JPH04350188A - Countercurrent electrolytic reaction vessel - Google Patents

Countercurrent electrolytic reaction vessel

Info

Publication number
JPH04350188A
JPH04350188A JP3020913A JP2091391A JPH04350188A JP H04350188 A JPH04350188 A JP H04350188A JP 3020913 A JP3020913 A JP 3020913A JP 2091391 A JP2091391 A JP 2091391A JP H04350188 A JPH04350188 A JP H04350188A
Authority
JP
Japan
Prior art keywords
reaction chamber
reaction
hydrogen
diaphragm
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3020913A
Other languages
Japanese (ja)
Other versions
JP3369192B2 (en
Inventor
Tetsuyuki Konishi
哲之 小西
Yuji Naruse
成瀬 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP02091391A priority Critical patent/JP3369192B2/en
Publication of JPH04350188A publication Critical patent/JPH04350188A/en
Application granted granted Critical
Publication of JP3369192B2 publication Critical patent/JP3369192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To save the requisite power and to realize a high-efficiency reaction vessel by countercurrently circulating an oxidizing agent and a reducing agent on both sides of a diaphragm in the vessel. CONSTITUTION:Steam is introduced into a reaction vessel from an inlet 21 and reduced in a cathodic reaction chamber 23, and hydrogen is discharged from a product outlet 22. Meanwhile, carbon monoxide as a reducing agent is introduced from an inlet 24, oxidized in an anodic reaction chamber 26 and allowed to flow in the opposite direction to the steam. The oxygen extracted from steam on the cathode is passed through an electrolyte diaphragm 27 and used to oxidize CO on the anode. At this time, although the hydrogen concn. is increased in the cathodic reaction chamber 23, oxygen moves spontaneously since there is more than the equilibrium concn. of oxygen in the anodic reaction chamber 26 at all times.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、向流式電解反応槽に
関するものである。さらに詳しくは、この発明は、酸化
還元反応を高効率で、節約した電力で電解反応として実
施することのできる改良された電解反応槽に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a countercurrent electrolytic reaction tank. More particularly, this invention relates to an improved electrolytic reactor in which redox reactions can be carried out as electrolytic reactions with high efficiency and with conserved power.

【0002】0002

【従来の技術】一般の酸化還元反応を行う反応装置では
反応生成物が混合して得られ、また平衡反応の場合では
未反応の原料も製品に混合する。これを図1として、水
性ガス平衡反応を利用した水蒸気からの水素の製造を例
にとって説明すると、反応器入口(1)には水蒸気と一
酸化炭素が供給され、所定平衡反応の結果水蒸気の一部
が還元されて水素、水蒸気、一酸化炭素、二酸化炭素の
混合物が反応器出口(2)より製品流として得られる。 反応器(3)において酸化還元反応が進行する。一方電
解質を固定して隔膜として利用する電解反応装置におい
ては、図2に例示したように、原料水蒸気は反応器入口
(11)より、陰極反応室(13)へ供給され、反応器
出口(12)より製品水素として流出する。水蒸気中の
酸素はイオンとして固体電解質隔膜(17)中を移動し
、陽極上で一酸化炭素を還元する。陽極反応室(16)
には一酸化炭素が還元剤入口(14)より供給され、酸
化物出口(15)より二酸化炭素が排出される。 すなわち、隔膜(17)の一方の陽極上で酸化反応、他
方で還元反応を行い、それぞれの反応生成物を分離した
状態で得ることができる。この電解法においては、電極
間に電力を供給することにより、化学平衡からは期待で
きない反応を行うこともできる。しかしながら、このよ
うな従来法としては、わずかに固体電解質電解槽を利用
した水蒸気の電解において還元剤を使用する着想が見ら
れるのみである。反応は熱力学的な平衡までしか自発的
には進まないため、高い反応効率を得るためには、すな
わち大部分の水蒸気を分解して水素にするためには、電
力を電極間に供給して強制的に酸素イオンを移動しなけ
ればならない。また、きわめて高い効率を得るためには
高い電解電圧が必要であり、不経済である上に、電解や
電解質の酸化還元反応が起こって反応槽を損傷する恐れ
がある。したがって、通常は製品に未反応の水蒸気と水
素の混合物が、また一方陽極側からは一酸化炭素と二酸
化炭素の混合物が得られる結果となり、さらに後段での
分離工程が必要であったり、原料の無駄を生じることに
なる。
2. Description of the Related Art In a general reactor for performing a redox reaction, reaction products are mixed together, and in the case of an equilibrium reaction, unreacted raw materials are also mixed into the product. To explain this using Figure 1 as an example of the production of hydrogen from water vapor using a water gas equilibrium reaction, water vapor and carbon monoxide are supplied to the reactor inlet (1), and as a result of a predetermined equilibrium reaction, the water vapor is part is reduced and a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide is obtained as a product stream at the reactor outlet (2). A redox reaction proceeds in the reactor (3). On the other hand, in an electrolytic reaction apparatus in which an electrolyte is fixed and used as a diaphragm, as illustrated in FIG. ) flows out as product hydrogen. Oxygen in the water vapor moves as ions through the solid electrolyte membrane (17) and reduces carbon monoxide on the anode. Anode reaction chamber (16)
Carbon monoxide is supplied from the reducing agent inlet (14), and carbon dioxide is discharged from the oxide outlet (15). That is, an oxidation reaction is performed on one anode of the diaphragm (17), and a reduction reaction is performed on the other, and the respective reaction products can be obtained in a separated state. In this electrolytic method, by supplying electric power between the electrodes, reactions that cannot be expected from chemical equilibrium can be performed. However, as such conventional methods, only a few ideas have been found for using a reducing agent in the electrolysis of water vapor using a solid electrolyte electrolytic cell. Since the reaction can only proceed spontaneously until it reaches thermodynamic equilibrium, in order to obtain high reaction efficiency, that is, to decompose most of the water vapor into hydrogen, it is necessary to supply electricity between the electrodes. Oxygen ions must be forcibly moved. Furthermore, in order to obtain extremely high efficiency, a high electrolytic voltage is required, which is not only uneconomical but also causes damage to the reaction vessel due to electrolysis and redox reactions of the electrolyte. Therefore, the result is usually a mixture of unreacted water vapor and hydrogen in the product, while a mixture of carbon monoxide and carbon dioxide is obtained from the anode side, requiring further separation steps or removing raw materials. This will result in waste.

【0003】0003

【発明が解決しようとする問題点】この発明は、以上の
通りの電解質を隔膜として利用する電解反応槽において
従来装置の欠点を解消し、それぞれの酸化還元反応を高
率で行う一方、必要とする電力を大幅に節減し、また電
圧供給にともなう電解槽の劣化を防止することのできる
改良された電解反応槽を提供することを目的としている
[Problems to be Solved by the Invention] The present invention solves the drawbacks of the conventional apparatus in an electrolytic reaction tank that uses an electrolyte as a diaphragm as described above, performs each redox reaction at a high rate, and at the same time does not meet the necessary requirements. The object of the present invention is to provide an improved electrolytic reaction cell that can significantly reduce the amount of power used and prevent deterioration of the electrolytic cell due to voltage supply.

【0004】0004

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、電解質隔膜を有する電解反応槽
であって、槽内の隔膜の両側に酸化剤、還元剤の反応物
質を各々逆方向に向流流通させる流通系を形成してなる
ことを特徴とする向流式電解反応槽を提供する。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides an electrolytic reaction tank having an electrolyte diaphragm, in which reactants of an oxidizing agent and a reducing agent are placed on both sides of the diaphragm in the tank. Provided is a countercurrent electrolytic reaction tank characterized by forming a flow system that allows countercurrent flow in opposite directions.

【0005】すなわち、この発明は、電解反応槽を、電
解質隔膜とそれにより隔離された陽極室、陰極室の二つ
の細長い反応室で構成し、陰極室に酸化剤、陽極室に還
元剤を逆方向に向流流通させ、イオンを自発的に電解質
中を移動せしめるとともに、それぞれの反応室出口から
は未反応物質を含まない高濃度の所定製品を得んとする
ものである。
That is, the present invention comprises an electrolytic reaction tank consisting of two elongated reaction chambers, an anode chamber and a cathode chamber, separated by an electrolyte diaphragm, and an oxidizing agent in the cathode chamber and a reducing agent in the anode chamber. The purpose is to cause ions to spontaneously move through the electrolyte by causing countercurrent flow in the electrolyte, and to obtain a high-concentration product containing no unreacted substances from the outlet of each reaction chamber.

【0006】この発明による電解反応槽を、前述の酸素
イオン導電固体電解質と水性ガス反応を例にとって図3
によって説明すると、原料である水蒸気は反応槽の原料
入口(21)より供給され、陰極で還元されながら陰極
反応室(23)中を流れ、製品出口(22)より製品の
水素として流出する。一方還元剤である一酸化酸素は、
還元剤入口(24)より供給され、陽極反応室(26)
で酸化されながら水蒸気と逆方向に流れ、酸化物出口(
25)より放出される。陰極で水蒸気から抽出された酸
素はイオンとして電解質隔膜(27)中を流れ、陽極で
一酸化炭素を酸化する。このとき、陰極反応室(23)
では流れに沿って水蒸気濃度が減少して水素濃度が増加
するが、陰極反応室(23)に対応する部分の陽極反応
室(26)には常に平衡濃度以上の一酸化炭素が存在す
るため、酸素の移動は陰極から陽極へ自発的に進行する
。陰極反応室(23)出口においても対応する陽極上が
ほぼ純粋な一酸化炭素であるため、わずかな残留水蒸気
も還元され、水蒸気から水素へのほぼ完全な転換が、電
力を要せずして行われる。一方、対応する化学当量の一
酸化炭素が陽極反応室(26)に供給されるとき、この
二酸化炭素への転換もまたほぼ完全に行われる。これは
理論的には化学平衡の平衡定数によらず、達成すること
が可能である。
[0006] The electrolytic reaction tank according to the present invention is shown in FIG.
To explain this, water vapor, which is a raw material, is supplied from the raw material inlet (21) of the reaction tank, flows through the cathode reaction chamber (23) while being reduced at the cathode, and flows out as product hydrogen from the product outlet (22). On the other hand, oxygen monoxide, which is a reducing agent,
Supplied from the reducing agent inlet (24), the anode reaction chamber (26)
The water vapor flows in the opposite direction while being oxidized at the oxide outlet (
25). Oxygen extracted from water vapor at the cathode flows as ions through the electrolyte membrane (27) and oxidizes carbon monoxide at the anode. At this time, the cathode reaction chamber (23)
In this case, the water vapor concentration decreases and the hydrogen concentration increases along the flow, but in the anode reaction chamber (26) corresponding to the cathode reaction chamber (23), carbon monoxide always exists at an equilibrium concentration or higher. The movement of oxygen proceeds spontaneously from the cathode to the anode. Since almost pure carbon monoxide is present on the corresponding anode at the outlet of the cathode reaction chamber (23), even a small amount of residual water vapor is reduced, and almost complete conversion of water vapor to hydrogen can be achieved without the need for electricity. It will be done. On the other hand, when the corresponding stoichiometric amount of carbon monoxide is fed into the anode reaction chamber (26), this conversion to carbon dioxide also takes place almost completely. Theoretically, this can be achieved regardless of the equilibrium constant of chemical equilibrium.

【0007】陽極と陰極は、電気的に短絡するか、また
は補助電源を接続する。この回路には、反応量に応じた
電流が流れる。反応が電解質の抵抗などにより十分進行
しないときは外部電力を供給する必要があるが、電圧は
きわめて微小ですむため消費電力は少なく、また電極や
電解質の望ましくない反応による損傷の恐れは少ない。 また反応が十分自発的に進行する場合は、逆にこの回路
から電力を取り出すことも可能である。これを積極的に
利用して本装置を燃料電池とする場合、本発明の効用と
して、燃料及び酸化剤の利用効率が高く、つまり未利用
のまま排出される燃料や酸化剤の量が減少する効果が期
待できる。
[0007] The anode and cathode are electrically shorted or connected to an auxiliary power source. A current flows through this circuit according to the amount of reaction. If the reaction does not proceed sufficiently due to the resistance of the electrolyte, it is necessary to supply external power, but since the voltage is extremely small, power consumption is low, and there is little risk of damage to the electrodes or electrolyte due to undesirable reactions. If the reaction proceeds sufficiently spontaneously, it is also possible to extract electricity from this circuit. If this is actively used to make this device into a fuel cell, the effect of the present invention is that the utilization efficiency of fuel and oxidizer is high, that is, the amount of fuel and oxidizer discharged unused is reduced. You can expect good results.

【0008】この発明に使用できる電解質隔膜としては
、アルミナ、ジルコニア、チタニア等の酸化物、それら
の複合物等の適宜なものが例示される。以下、実施例を
示してさらに詳しくこの発明の電解反応槽について説明
する。
Examples of the electrolyte membrane that can be used in the present invention include oxides of alumina, zirconia, titania, etc., and composites thereof. EXAMPLES Hereinafter, the electrolytic reaction vessel of the present invention will be described in more detail with reference to Examples.

【0009】[0009]

【実施例】図4に、この発明を適用した電解反応槽の実
施例を示す。この例においては、電解質隔膜(37)に
高温で作動する安定化ジルコニアセラミックス、電極に
白金を使用し、反応として水蒸気の水素への還元と重水
素の酸化を行った。反応物質(水蒸気、水素)はセラミ
ックス管の内側および外側を流通した。水蒸気は原料入
口(31)より、また、重水素は、還元剤入口(34)
より導入した。陰極反応室(33)での反応によって生
成した水素は製品出口(32)より回収し、重水は酸化
物出口(35)より放出した。外部電力はほとんど必要
としなかった。
[Embodiment] FIG. 4 shows an embodiment of an electrolytic reaction tank to which the present invention is applied. In this example, stabilized zirconia ceramics that operate at high temperatures were used for the electrolyte diaphragm (37), platinum was used for the electrodes, and the reactions involved reducing water vapor to hydrogen and oxidizing deuterium. Reactants (water vapor, hydrogen) flowed inside and outside the ceramic tube. Steam is supplied from the raw material inlet (31), and deuterium is supplied from the reducing agent inlet (34).
It was introduced more. Hydrogen produced by the reaction in the cathode reaction chamber (33) was recovered from the product outlet (32), and heavy water was discharged from the oxide outlet (35). Almost no external power was required.

【0010】この条件において水蒸気の水素への還元と
、重水素の酸化が同時に、しかもわずかな電圧で行える
ことが実験的に確認された。
It has been experimentally confirmed that under these conditions, the reduction of water vapor to hydrogen and the oxidation of deuterium can be performed simultaneously and with a small voltage.

【0011】[0011]

【発明の効果】この発明により、以上詳しく説明した通
り、高効率での酸化還元反応が節約された電力によって
実施される。
According to the present invention, as explained in detail above, redox reactions can be carried out with high efficiency using saved electric power.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】従来の一般的酸化還元反応を例示したブロック
図である。
FIG. 1 is a block diagram illustrating a conventional general redox reaction.

【図2】従来の電解反応槽を示したブロック図である。FIG. 2 is a block diagram showing a conventional electrolytic reaction tank.

【図3】この発明の電解反応槽を例示したブロック図で
ある。
FIG. 3 is a block diagram illustrating an electrolytic reaction tank of the present invention.

【図4】この発明の実施例としての電解反応槽を例示し
たブロック図である。
FIG. 4 is a block diagram illustrating an electrolytic reaction tank as an example of the present invention.

【符号の説明】[Explanation of symbols]

1  反応器入口 2  反応器出口 3  反応器 11  反応器入口 12  反応器出口 13  陰極反応室 14  還元剤入口 15  酸化物出口 16  陽極反応室 17  固体電解質隔膜 21,31  原料入口 22,32  製品出口 23,33  陰極反応室 24,34  還元剤入口 25,35  酸化物出口 26,36  陽極反応室 27,37  電解質隔膜 1 Reactor inlet 2 Reactor outlet 3 Reactor 11 Reactor inlet 12 Reactor outlet 13 Cathode reaction chamber 14 Reducing agent inlet 15 Oxide outlet 16 Anode reaction chamber 17 Solid electrolyte diaphragm 21, 31 Raw material inlet 22, 32 Product outlet 23, 33 Cathode reaction chamber 24, 34 Reducing agent inlet 25, 35 Oxide outlet 26, 36 Anode reaction chamber 27, 37 Electrolyte diaphragm

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電解質隔膜を有する電解反応槽であっ
て、槽内の隔膜の両側に酸化剤、還元剤の反応物質を各
々逆方向に向流流通させる流通系を形成してなることを
特徴とする向流式電解反応槽。
[Claim 1] An electrolytic reaction tank having an electrolyte diaphragm, characterized in that a flow system is formed on both sides of the diaphragm in the tank to allow reactants, oxidizing agent and reducing agent, to flow countercurrently in opposite directions. Countercurrent electrolytic reaction tank.
JP02091391A 1991-02-14 1991-02-14 Countercurrent electrolytic reactor Expired - Lifetime JP3369192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02091391A JP3369192B2 (en) 1991-02-14 1991-02-14 Countercurrent electrolytic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02091391A JP3369192B2 (en) 1991-02-14 1991-02-14 Countercurrent electrolytic reactor

Publications (2)

Publication Number Publication Date
JPH04350188A true JPH04350188A (en) 1992-12-04
JP3369192B2 JP3369192B2 (en) 2003-01-20

Family

ID=12040466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02091391A Expired - Lifetime JP3369192B2 (en) 1991-02-14 1991-02-14 Countercurrent electrolytic reactor

Country Status (1)

Country Link
JP (1) JP3369192B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078160A1 (en) * 2004-02-18 2005-08-25 Ebara Corporation Process for producing hydrogen and apparatus therefor
WO2005078159A1 (en) * 2004-02-18 2005-08-25 Ebara Corporation Method and apparatus for producing hydrogen
JP2005232525A (en) * 2004-02-18 2005-09-02 National Institute Of Advanced Industrial & Technology Apparatus for electrolyzing high-temperature steam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078160A1 (en) * 2004-02-18 2005-08-25 Ebara Corporation Process for producing hydrogen and apparatus therefor
WO2005078159A1 (en) * 2004-02-18 2005-08-25 Ebara Corporation Method and apparatus for producing hydrogen
JP2005232525A (en) * 2004-02-18 2005-09-02 National Institute Of Advanced Industrial & Technology Apparatus for electrolyzing high-temperature steam
JP4512788B2 (en) * 2004-02-18 2010-07-28 独立行政法人産業技術総合研究所 High temperature steam electrolyzer

Also Published As

Publication number Publication date
JP3369192B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US4673473A (en) Means and method for reducing carbon dioxide to a product
USRE37042E1 (en) Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane
CA1330317C (en) Treating with chlorine dioxide produced from chlorate salt
US5454923A (en) Inert gas purifying system
US20150315713A1 (en) Production of Low Temperature Electrolytic Hydrogen
US4528083A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
US3318735A (en) Fuel cell employing internal primary oxidant regeneration
KR20180019526A (en) Co-processing of carbon dioxide and hydrogen sulphide
JPS5910431B2 (en) Method of producing sulfuric acid from sulfur dioxide
KR20170026967A (en) Carbon Capture Utilization System
EP0972855B1 (en) Method and apparatus for ammonia synthesis at atmospheric pressure
WO2018029994A1 (en) Hydrogen processing device
US4239607A (en) Electrochemical chlorine production process
Karagiannakis et al. Hydrogenation of carbon dioxide on copper in a H+ conducting membrane-reactor
JP3369192B2 (en) Countercurrent electrolytic reactor
JP3581011B2 (en) Electrochemical reactor
JPH11226576A (en) Method and apparatus for treating wastewater
US5071516A (en) Process for converting ionic valence number
JP2005232525A (en) Apparatus for electrolyzing high-temperature steam
KR100564062B1 (en) The apparatus for hybrid mediated oxidation of destroying organic wastes
US3306832A (en) Multistage process for the concentration of heavy water in feed water comprising a mixture of water and heavy water
EP0771759B1 (en) Process for the electrolytic separation of oxygen from its mixtures and equipment for implementing such process
Konishi et al. Development of electrolytic reactor for processing of gaseous tritiated compounds
JPH03140487A (en) Electrochemical reactor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9