JPH04349993A - Operation of endless water channel - Google Patents

Operation of endless water channel

Info

Publication number
JPH04349993A
JPH04349993A JP3035431A JP3543191A JPH04349993A JP H04349993 A JPH04349993 A JP H04349993A JP 3035431 A JP3035431 A JP 3035431A JP 3543191 A JP3543191 A JP 3543191A JP H04349993 A JPH04349993 A JP H04349993A
Authority
JP
Japan
Prior art keywords
waterway
aeration device
installation angle
aeration
endless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3035431A
Other languages
Japanese (ja)
Other versions
JPH07196B2 (en
Inventor
Koichi Mizuta
耕市 水田
Hideaki Hamada
英明 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP3035431A priority Critical patent/JPH07196B2/en
Publication of JPH04349993A publication Critical patent/JPH04349993A/en
Publication of JPH07196B2 publication Critical patent/JPH07196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To adjust the installation angle of an aeration device installed in an endless water channel and thereby mix dirty water in the channel uniformly. CONSTITUTION:An aeration device 2 is installed in an endless water channel 13. In addition, a detection sensor 3 is installed in the water channel 13, and a mixed stirring state in the water channel is detected using the detection sensor 3. The installation angle of the aeration device is adjusted based on the detection information to mix the dirty water uniformly in the water channel.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は無終端水路に設置したる
曝気装置の設置角度を調節して水路内の汚水を均一に混
合する運転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operating method for uniformly mixing sewage in an endless waterway by adjusting the installation angle of an aeration device installed in the waterway.

【0002】0002

【従来の技術】下水汚水、産業廃棄汚水等の有機物を含
有する汚水の処理に際しては長円形の循環水路、二重円
形水路の如く、いわゆる無終端水路を形成した曝気槽に
曝気装置を設置し、この槽内の汚水中に空気中の酸素を
連続的に供給しつつ汚水を混合撹拌して曝気、すなわち
好気性発酵処理を行う方法が提案されている。
[Prior Art] When treating sewage containing organic matter such as sewage sewage and industrial waste sewage, an aeration system is installed in an aeration tank that has a so-called endless waterway, such as an oblong circulation waterway or a double circular waterway. A method has been proposed in which the sewage is mixed and stirred while continuously supplying oxygen from the air to the sewage in this tank to carry out aeration, that is, an aerobic fermentation process.

【0003】従来、下水処理は大都市において標準活性
汚泥法が中心となって普及してきたが、今日、地方の中
小都市に移行しつつある。地方においては技術者が少な
いため処理方式は簡便で、安定した処理水質替えられ、
かつ観光シーズン等で影響される流入汚水量の変動に対
応できる処理方式が望まれている。このような状況の中
で円形、叉は長円形の無終端水路を有するオキシデーシ
ョンディッチ法は上記ニーズにマッチするものであり、
着実に地方へ普及している。一般にオキシデーションデ
ィッチ法に限らず、活性汚泥法は好気性硝化を行うため
、曝気機による空気の供給と汚性汚泥を汚水と接触させ
るための撹拌流速が必要である。この撹拌流速は通常、
底部流速が10cm/sec以上、必要とされており、
これ以下の流速となると活性汚泥が堆積してしまう。ま
た、水路内外周に流速差を生じた場合、流速の遅い側へ
活性汚泥が集中して活性汚泥勾配が形成され、完全混合
系とはならないし、極端な場合にはその粘性により、活
性汚泥は堆積してしまい、十分な水処理が期待できない
Conventionally, the standard activated sludge method has been widely used for sewage treatment in large cities, but today it is shifting to small and medium-sized cities in rural areas. Since there are few engineers in rural areas, the treatment method is simple, stable treated water quality can be changed,
In addition, a treatment method that can respond to fluctuations in the amount of inflowing sewage affected by tourist seasons, etc. is desired. Under these circumstances, the oxidation ditch method, which has a circular, or oval, endless waterway, meets the above needs.
It is steadily spreading to rural areas. In general, not only the oxidation ditch method but also the activated sludge method performs aerobic nitrification, so it requires an aerator to supply air and a stirring flow rate to bring dirty sludge into contact with wastewater. This stirring flow rate is usually
A bottom flow velocity of 10 cm/sec or more is required,
If the flow rate is lower than this, activated sludge will accumulate. In addition, if there is a difference in flow velocity between the inner and outer circumferences of the waterway, activated sludge will concentrate on the side with a slower flow velocity and an activated sludge gradient will be formed, which will not result in a complete mixing system, and in extreme cases, due to the viscosity, activated sludge will accumulate, and sufficient water treatment cannot be expected.

【0004】0004

【発明が解決しようとする課題】無終端水路における曝
気装置の設置角度は曝気装置の流速特性、動力特性等よ
り総合的見地から決定している。しかし横軸曝気装置は
大型で、かつ両軸端を水路の両端に固定するため、一度
設置するとその設置角度の変更は難しい。けれども実運
転において、無終端水路に供給される汚水の流量、水質
、曝気槽内の活性汚泥量が刻々と変化して量側特性が変
化してもその撹拌、曝気特性はその流速特性に対応して
変化することなく一定であるため、汚泥が水路底部に堆
積、圧密して良好な汚水処理が行われない欠点がある。
[Problems to be Solved by the Invention] The installation angle of the aeration device in an endless waterway is determined from a comprehensive viewpoint based on the flow velocity characteristics, power characteristics, etc. of the aeration device. However, since the horizontal shaft aeration device is large and has both shaft ends fixed to both ends of the waterway, it is difficult to change the installation angle once it is installed. However, in actual operation, even if the flow rate of sewage supplied to the endless waterway, the water quality, and the amount of activated sludge in the aeration tank change from moment to moment, and the volume characteristics change, the stirring and aeration characteristics correspond to the flow rate characteristics. Since the sludge remains constant without changing, it has the disadvantage that sludge accumulates at the bottom of the waterway and is compacted, resulting in poor sewage treatment.

【0005】本発明は水路内の混合撹拌状況を常に検知
し、その検知情報に対応して曝気装置の設置角度を調節
し、常に水路内を均一に混合撹拌し、最適な汚水処理を
行うことを目的とする。
[0005] The present invention constantly detects the mixing and agitation situation in the waterway, adjusts the installation angle of the aeration device in accordance with the detected information, and constantly mixes and stirs the waterway uniformly to perform optimal wastewater treatment. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するためになしたもので、無終端水路内に曝気装置を設
置して水処理を行う設備において、水路内に設置したる
検知センサーにて水路内の混合撹拌状況を検知し、この
検知情報に基づいて前記曝気装置の設置角度を調節し、
水路内の汚水を均一に混合させるようになしたことを要
旨とする。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and includes a detection sensor installed in an endless waterway in equipment for water treatment by installing an aeration device in an endless waterway. detecting the mixing and stirring situation in the waterway, and adjusting the installation angle of the aeration device based on this detection information,
The gist is that the wastewater in the waterway is mixed uniformly.

【0007】[0007]

【作用】長円形、あるいは円形の無終端水路は流線が外
周部に集まるため内周部の流速が遅く外周部が速い。こ
の内外周の均一化をより省エネ運転で実現するため、水
路内の内外周の少なくとも2ヶ所に流速計、汚泥濃度計
、DO計等の混合撹拌検知用センサーを設け、その信号
情報により曝気装置の設置角度を適宜調節して混合撹拌
を均一に行えるよう、内外周の底部流速比、汚泥濃度比
、DO比等により運転する。
[Operation] In an elliptical or circular endless waterway, streamlines gather at the outer periphery, so the flow velocity is slow at the inner periphery and faster at the outer periphery. In order to achieve this uniformity of the inner and outer peripheries with more energy-saving operation, sensors for mixing and agitation detection such as flow meters, sludge concentration meters, and DO meters are installed at at least two locations on the inner and outer peripheries of the waterway, and the aeration equipment uses the signal information from these sensors to detect mixing and stirring. The operation is performed by adjusting the bottom flow velocity ratio of the inner and outer peripheries, sludge concentration ratio, DO ratio, etc. so that mixing and agitation can be performed uniformly by adjusting the installation angle of the sludge as appropriate.

【0008】[0008]

【実施例】以下本発明を図示の実施例に基づいて説明す
る。図1に示すものは無終端水路が円形をなした二重円
形曝気槽を用いた実施例である。図において1は二重円
形曝気槽で、これは小径の円周壁11と大径の外周12
を同心上にして配設し、この内外両周壁11,12間に
所要幅と深さを有する循環水路13を形成する。2は自
吸式スクリュー形の曝気装置で、図2に詳示するように
モータ22に直結される中空シャフト23とこのシャフ
ト23の先端に設けるスクリュー24とにより構成され
、スクリューの回転により水流を起こすとともに、それ
に伴って発生するスクリュー先端部の負圧を利用して空
気を中空シャフトを介して吸引し、汚水中に微細気泡と
して供給させ、気泡を水中に効率的に溶け込むようにな
したものである。曝気装置2は前記水路13の上部を横
切るように配設された取付フレーム21に設けるが、前
記モータ及び中空シャフトをカバーにて覆い、このカバ
ーを介してモータ等をフレームに取付角度調整器25を
介して取り付ける。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the illustrated embodiments. What is shown in FIG. 1 is an embodiment using a double circular aeration tank with a circular endless water channel. In the figure, 1 is a double circular aeration tank, which has a small diameter circumferential wall 11 and a large diameter outer periphery 12.
are arranged concentrically, and a circulation waterway 13 having a required width and depth is formed between the inner and outer peripheral walls 11 and 12. Reference numeral 2 denotes a self-priming screw type aeration device, which is composed of a hollow shaft 23 directly connected to a motor 22 and a screw 24 installed at the tip of this shaft 23, as shown in detail in FIG. At the same time, the negative pressure generated at the tip of the screw is used to suck air through a hollow shaft and supply it as fine bubbles into the wastewater, so that the bubbles are efficiently dissolved in the water. It is. The aeration device 2 is installed on a mounting frame 21 disposed across the upper part of the water channel 13, the motor and hollow shaft are covered with a cover, and the motor etc. are mounted on the frame through this cover with an angle adjuster 25. Attach via.

【0009】また水路13内には少なくともその内周側
と外周側にそれぞれ混合撹拌検知センサー3,3を取り
付ける。この混合撹拌検知センサー3としては流速計、
汚泥濃度計、DO計等が採用され、時にはこの二種以上
を使用する。
Further, mixing and stirring detection sensors 3, 3 are installed in the water channel 13 at least on its inner and outer circumferential sides, respectively. The mixing and stirring detection sensor 3 includes a current meter,
Sludge concentration meters, DO meters, etc. are used, and sometimes two or more of these are used.

【0010】次に図3に示す実験設備及び測定位置に基
づいて説明する。この実験設備は1日約600立方メー
トルの処理能力を有する二重円形式オキシデーションデ
ィッチで、曝気装置の設置を半径方向に垂直に交わる設
置角度を0゜とし、以後、設置角度を順次内周側に角度
変更した。混合撹拌状態(流速及び活性汚泥濃度)測定
はA〜D断面のそれぞれに設けたa〜dの合計20ヶ所
の測定口で、動力は曝気装置の機測板で行った。
Next, a description will be given based on the experimental equipment and measurement positions shown in FIG. This experimental equipment is a double circular oxidation ditch with a processing capacity of approximately 600 cubic meters per day, and the aeration equipment is installed at an angle of 0° perpendicular to the radial direction, and thereafter the installation angle is gradually increased toward the inner circumference. The angle was changed to . The mixing and agitation state (flow rate and activated sludge concentration) was measured using a total of 20 measurement ports a to d provided on each of the cross sections A to D, and the power was provided by a mechanical measuring plate of the aeration device.

【0011】〈結果〉 (1)全低部平均流速は曝気装置の設置角度θを大きく
して内周側に向けるほど速くなりθ=31゜の時、最大
でありθ=45゜に至って頭打ち状態となった(図4)
。 (2)曝気槽内の底部流速分布は内周側が遅く外周側が
速い(図5)。 (3)底部平均流速の内周側バランスはθが大きくなる
に従って均一化され、θ=45゜の時、内外比(a:d
)は1:1.4となり、最も完全混合に近い状態となっ
た(図5)。 (4)曝気槽内の活性汚泥濃度はθ=31゜の時、ほぼ
均一となっているが、θ=6゜の時、槽内平均値810
mg/lに対して内周側は8000mg/l以上と高く
汚泥が堆積し、外周側は平均値以下となって完全混合が
なされていない。 (5)動力はθが大きくなるに従って増加した。θ=4
5゜の時、軸動力は3.73Kwとなりモータの定格値
3.7Kw以上となった(図7)。
<Results> (1) The average flow velocity of the entire lower part becomes faster as the installation angle θ of the aeration device is increased and it is directed toward the inner circumference, reaching a maximum when θ = 31° and reaching a plateau at θ = 45°. (Figure 4)
. (2) The flow velocity distribution at the bottom of the aeration tank is slow on the inner circumference side and faster on the outer circumference side (Figure 5). (3) The inner balance of the average flow velocity at the bottom becomes more uniform as θ increases, and when θ=45°, the inner/outer ratio (a:d
) was 1:1.4, which was the closest to complete mixing (Figure 5). (4) The activated sludge concentration in the aeration tank is almost uniform when θ = 31°, but when θ = 6°, the average value in the tank is 810.
With respect to mg/l, sludge is deposited at a high level of 8000 mg/l or more on the inner peripheral side, and the sludge is below the average value on the outer peripheral side, so complete mixing is not achieved. (5) Power increased as θ increased. θ=4
At 5°, the shaft power was 3.73Kw, which exceeded the motor's rated value of 3.7Kw (Figure 7).

【0012】以上の特性を持つ無終端水路の曝気装置の
運転方法順位は、 (1)曝気装置の動力はモータの定格値内になるように
設置角度を調整する。 (2)安定した水処理を行うために曝気槽内を完全混合
する。 (3)ランニングコストが安価となるような運転条件と
すべきである。 となるが、実運転においては、供用開始の低濃度活性汚
泥時には全般的に底部流速が速く、汚泥が堆積しにくい
こと、及び汚水の滞留時間が長く水処理が安定している
ことから、ただ単に内外周の流速比が等しい完全混合系
を作るために最適な曝気装置の設置角度に取り付けるの
ではなくて、ランニングコスト面をも十分重視した設置
角度となる。一方、供用開始から時間とともに発生汚水
量、及び活性汚泥濃度が増加した場合、曝気槽内ではや
がて底部流速が低下して汚泥が堆積してしまうため、こ
の時点で再度、設置角度を変更して汚泥を巻き上げ、完
全混合系を作る必要がある。本発明では、図5に示す如
く曝気槽内の内周と外周位置にに混合撹拌検知用センサ
ー(たとえば流速センサー)を取り付け、角度調節可能
な曝気装置と組み合わせて、常に完全混合が行え、かつ
安価なランニングコストとなるように曝気装置の設置角
度を調節するものである。すなわち、曝気槽の規模によ
って曝気装置の設置角度は多少差異があるが、おおむね
、0゜≦θ≦45゜の範囲であり、好ましくは内外周の
底部流速比が1:2に近似した設置角度で完全混合系が
成し得る。
[0012] The operating method for an aeration system for an endless waterway having the above characteristics is as follows: (1) Adjust the installation angle so that the power of the aeration system is within the rated value of the motor. (2) Thoroughly mix the inside of the aeration tank to ensure stable water treatment. (3) Operating conditions should be such that running costs are low. However, in actual operation, when low-concentration activated sludge is used at the beginning of service, the flow velocity at the bottom is generally high, making it difficult for sludge to accumulate, and the residence time of sewage is long, making water treatment stable. Rather than simply installing the aeration device at the optimal installation angle to create a complete mixing system with an equal flow velocity ratio between the inner and outer circumferences, the installation angle is determined with due consideration given to running costs. On the other hand, if the amount of sewage generated and the concentration of activated sludge increase over time after the start of service, the flow velocity at the bottom of the aeration tank will eventually decrease and sludge will accumulate, so at this point the installation angle should be changed again. It is necessary to stir up the sludge and create a complete mixing system. In the present invention, as shown in Fig. 5, mixing and stirring detection sensors (for example, flow rate sensors) are attached to the inner and outer positions of the aeration tank, and in combination with an angle-adjustable aeration device, complete mixing can be achieved at all times. The installation angle of the aeration device is adjusted to reduce running costs. In other words, the installation angle of the aeration device varies somewhat depending on the scale of the aeration tank, but it is generally in the range of 0°≦θ≦45°, and preferably the installation angle is such that the bottom flow velocity ratio of the inner and outer circumferences is approximately 1:2. A completely mixed system can be achieved.

【0013】このように曝気槽内の流速をリアルタイム
で測定し、曝気機にフィードバックすることにより良好
な水処理及び安価なランニングコストとなる。また運転
の自動化という観点からも処理場の無人化に近づいたシ
ステムである。本発明においては、上記実施例の如く、
内外周2つの流速センサーによる組み合わせ運転を明記
したが、簡易的には代表測定位置に設けた1つの流速セ
ンサーと曝気装置の連動運転も可能であるし、曝気槽内
の混合性を情報とする観点からは流速センサーに変わっ
て汚泥濃度センサー、またはDO濃度センサーであって
もシステムは実施可能である。また、応用分野としては
長円形の無終端水路においてもコーナー部では底部流速
が内周で遅く、外周で速く、同様の傾向となり適用可能
である。なお図8のフロ−チャ−トにおいて本発明によ
る曝気機の運転方法を示し、更に図9においては2つの
流速センサによる曝気機の設置角度を調節する方法を示
す電気ブロック図の説明図である。
[0013] In this way, by measuring the flow rate in the aeration tank in real time and feeding it back to the aerator, good water treatment and low running costs are achieved. In addition, from the perspective of automating operation, this system is close to unmanned treatment plants. In the present invention, as in the above embodiment,
Although we have specified the combined operation using two flow velocity sensors on the inner and outer circumferences, it is also possible to simply operate the aeration system in conjunction with one flow velocity sensor installed at the representative measurement position, and the mixability in the aeration tank can be used as information. From this point of view, the system can be implemented even if a sludge concentration sensor or a DO concentration sensor is used instead of the flow rate sensor. In addition, as an application field, it is also applicable to an elliptical endless waterway, where the bottom flow velocity is slow at the inner periphery and faster at the outer periphery at the corner part, and the same tendency exists. The flowchart in FIG. 8 shows a method of operating an aerator according to the present invention, and FIG. 9 is an explanatory diagram of an electrical block diagram showing a method for adjusting the installation angle of the aerator using two flow rate sensors. .

【0014】[0014]

【発明の効果】本発明による時は、水路内に混合・撹拌
検知センサーを設け、その信号情報により曝気機の設置
角度を調節して運転するようになしているため、水路内
の汚水の混合撹拌を低動力で完全に行え、汚泥が水路底
に堆積圧密することなく汚水処理が確実に行える利点を
有する。
[Effects of the Invention] According to the present invention, a mixing/agitation detection sensor is provided in the waterway, and the installation angle of the aerator is adjusted and operated based on the signal information, so that the mixing of wastewater in the waterway is prevented. It has the advantage that agitation can be performed completely with low power and sewage treatment can be performed reliably without sludge being accumulated and consolidated on the bottom of the channel.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明無終端水路の運転方法を示す平面図であ
る。
FIG. 1 is a plan view showing a method of operating an endless waterway according to the present invention.

【図2】曝気装置の説明図である。FIG. 2 is an explanatory diagram of an aeration device.

【図3】本発明の実験設備の説明図である。FIG. 3 is an explanatory diagram of the experimental equipment of the present invention.

【図4】曝気装置の設置角度と全底部平均流速との関係
を示すグラフ図である。
FIG. 4 is a graph showing the relationship between the installation angle of the aeration device and the total bottom average flow velocity.

【図5】底部流速分布図である。FIG. 5 is a bottom flow velocity distribution diagram.

【図6】汚泥濃度分布図である。FIG. 6 is a sludge concentration distribution map.

【図7】曝気装置設置角度と動力との関係図である。FIG. 7 is a diagram showing the relationship between the aeration device installation angle and power.

【図8】本発明による曝気機運転のフロ−チャ−ト図で
ある。
FIG. 8 is a flowchart of the aerator operation according to the present invention.

【図9】2つの流速センサによる検出信号にて曝気装置
の設置角度を調節する電気ブロック図である。
FIG. 9 is an electrical block diagram that adjusts the installation angle of the aeration device based on detection signals from two flow rate sensors.

【符号の説明】[Explanation of symbols]

1  無終端水路を有する曝気槽 13  水路 2  曝気装置 3  検知センサー 1 Aeration tank with endless waterway 13 Waterway 2 Aeration device 3 Detection sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  無終端水路内に曝気装置を設置して水
処理を行う設備において、水路内に設置したる検知セン
サーにて水路内の混合撹拌状況を検知し、この検知情報
に基づいて前記曝気装置の設置角度を調節し、水路内の
汚水を均一に混合させるようになしたことを特徴とする
無終端水路の運転方法。
Claim 1: In a facility that performs water treatment by installing an aeration device in an endless waterway, a detection sensor installed in the waterway detects the mixing and stirring situation in the waterway, and based on this detection information, the A method for operating an endless waterway, characterized in that the installation angle of an aeration device is adjusted to uniformly mix wastewater within the waterway.
JP3035431A 1991-02-05 1991-02-05 How to operate an endless waterway Expired - Fee Related JPH07196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3035431A JPH07196B2 (en) 1991-02-05 1991-02-05 How to operate an endless waterway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3035431A JPH07196B2 (en) 1991-02-05 1991-02-05 How to operate an endless waterway

Publications (2)

Publication Number Publication Date
JPH04349993A true JPH04349993A (en) 1992-12-04
JPH07196B2 JPH07196B2 (en) 1995-01-11

Family

ID=12441671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3035431A Expired - Fee Related JPH07196B2 (en) 1991-02-05 1991-02-05 How to operate an endless waterway

Country Status (1)

Country Link
JP (1) JPH07196B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028890A (en) * 1983-07-27 1985-02-14 Hitachi Kiden Kogyo Ltd Process for operating aeration apparatus
JPS63294997A (en) * 1987-05-27 1988-12-01 Hitachi Kiden Kogyo Ltd Method for operating aeration device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028890A (en) * 1983-07-27 1985-02-14 Hitachi Kiden Kogyo Ltd Process for operating aeration apparatus
JPS63294997A (en) * 1987-05-27 1988-12-01 Hitachi Kiden Kogyo Ltd Method for operating aeration device

Also Published As

Publication number Publication date
JPH07196B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
CN114988642B (en) Intelligent polluted water treatment system based on water quality detection indexes
CN208869449U (en) A kind of livestock breeding wastewater integrated processing system
JPH04349993A (en) Operation of endless water channel
CN208136050U (en) A kind of A2/O-MBR sewage-treatment plant
CN208120824U (en) Oxidation ditch plug flow device and oxidation ditch
JP4101349B2 (en) How to remove phosphorus in sewage
CN209721869U (en) A kind of unattended small towns sewage treatment AAO integrated pond
CN108585214A (en) A kind of the DMBR-SBR reactors and its technique of short distance nitration and Anammox integral type
CN218767923U (en) Dissolved oxygen content adjusting device based on AOA technology
JPH0414160Y2 (en)
JPS63104699A (en) Method for controlling operation of anaerobic tank by underwater stirrer
JPH0775782A (en) Membrane separator
JPH10165976A (en) Sewage water treatment apparatus
JP2000237790A (en) Nitrification method of waste water and device
CN221254225U (en) High-efficient sewage denitrification dephosphorization processing system
JP2896255B2 (en) Operating method of aeration device
JP3408699B2 (en) Sewage treatment equipment using immersion type membrane separation equipment
Charlton Biological nutrient removal applied to weak sewage
JPS5910393A (en) Method for controlling supply rate of oxygen in treating device for waste water
CN118270913B (en) Dynamic energy-saving pulsating sludge water treatment system based on aerobic fluidization reactor
JPH1177083A (en) Automatic control of operation of aeration device
JP2000084585A (en) Aerator and method for controlling operation of sludge removal pump
CN217578420U (en) Accurate online dosing system in biological denitrification system
JPH0538497A (en) Controlling method for sewage treating process
JPH02174996A (en) Mixer for sludge of aeration tank

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees