectly sucking the residual liquid refrigerant from 1) into the second heat exchanger (5), a part of it evaporates in the first heat exchanger (11) and uses this latent heat of vaporization to In addition to being able to provide a cooling effect to the heat exchanger (11) of the cooling unit (
18B-1) can be recovered quickly, and the refrigerant can be collected as a liquid from the pressure reducing valve (29) or from the pressure equalizing pipe (45) and the pressure reducing valve (
The refrigerant flowing from 29) to the second heat exchanger (5) becomes a low-pressure liquid refrigerant, evaporates while passing through this second heat exchanger, and uses this latent heat of evaporation to transfer to the second heat exchanger. (5) will have a cooling effect. Further, this pump-down operation is also a time for draining the dew adhering to the first heat exchanger (11).

【0017】ポンプダウン運転の終了に伴ない、第3,
第4,第5各電磁弁(36)(37)(38)が閉じる
と共に、第1,第2及び第6各電磁弁(34)(35)
(39)が開き、第3図に示す冷却運転に復帰する。
[0017] With the end of the pump down operation, the third
The fourth and fifth solenoid valves (36), (37), and (38) close, and the first, second, and sixth solenoid valves (34, 35)
(39) is opened and the cooling operation shown in FIG. 3 is resumed.

【0018】従ってかゝる運転回路によれば、凝縮ユニ
ット(18A)から配管距離的に見て遠くなる冷却ユニ
ット(18B−1)の第1の熱交換器(11)に除霜運
転に伴ないその内部に溜る液冷媒を冷却ユニット(18
B−1)の第2の熱交換器(11)に流すと共に、液冷
媒の一部を均圧管(45)を通して凝縮ユニット(18
A)から配管距離的に見て1番近く冷媒不足が生じやす
い冷却ユニット(18B−n)の第2の熱交換器(5)
に流すため、冷却ユニット(18B−1)の第1の熱交
換器(11)の液冷媒が少なくなってこの第2の熱交換
器の温度が上昇しやすくなり、他の冷却ユニット(18
B−n)と同様に冷却ユニット(18B−1)の第1の
熱交換器(11)の除霜時間を短かくできることに併わ
せて、冷却ユニット(18B−n)の第2の熱交換器(
11)への液冷媒が増え、この第2の熱交換器の蒸発気
化作用を促進して所定の冷却効果を得ることができる。 又、均圧管(45)にて液冷媒貯溜量の多い冷却ユニッ
ト(18B−1)から各冷却ユニット(18B−3)〜
(18B−n)に冷媒の一部を送る関係上、循環冷媒が
1カ所で淀む即ち寝込むことがなく冷媒圧縮機(19)
の低圧々力の上昇が図れ、除霜熱源となる高圧の気液混
合冷媒の流れを良くすることができる。
Therefore, according to such an operation circuit, the first heat exchanger (11) of the cooling unit (18B-1), which is far from the condensing unit (18A) in terms of piping distance, is connected to the first heat exchanger (11) during the defrosting operation. The liquid refrigerant that accumulates inside the cooling unit (18
B-1), and a part of the liquid refrigerant is passed through the pressure equalization pipe (45) to the condensation unit (18).
The second heat exchanger (5) of the cooling unit (18B-n), which is closest to A) in terms of piping distance and where refrigerant shortage is likely to occur.
As a result, the amount of liquid refrigerant in the first heat exchanger (11) of the cooling unit (18B-1) decreases, and the temperature of this second heat exchanger tends to rise.
B-n) In addition to shortening the defrosting time of the first heat exchanger (11) of the cooling unit (18B-1), the second heat exchanger of the cooling unit (18B-n) vessel(
11) increases, the evaporation action of this second heat exchanger is promoted, and a predetermined cooling effect can be obtained. In addition, the pressure equalizing pipe (45) connects the cooling unit (18B-1) with a large storage amount of liquid refrigerant to each cooling unit (18B-3) to
Because part of the refrigerant is sent to the refrigerant compressor (18B-n), the circulating refrigerant does not stagnate or stagnate in one place.
It is possible to increase the low pressure and force of the defrosting heat source, and improve the flow of the high-pressure gas-liquid mixed refrigerant that serves as the defrosting heat source.

【0019】[0019]

【発明の効果】上述した本発明によれば、第1の熱交換
器の除霜運転時、均圧管の均圧作用により一つの冷却ユ
ニットの第1の熱交換器に溜った液冷媒の一部を他の冷
却ユニットの第2の熱交換器に分配するので、冷媒の寝
込みを防止して圧縮機の低圧々力を上昇させて冷媒の循
環を良好に維持できる効果がある。
According to the present invention described above, during the defrosting operation of the first heat exchanger, part of the liquid refrigerant accumulated in the first heat exchanger of one cooling unit is reduced by the pressure equalizing action of the pressure equalizing pipe. Since the refrigerant is distributed to the second heat exchanger of another cooling unit, it is possible to prevent the refrigerant from stagnation, increase the low pressure force of the compressor, and maintain good refrigerant circulation.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】冷凍装置全体の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of the entire refrigeration system.

【図2】冷却ユニットを備えた低温ショーケースの縦断
面図である。
FIG. 2 is a longitudinal cross-sectional view of a low-temperature showcase with a cooling unit.

【図3】冷凍装置の第1サイクルを示す冷媒回路図であ
る。
FIG. 3 is a refrigerant circuit diagram showing a first cycle of the refrigeration system.

【図4】冷凍装置の第2サイクルを示す冷媒回路図であ
る。
FIG. 4 is a refrigerant circuit diagram showing a second cycle of the refrigeration system.

【図5】冷凍装置の第3サイクルを示す冷媒回路図であ
る。
FIG. 5 is a refrigerant circuit diagram showing the third cycle of the refrigeration system.

【図6】冷凍装置のポンプダウン運転を示す冷媒回路図
である。
FIG. 6 is a refrigerant circuit diagram showing pump-down operation of the refrigeration system.

【図7】第1,第2の両熱交換器を接続した全体斜視図
である。
FIG. 7 is an overall perspective view in which both the first and second heat exchangers are connected.

【図8】従来の冷凍装置全体の冷媒回路図である。FIG. 8 is a refrigerant circuit diagram of the entire conventional refrigeration system.

【符号の説明】[Explanation of symbols]

5      第2の熱交換器 11    第1の熱交換器 19    冷媒圧縮機 20    凝縮器 23    気液分離器 29    減圧弁 32    バイパス回路 33    連絡管 45    均圧管 5 Second heat exchanger 11 First heat exchanger 19 Refrigerant compressor 20 Condenser 23 Gas-liquid separator 29 Pressure reducing valve 32 Bypass circuit 33 Connecting pipe 45 Pressure equalization pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  冷媒圧縮機、凝縮器からなる1台の凝
縮ユニットに対し、第1の熱交換器と、この第1の熱交
換器に並列接続された第2の熱交換器とからなる複数の
冷却ユニットを配管接続し、各冷却ユニットの第1の熱
交換器の除霜運転時には、冷媒が冷媒圧縮機−凝縮器−
バイパス回路−第1の熱交換器−連絡管−減圧弁−第2
の熱交換器−気液分離器を通り前記冷媒圧縮機に帰還す
るよう配管接続すると共に、任意の第1の熱交換器から
この任意の第1の熱交換器と対をなす第2の熱交換器に
至る冷媒の一部が他の冷却ユニットの第2の熱交換器に
流れるよう均圧管にて接続してなる冷凍装置。
Claim 1: One condensation unit consisting of a refrigerant compressor and a condenser is composed of a first heat exchanger and a second heat exchanger connected in parallel to the first heat exchanger. When a plurality of cooling units are connected via piping and the first heat exchanger of each cooling unit is in defrosting operation, the refrigerant is transferred to the refrigerant compressor - condenser -
Bypass circuit - first heat exchanger - communication pipe - pressure reducing valve - second
A heat exchanger--piping is connected to return the refrigerant to the refrigerant compressor through a gas-liquid separator, and a second heat exchanger that is paired with this arbitrary first heat exchanger is connected via piping to return to the refrigerant compressor. A refrigeration system in which a part of the refrigerant reaching the exchanger is connected to a second heat exchanger of another cooling unit through a pressure equalizing pipe.
JP17255891A 1991-07-12 1991-07-12 Refrigeration equipment Expired - Fee Related JPH071135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17255891A JPH071135B2 (en) 1991-07-12 1991-07-12 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17255891A JPH071135B2 (en) 1991-07-12 1991-07-12 Refrigeration equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62176862A Division JPH076713B2 (en) 1987-07-15 1987-07-15 Operation circuit for multiple low-temperature shows

Publications (2)

Publication Number Publication Date
JPH04350488A true JPH04350488A (en) 1992-12-04
JPH071135B2 JPH071135B2 (en) 1995-01-11

Family

ID=15944083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17255891A Expired - Fee Related JPH071135B2 (en) 1991-07-12 1991-07-12 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH071135B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004797A1 (en) * 2013-04-23 2014-10-24 Axima Refrigeration France PROCESS FOR DETACHING WATER CRYSTALS ON THE INTERNAL SURFACE OF A HEAT EXCHANGER WITHOUT REMOVING THE TEMPERATURE OF THE FRIGOPORATOR AT THE ENTRY OF THE EXCHANGER

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234841A (en) * 1999-02-17 2000-08-29 Sanyo Electric Co Ltd Open show case
JP2003287336A (en) * 2002-03-28 2003-10-10 Sanyo Electric Co Ltd Control device of cooler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004797A1 (en) * 2013-04-23 2014-10-24 Axima Refrigeration France PROCESS FOR DETACHING WATER CRYSTALS ON THE INTERNAL SURFACE OF A HEAT EXCHANGER WITHOUT REMOVING THE TEMPERATURE OF THE FRIGOPORATOR AT THE ENTRY OF THE EXCHANGER
EP2799795A1 (en) * 2013-04-23 2014-11-05 Michel Leprieur Method for detaching hydrous crystals from the inner surface of a heat exchanger without raising the temperature of the cooling medium at the intake of the heat exchanger

Also Published As

Publication number Publication date
JPH071135B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
US4964281A (en) Low-temperature showcase
CN104613697B (en) Refrigerator
US20110271703A1 (en) Refrigerator
JPH09509732A (en) Tandem cooling system
EP1859211A1 (en) Bottle cooler defroster and methods
EP1118823B1 (en) Two-refrigerant refrigerating device
CZ301186B6 (en) Vapor compression system and operating mode thereof
US20080016896A1 (en) Refrigeration system with thermal conductive defrost
KR101962878B1 (en) Chilling system using waste heat recovery by chiller discharge gas
JPH04350488A (en) Refrigerating plant
CN113983733B (en) Refrigerator and refrigeration control method thereof
KR102295155B1 (en) A refrigerator
JP2547703B2 (en) Refrigeration equipment
CN110793246A (en) Hot gas defrosting system and hot gas defrosting method
JPH076713B2 (en) Operation circuit for multiple low-temperature shows
CN112728800A (en) Air conditioner
CN219318745U (en) Refrigerator with a refrigerator body
JPS6222396B2 (en)
JPH0663692B2 (en) Low temperature showcase
JPH01314875A (en) Operation method for freezing device
KR950004396Y1 (en) Arrangement for vaporising residuum of liquid refrigerant
JPH11142044A (en) Multiple refrigerator
JPS58217177A (en) Cooling device
JPS5888563A (en) Cooling device
JPH04353374A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees