JPH0434995B2 - - Google Patents

Info

Publication number
JPH0434995B2
JPH0434995B2 JP59172986A JP17298684A JPH0434995B2 JP H0434995 B2 JPH0434995 B2 JP H0434995B2 JP 59172986 A JP59172986 A JP 59172986A JP 17298684 A JP17298684 A JP 17298684A JP H0434995 B2 JPH0434995 B2 JP H0434995B2
Authority
JP
Japan
Prior art keywords
formula
bis
macrocyclic polyether
ion
polyether diamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59172986A
Other languages
Japanese (ja)
Other versions
JPS6150972A (en
Inventor
Toshuki Shono
Keiichi Kimura
Takumi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP59172986A priority Critical patent/JPS6150972A/en
Publication of JPS6150972A publication Critical patent/JPS6150972A/en
Publication of JPH0434995B2 publication Critical patent/JPH0434995B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は、ビス大環状ポリエーテルジアミド誘
導体とその用途、ことにカルシウムイオン選択性
電極、カルシウムイオン選択性電界効果型トラン
ジスタ用感応膜に関する。 (ロ) 従来技術 一般にイオン選択性電極は、溶液中における特
定のイオンの活量を膜電極が示す膜電位で指示す
るようにした電極であり、pH測定用のガラス電
極はその代表的なものである。また、、イオン選
択性電界効果型トランジスタは、電界効果型トラ
ンジスタのゲート部金属を除去し、そこへイオン
感応膜を付着させた構造をしており、溶液中のイ
オン活量の変化を、トランジスタ中を流れる電流
値の変化として測定するものであり、超小型化が
可能である。 ところで体液中のカルシウムは、カルシウムイ
オン(Ca2+)の型で存在するものと、蛋白質等
に結合したものとに分かれるが、特に遊離の
Ca2+は、細胞の浸透圧調整、血液凝固、酵素の
活性化、細胞呼吸の活性化等、生体機能の維持に
きわめて重要な役割を果たしている。 また体液中、特に血液中のCa2+濃度は、正常
な状態では一定の狭い範囲(約4.4〜5.1meq/L)
であり、この濃度の変化は、骨髄腫、急性骨萎
縮、骨結核、癌骨転移、副甲状腺機能亢進症、尿
毒症、腎硬化症、腎水腫、ネフローゼ、急性膵
炎、クル病、骨軟化症等、数多くの疾患において
重要は情報となるため、その測定意義はきわめて
大きい。 現在カルシウムの分析方法としては滴定法、o
−クレゾールフタレインコンプレキソン等を用い
る比色法、炎光法、原子吸光法が用いられている
が、これらの方法はすべて総カルシウム量の測定
法であり、遊離したCa2+のみの測定は除蛋白、
透析などの煩雑な処理を必要とし、時間がかかる
上、嫌気状態で行う必要であり、きわめて困難で
ある。 これに対しイオン選択性電極やイオン選択性電
界効果型トランジスタ等のイオンセンサーを用い
る方法は、さきに述べた様にきわめて大きな測定
意義を持つこの遊離したCa2+のみの濃度を迅速
に定量できるという利点を持ち、診断治療に貢献
するところがきわめて大きいと考えられる。 このためガラス膜を感応膜とするカルシウムイ
オン選択性電極や、リン酸エステルをイオン感応
物質として用いる液膜型、固体膜型のイオン選択
性電極などが開発されているが、いずれも生体中
の共存するイオンの妨害が大きく、血清等の実試
料中のCa2+の測定は困難である。このため、実
用的なカルシウムイオン選択性電極及びカルシウ
ムイオン選択性電界効果型トランジスタを得るた
めによりカルシウムイオン選択性の高いカルシウ
ムイオン感応物質が要望されている。 (ハ) 目的 本発明は、これらの問題を解決するためになさ
れたものであつて、ビス大環状ポリエーテルジア
ミド誘導体をユニートラルキヤリアーとして用
い、カルシウムイオンを簡便、迅速にかつ高選択
的、高精度で再現性よく長時間にわたつて測定す
ることができるカルシウムイオン選択性電極、お
よびカルシウムイオン選択性電界効果型トランジ
スタ用感応膜を提供することを主目的とする。 (ニ) 構成 かくして本発明によれば、 一般式(I): (式中nは1〜7の整数、R1〜R4は各々水素
原子又は炭素数1〜3のアルキル基、R5,R6
各々炭素数5〜20のアルキル基を意味する)で表
わされるビス大環状ポリエーテルジアミド誘導体
からなるイオンセンサー用感応膜が提供される。 本発明に用いるビス大環状ポリエーテルジアミ
ド誘導体は、それ自身文献未載の新規な化合物群
である。 従つて本発明によれば一般式(I)で表わされ
るビス大環状ポリエーテルジアミド誘導体も提供
される。かかる化合物は相関移動触媒の用途に用
いることも可能である。 一般式(I)で示される化合物は、例えば、一
般式Ia(式中Rは各々水素原子又は炭素数1〜3
のアルキル基、X1はハロゲン原子を意味する)
で表わされるジカルボン酸ハライドと、1,17−
ジヒドロキシ−3,15−ジアザ−6,9,12−ト
リオキサヘプタデカンとを、脱水ベンゼン中、ト
リエチルアミン存在下で反応させて化合物Ibを合
成し、 これに下記一般式Ic(式中R′は炭素数5〜20の
アルキル基、X2はハロゲン原子を意味する)で
表わされる酸ハライドを脱水クロロホルム中、ト
リエチルアミン存在下で反応させて、Idのアルキ
ル置換体Idを合成し、 さらにこのIdのうち任意のものと、下記一般式
Ie(式中nは1〜7の整数、X3はハロゲン原子を
意味する)で表わされる二塩基酸ハロゲン化物と
を、トリエチルアミン存在下、脱水クロロホルム
中で反応させて得ることができる。 本発明による感応膜は固体膜または液膜として
用いられる。固体膜は上記ビス大環状ポリエーテ
ルジアミド誘導体が支持体としての水不溶性固体
有機重合体中に均一に分散されて形成されてい
る。この重合体は、ニユートラルキヤリアーであ
るビス大環状ポリエーテルジアミド誘導体を膜状
に支持するためのマトリツクスを形成して、ニユ
ートラルキヤリアーが試料水溶液等に溶出するの
を妨げると共に、試料水溶液中のカルシウムイオ
ンがマトリツクス内に適度に拡散しうる性質を持
つことが必要で、通常ポリ塩化ビニル、シリコン
ゴム、ポリメタクリル酸エステル(例えば、ポリ
メタクリル酸メチル)などが用いられる。 ポリ塩化ビニルを支持体とする感応膜は、通常
ポリ塩化ビニルと可塑剤およびビス大環状ポリエ
ーテルジアミド誘導体を、テトラヒドロフランの
ような適当は低沸点有機溶剤に溶解し、たとえば
ペトリ皿中で溶剤を徐々に蒸発させることにより
膜状に形成される。可塑剤は得られる感応膜に適
度のたわみ性を与えるためと、ビス大環状ポリエ
ーテルジアミド誘導体が測定液中に溶出するのを
防ぐために用いられ、たとえばジオクチルフタレ
ート、o−ニトロフエニルオクチルエーテル等が
用いられる。 またシリコンゴムを支持体とする感応膜のよう
に、ビス大環状ポリエーテルジアミド誘導体と、
シリコンゴム単体と、膜を架橋するためのシラン
化合物とを適宜の有機溶剤に溶解し、膜状に重合
成形し、成形物から脱溶剤することによつても製
造しうる。 固体膜におけるビス大環状ポリエーテルジアミ
ド誘導体の含量は0.5〜20重量%、好ましくは1
〜15重量%であるこが望ましい。含量が少なすぎ
る時には応答が悪くなり、多すぎるときには重合
体中に均一に分散させることが困難で、また不経
済である。ポリ塩化ビニルを支持体とする場合の
ように可塑剤を併用するときは可塑剤は50〜70重
量%が適当である。 また液膜は、ビス大環状ポリエーテルジアミド
誘導体が水不溶性極性有機溶剤に溶解されて形成
されており、上記極性有機溶剤としては高級アル
コール、芳香族および脂肪族炭化水素のニトロ置
換体やハロゲン置換体、芳香族エーテルなどが用
いられる。好ましい具体例としては1−デカノ−
ル、ニトロベンゼン、クロロベンゼン、ジフエニ
ルエーテル、1,2−ジクロルエタン等があげら
れる。液膜におけるビス大環状ポリエーテルジア
ミド誘導体の含量は、前記と同じ理由から、0.5
〜20重量%、好ましくは1〜10重量%である。 液膜は通常セラミツクスやセルロース質の多孔
性支持体中の保有されて用いられる。フツ素樹脂
からなる多孔性フイルムも好ましい支持体の一つ
である。 本発明の一般式(I)で示されるビス大環状ポ
リエーテルジアミド誘導体は、式中のB5,R6
長鎖アルキル基を有するために、固体膜あるいは
液膜中に安定に保持され、カルシウムイオン選択
性電極やカルシウムイオン選択性電界効果型トラ
ンジスタ用のニユートラルキヤリヤーとして優れ
た性能を示すものである。 以上のように、本発明による感応膜は、一定鎖
長の連結部を持つビス大環状ポリエーテルジアミ
ド誘導体をニユートラルキヤリヤーとして用いる
ものであり、上記誘導体がナトリウムイオンやカ
リウムイオン等の妨害イオンの存在にかかわら
ず、カルシウムイオンに対して特異的かつ選択的
に安定な2:1サンドウイツチ状鎖体(大環状ポ
リエーテルジアミド環:イオンの比が2:1)を
形成するので、カルシウムイオン濃度を高い選択
性で測定することが出来、しかも応答時間も短か
く再現性にもすぐれているので、実用的価値の高
いカルシウムイオン選択性電極およびカルシウム
イオン選択性電界効果型トランジスタ用感応膜と
なるものである。 本発明の一般式(I)の化合物を感応膜として
使用する場合、nが4〜6特に5が好ましい。か
かるnの値を有する化合物が、Ca+2と安定な
2:1サンドウイツチ型錯体を形成するのに有利
な2つの大環状ポリエーテルジアミド環の間隔を
形成するものと考えられる。先にnが5の化合物
の製造法を例示したが、その際の原料であるピメ
リン酸ジクロライドに代えて、アジピン酸ジハラ
イド又はスベリン酸ジハライドを使用するとnが
4又は6の化合物を得ることができる。他の望ま
しいグループの化合物は、nが1〜3又は7を有
する化合物である。この場合も、ピメリン酸ジク
ロライドに代えて、所定の炭素数を有するジカル
ボン酸ジハライドを用いて作ることができる。 一般式(I)中のR5、R6のアルキル基は、ビ
ス大環状ポリエーテルジアミド誘導体の脂溶性と
感応膜中での保持性に影響すると考えられる。す
なわち、感応膜からビス大環状ポリエーテルジア
ミド誘導体が試料中への溶出を防止し、膜の安定
性を高め、劣化を抑えて寿命を伸ばす効果をもた
らす。かかる効果をもたらすために、アルキル基
があまり短かいと好ましくなく、また長すぎるの
は原料入手の困難さが生じたり、ビス大環状ポリ
エーテル自身の溶媒への溶解性が低下し、感応膜
作製が困難になつたりするので適さない。かかる
観点から、R5,R6のアルキル基の炭素数は5〜
20が望ましく、7〜15が好ましい。上記の製造法
の説明は、炭素数7を有する場合、すなわちカプ
リル酸クロライドを用いた場合であるが、炭素数
8〜15のアルキル基を得る場合には、ペラルゴン
酸、カプリン酸、n−ウンデシレン酸、ラウリン
酸、n−トリデシレン酸、ミリスチン酸又はパル
ミチンン酸のハライドを使用すればよい。なお、
アルキル基は、直鎖状のものを用いて説明した
が、分岐状であつてもよい。 さらに、一般式(I)中R1〜R4は、水素、メ
チル基又はn−プロピル基が望ましく、メチル基
が好ましい。 かくして、本発明の一般式(I)の化合物で好
ましいグループは、nが4〜7、R5とR6が7〜
15の炭素数を有するアルキル基、R1〜R4がメチ
ル基の化合物である。他の好ましいグループはn
が1〜3,R5とR6が7〜15の炭素数を有するア
ルキル基、R1〜R4がメチル基の化合物である。
さらに一つのグループは、nが7で、R1〜R6
上記と同様である化合物である。 なお、本発明の感応膜を用いてイオンセンサー
を構成するに際し、その構造はイオン選択性電極
やイオン選択性電界効果型トランジスタの分野で
知られた構造を適宜採用することができる。 (ホ) 実施例 以下に実施例をあげて本発明を説明するが、本
発明はこれら実施例に限定されるものではない。 まず本発明の一般式(I)で表わされるビス大
環状ポリエーテルジアミド誘導体の製造例とその
物性値の代表例を示す。 製造例 1 一般式(I)においてn=5,R1〜R4がメチ
ル基、R5,R6がn−C7H15又はn−C11H23であ
るビス大環状ポリエーテルジアミド誘導体を合成
した。10℃に温度を調節した1.5lの脱水ベンゼン
を激しく攪拌しながら、その中の各々100mlの脱
水ベンゼンに溶かした10ミリモルの4,5−ジメ
チル−3,6−ジオキサオクタンジカルボン酸ク
ロライド(2.5g)と10ミリモルの1,17−ジヒド
ロキシ−3,15−ジアザ−6,9,12−トリオキ
サヘプタデカン(2.8g)、ならびに30ミリモルの
トリエチルアミン(3g)を同時に、ごくゆつく
りと4時間かけて滴下した。その後2時間攪拌を
続けたのち、生成したトリエチルアミン塩酸塩を
過して除き、少量の脱水ベンゼンで洗い、液
からベンゼンを減圧下留去し、残留したオイル状
物質をクロロホルム:メタノール=5:1の混合
溶媒を展開溶媒とし、シリカゲルカラムクロマト
グラフイーを用いて精製し、下記のごとく大環状
ポリエーテルジアミド−を得た。 次に得られた大環状ポリエーテルジアミド5ミ
リモル(2.3g)と、5ミリモルのトリエチルアミ
ン(0.5g)とを脱水クロロホルム20mlに溶かし、
氷冷し、よく攪拌しながら、5ミリモルの塩化カ
プリリル(0.8g)を脱水クロロホルム15mlに溶か
したものを滴下した。24時間攪拌還流したのち、
クロロホルムを減圧下留去し、残留物に脱水ベン
ゼン70mlを加えて生じた、トリエチルアミン塩酸
塩を過して除き、少量の脱水ベンゼンで洗い、
液からベンゼンを減圧下留去した。残留物をク
ロロホルム:メタノール=10:1の混合溶媒を展
開液とするシリカゲルカラムクロマトグラフイー
を用いて精製し、アルキル置換大環状ボリエーテ
ルジアミド−を得た。 次にこのアルキル置換大環状ポリエーテルジア
ミド1ミリモル(0.6g)とトリエチルアミン3ミ
リモル(0.3g)とを脱水クロロホルム10mlに溶か
し、室温で攪拌しながら0.5ミリモルのピメリン
酸ジクロライド(0.1g)を、5mlの脱水クロロホ
ルムに溶かしたものをゆつくり滴下した。48時間
攪拌環流した後、クロロホルムを減圧下留去し、
残留物をGPCにより分離し、n=5,R1〜R4
CH3,R5=R6=C7H15である目的物を精製した。 この化合物の物性値は以下の通りであつた。 (1) (n=5,R1〜R4=CH3,R5=R6=C7H15
の場合) 性状 無色透明の油状物 元素分析 実測値 C=58.83%,H=8.88%,
N=4.04% 計算値 C=59.23%,H=8.84%,
N=4.39% IR(cm-1,neat) 1730(エステルC=O),1640
(アミドC=O) 1HNMR(δ−ppm,CDCl3中)0.90(t,6H,
CH3CH2), 1.05〜1.40(m,28H,CH2(CH24
CH3,CH3CH), 1.40〜1.80(m,10H,
(a) Industrial Application Field The present invention relates to bis-macrocyclic polyether diamide derivatives and their uses, particularly to calcium ion-selective electrodes and sensitive membranes for calcium ion-selective field-effect transistors. (b) Prior art In general, an ion-selective electrode is an electrode that indicates the activity of a specific ion in a solution by the membrane potential shown by the membrane electrode, and a glass electrode for pH measurement is a typical example. It is. In addition, ion-selective field-effect transistors have a structure in which the gate metal of the field-effect transistor is removed and an ion-sensitive film is attached thereto. It measures changes in the value of the current flowing through it, and can be made ultra-small. By the way, calcium in body fluids can be divided into those that exist in the form of calcium ions (Ca 2+ ) and those that are bound to proteins, etc., but especially those that exist in the form of free calcium.
Ca 2+ plays an extremely important role in maintaining biological functions, such as adjusting cell osmotic pressure, blood coagulation, activation of enzymes, and activation of cellular respiration. In addition, the Ca 2+ concentration in body fluids, especially in blood, is within a certain narrow range (approximately 4.4 to 5.1 meq/L) under normal conditions.
Changes in this concentration are associated with myeloma, acute bone atrophy, bone tuberculosis, cancer bone metastasis, hyperparathyroidism, uremia, nephrosclerosis, renal edema, nephrosis, acute pancreatitis, rickets, and osteomalacia. Since information is important in many diseases such as, the significance of measurement is extremely large. Currently, the methods for analyzing calcium are titration method, o
- Colorimetric method using cresolphthalein complexone, etc., flame method, and atomic absorption method are used, but all of these methods measure the total amount of calcium, and only free Ca 2+ can be measured. Deproteinization,
It requires complicated treatments such as dialysis, is time-consuming, and must be performed under anaerobic conditions, making it extremely difficult. On the other hand, methods using ion sensors such as ion-selective electrodes and ion-selective field-effect transistors can rapidly quantify the concentration of only this free Ca 2+ , which has extremely significant measurement significance as mentioned earlier. With these advantages, it is thought that it will make an extremely large contribution to diagnosis and treatment. For this reason, calcium ion-selective electrodes that use glass membranes as sensitive membranes, liquid membrane type and solid membrane type ion-selective electrodes that use phosphate esters as ion-sensitive substances, etc., have been developed, but all of them have Measurement of Ca 2+ in actual samples such as serum is difficult due to significant interference from coexisting ions. Therefore, in order to obtain practical calcium ion-selective electrodes and calcium ion-selective field effect transistors, there is a need for calcium ion-sensitive materials with higher calcium ion selectivity. (c) Purpose The present invention was made to solve these problems, and uses a bis-macrocyclic polyether diamide derivative as a unitary carrier to easily, rapidly and highly selectively transport calcium ions. The main object of the present invention is to provide a calcium ion-selective electrode that can perform measurements with high precision and good reproducibility over a long period of time, and a calcium ion-selective sensitive membrane for field effect transistors. (d) Structure Thus, according to the present invention, general formula (I): (In the formula, n is an integer from 1 to 7, R 1 to R 4 each represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 and R 6 each represent an alkyl group having 5 to 20 carbon atoms.) A sensitive membrane for an ion sensor is provided comprising the bis-macrocyclic polyether diamide derivative shown below. The bis-macrocyclic polyether diamide derivatives used in the present invention are a novel group of compounds that have not been described in any literature. Accordingly, the present invention also provides a bis-macrocyclic polyether diamide derivative represented by general formula (I). Such compounds can also be used in phase transfer catalyst applications. The compound represented by the general formula (I) is, for example, a compound represented by the general formula Ia (wherein each R is a hydrogen atom or has 1 to 3 carbon atoms).
alkyl group, X 1 means a halogen atom)
dicarboxylic acid halide represented by and 1,17-
Compound Ib is synthesized by reacting dihydroxy-3,15-diaza-6,9,12-trioxaheptadecane in dehydrated benzene in the presence of triethylamine, This was reacted with an acid halide represented by the following general formula Ic (in the formula, R' is an alkyl group having 5 to 20 carbon atoms, and X 2 is a halogen atom) in dehydrated chloroform in the presence of triethylamine to obtain Id. Synthesize alkyl substituted Id, Furthermore, any one of this Id and the following general formula
It can be obtained by reacting a dibasic acid halide represented by Ie (in the formula, n is an integer of 1 to 7, and X 3 means a halogen atom) in dehydrated chloroform in the presence of triethylamine. The sensitive membrane according to the invention can be used as a solid membrane or a liquid membrane. The solid membrane is formed by uniformly dispersing the bis-macrocyclic polyether diamide derivative in a water-insoluble solid organic polymer as a support. This polymer forms a matrix to support the neutral carrier bis-macrocyclic polyether diamide derivative in the form of a film, and prevents the neutral carrier from eluting into the sample aqueous solution. It is necessary that the calcium ions contained therein have properties that allow appropriate diffusion within the matrix, and polyvinyl chloride, silicone rubber, polymethacrylic acid ester (for example, polymethyl methacrylate), etc. are usually used. Sensitive membranes based on polyvinyl chloride are usually prepared by dissolving polyvinyl chloride, a plasticizer, and a bis-macrocyclic polyether diamide derivative in a suitable low-boiling organic solvent, such as tetrahydrofuran, and then dissolving the solvent in a Petri dish, for example. It is formed into a film by gradual evaporation. The plasticizer is used to impart appropriate flexibility to the resulting sensitive membrane and to prevent the bis-macrocyclic polyether diamide derivative from eluting into the measurement solution, such as dioctyl phthalate, o-nitrophenyl octyl ether, etc. is used. In addition, as in the case of sensitive membranes using silicone rubber as a support, bis-macrocyclic polyether diamide derivatives,
It can also be produced by dissolving silicone rubber alone and a silane compound for crosslinking the membrane in an appropriate organic solvent, polymerizing it into a membrane, and removing the solvent from the molded product. The content of bis macrocyclic polyether diamide derivative in the solid film is 0.5 to 20% by weight, preferably 1
It is desirable that the content be ~15% by weight. If the content is too small, the response will be poor; if the content is too large, it will be difficult to uniformly disperse it in the polymer, and it will be uneconomical. When a plasticizer is used in combination, such as when polyvinyl chloride is used as a support, the appropriate amount of plasticizer is 50 to 70% by weight. The liquid film is formed by dissolving a bis-macrocyclic polyether diamide derivative in a water-insoluble polar organic solvent. aromatic ethers, aromatic ethers, etc. A preferred specific example is 1-decano-
Examples include chlorine, nitrobenzene, chlorobenzene, diphenyl ether, and 1,2-dichloroethane. The content of bis macrocyclic polyether diamide derivative in the liquid film is 0.5 for the same reason as above.
-20% by weight, preferably 1-10% by weight. The liquid membrane is usually held in a porous support such as ceramics or cellulose. A porous film made of fluororesin is also one of the preferred supports. The bis macrocyclic polyether diamide derivative represented by the general formula (I) of the present invention is stably retained in a solid film or liquid film because B 5 and R 6 in the formula have long chain alkyl groups, It shows excellent performance as a calcium ion selective electrode and a neutral carrier for a calcium ion selective field effect transistor. As described above, the sensitive membrane according to the present invention uses a bis-macrocyclic polyether diamide derivative having a linking portion of a certain chain length as a neutral carrier, and the above-mentioned derivative is free from interfering ions such as sodium ions and potassium ions. Regardless of the presence of can be measured with high selectivity, and has a short response time and excellent reproducibility, making it a highly practical calcium ion-selective electrode and sensitive membrane for calcium ion-selective field-effect transistors. It is something. When the compound of general formula (I) of the present invention is used as a sensitive film, n is 4 to 6, particularly preferably 5. It is believed that compounds having such a value of n create a spacing between two macrocyclic polyether diamide rings that is advantageous for forming a stable 2:1 sandwich complex with Ca +2 . The method for producing a compound in which n is 5 was exemplified above, but a compound in which n is 4 or 6 can be obtained by using adipic acid dihalide or suberic acid dihalide instead of the raw material pimelic acid dichloride. . Another desirable group of compounds are those where n has 1-3 or 7. In this case as well, dicarboxylic acid dihalide having a predetermined number of carbon atoms can be used instead of pimelic acid dichloride. The alkyl groups represented by R 5 and R 6 in the general formula (I) are considered to influence the fat solubility of the bis macrocyclic polyether diamide derivative and its retention in the sensitive membrane. That is, the bis-macrocyclic polyether diamide derivative is prevented from being eluted from the sensitive membrane into the sample, increasing the stability of the membrane, suppressing deterioration, and extending its life. In order to bring about this effect, it is undesirable if the alkyl group is too short, and if it is too long, it may be difficult to obtain raw materials, and the solubility of the bis macrocyclic polyether itself in the solvent may decrease, making it difficult to fabricate a sensitive film. It is not suitable as it may become difficult. From this point of view, the number of carbon atoms in the alkyl groups of R 5 and R 6 is 5 to 5.
20 is desirable, and 7-15 is preferable. The above production method is for the case in which caprylic acid chloride has 7 carbon atoms, but in the case of obtaining an alkyl group having 8 to 15 carbon atoms, pelargonic acid, capric acid, n-undecylene A halide of acid, lauric acid, n-tridecylenic acid, myristic acid or palmitic acid may be used. In addition,
Although the alkyl group has been explained using a linear one, it may be branched. Further, R 1 to R 4 in general formula (I) are preferably hydrogen, a methyl group, or an n-propyl group, and preferably a methyl group. Thus, a preferred group of compounds of general formula (I) according to the invention is one in which n is 4 to 7 and R 5 and R 6 are 7 to 7.
It is a compound in which an alkyl group having 15 carbon atoms and R 1 to R 4 are methyl groups. Another preferred group is n
is 1 to 3, R 5 and R 6 are alkyl groups having 7 to 15 carbon atoms, and R 1 to R 4 are methyl groups.
A further group is compounds in which n is 7 and R 1 to R 6 are as described above. Note that when constructing an ion sensor using the sensitive membrane of the present invention, structures known in the fields of ion-selective electrodes and ion-selective field-effect transistors can be appropriately adopted as the structure. (e) Examples The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. First, production examples of the bis-macrocyclic polyether diamide derivative represented by the general formula (I) of the present invention and representative examples of its physical properties will be shown. Production Example 1 Bis-macrocyclic polyether diamide derivative in general formula (I) where n=5, R 1 to R 4 are methyl groups, and R 5 and R 6 are n-C 7 H 15 or n-C 11 H 23 was synthesized. 10 mmol of 4,5-dimethyl-3,6-dioxaoctanedicarboxylic acid chloride (2.5 g) and 10 mmol of 1,17-dihydroxy-3,15-diaza-6,9,12-trioxaheptadecane (2.8 g) and 30 mmol of triethylamine (3 g) very slowly for 4 hours. It dripped. After continuing stirring for 2 hours, the generated triethylamine hydrochloride was removed by filtration, washed with a small amount of dehydrated benzene, the benzene was distilled off from the liquid under reduced pressure, and the remaining oil was extracted with chloroform:methanol = 5:1. The mixture was purified using silica gel column chromatography using a mixed solvent as a developing solvent to obtain a macrocyclic polyether diamide as shown below. Next, 5 mmol (2.3 g) of the obtained macrocyclic polyether diamide and 5 mmol of triethylamine (0.5 g) were dissolved in 20 ml of dehydrated chloroform.
While cooling on ice and stirring well, a solution of 5 mmol of caprylyl chloride (0.8 g) dissolved in 15 ml of dehydrated chloroform was added dropwise. After stirring and refluxing for 24 hours,
Chloroform was distilled off under reduced pressure, and 70 ml of dehydrated benzene was added to the residue, the resulting triethylamine hydrochloride was removed by filtration, and washed with a small amount of dehydrated benzene.
Benzene was distilled off from the liquid under reduced pressure. The residue was purified using silica gel column chromatography using a mixed solvent of chloroform:methanol=10:1 as a developing solution to obtain an alkyl-substituted macrocyclic polyether diamide. Next, 1 mmol (0.6 g) of this alkyl-substituted macrocyclic polyether diamide and 3 mmol (0.3 g) of triethylamine were dissolved in 10 ml of dehydrated chloroform, and while stirring at room temperature, 0.5 mmol of pimelic acid dichloride (0.1 g) was added to 5 ml of the alkyl-substituted macrocyclic polyether diamide. was dissolved in dehydrated chloroform and slowly added dropwise. After stirring and refluxing for 48 hours, chloroform was distilled off under reduced pressure.
The residue was separated by GPC, n = 5, R 1 - R 4 =
The target product in which CH 3 , R 5 =R 6 =C 7 H 15 was purified. The physical properties of this compound were as follows. ( 1) (n=5, R1 ~ R4 = CH3 , R5 = R6 = C7H15
) Properties Colorless and transparent oil Elemental analysis Actual values C = 58.83%, H = 8.88%,
N=4.04% Calculated value C=59.23%, H=8.84%,
N=4.39% IR (cm -1 , neat) 1730 (ester C=O), 1640
(amide C=O) 1HNMR (δ-ppm, in CDCl 3 ) 0.90 (t, 6H,
CH 3 CH 2 ), 1.05-1.40 (m, 28H, CH 2 (CH 2 ) 4
CH 3 , CH 3 CH), 1.40~1.80 (m, 10H,

【式】【formula】

【式】) 2.25(t,8H,【formula】) 2.25(t, 8H,

【式】), 360(m,44H,O(CH22O, N(CH22O,[Formula]), 360(m, 44H, O(CH 2 ) 2 O, N(CH 2 ) 2 O,

【式】 CHCH3), 4.05〜4.50(m,16H,[Formula] CHCH 3 ), 4.05~4.50 (m, 16H,

【式】【formula】

【式】) 製造例 2 n=5,R1〜R4=CH3,R5=R6=C11H23の化
合物は、塩化カプリリルをドデカノイルクロライ
ドに変えた以外は、全く同様にして得られた。 これらの物性値の一例を下表に示す。 (2) (n=5,R1〜R4=CH3,R5=R6=C11H23
の場合) 性状 無色透明の油状物 元素分析 実測値 C=61.21% H=9.53%
N=4.05% 計算値 C=61.36% H=9.28%
N=4.03% IR(cm-1,neat) 1730(エステルC=O),1640
(アミドC=O) 1H−NMR(δ−ppm,CDCl3中) 0.90(t,6H,CH3CH2), 1.05〜1.40(m,44H,(CH2(CH28
CH3 ,CH3CH) 1.40〜1.80(m,10H,
[Formula]) Production Example 2 n = 5, R 1 - R 4 = CH 3 , R 5 = R 6 = C 11 The compound of H 23 was prepared in exactly the same way except that caprylyl chloride was changed to dodecanoyl chloride. Obtained. Examples of these physical property values are shown in the table below. ( 2) (n=5, R1 ~ R4 = CH3 , R5 = R6 = C11H23
) Properties Colorless and transparent oil Elemental analysis Actual values C = 61.21% H = 9.53%
N=4.05% Calculated value C=61.36% H=9.28%
N=4.03% IR (cm -1 , neat) 1730 (ester C=O), 1640
(Amide C=O) 1H-NMR (δ-ppm, in CDCl 3 ) 0.90 (t, 6H, CH 3 CH 2 ), 1.05-1.40 (m, 44H, (CH 2 (CH 2 ) 8
CH 3 , CH 3 CH) 1.40 to 1.80 (m, 10H,

【式】【formula】

【式】) 2.25(t,8H,【formula】) 2.25(t, 8H,

【式】) 3.60(m,44H,O(CH22O,N
(CH22O,
[Formula]) 3.60 (m, 44H, O(CH 2 ) 2 O, N
(CH 2 ) 2 O,

【式】,CHCH3 4.05〜4.50(m,16H,[Formula], CHCH 3 4.05~4.50 (m, 16H,

【式】【formula】

【式】) 製造例 3〜8 製造例1及び2と同様にして下記物性値を有す
るビス大環状ポリエーテルジアミド誘導体をそれ
ぞれ得た。 (3) (n=1,R1〜R4=H,R5=R6=n−C5
H11の場合) 性状 無色透明の油状物 元素分析、実測値 C=55.50% H=7.95%
N=5.03% 計算値 C=55.21% H=8.01%
N=5.05% IR(cm-1,neat) 1730(エステルC=O),1640
(アミドC=O) 1H−NMR(δ−ppm,CDCl3中) δ=0.90(t,6H,CH3CH2) 1.05〜1.40(m,8H,CH2(CH22
CH3) 1.40〜1.80(m,4H,
[Formula]) Production Examples 3 to 8 Bis-macrocyclic polyether diamide derivatives having the following physical properties were obtained in the same manner as Production Examples 1 and 2, respectively. (3) (n= 1 , R1~ R4 =H, R5 = R6 =n- C5
In the case of H 11 ) Properties Colorless and transparent oil Elemental analysis, measured values C = 55.50% H = 7.95%
N=5.03% Calculated value C=55.21% H=8.01%
N=5.05% IR (cm -1 , neat) 1730 (ester C=O), 1640
(Amide C=O) 1H-NMR (δ-ppm, in CDCl 3 ) δ = 0.90 (t, 6H, CH 3 CH 2 ) 1.05-1.40 (m, 8H, CH 2 (CH 2 ) 2
CH 3 ) 1.40~1.80 (m, 4H,

【式】) 2.25(t,6H,【formula】) 2.25(t, 6H,

【式】) 3.60(m,48H,O(CH22O,N
(CH22O,
[Formula]) 3.60 (m, 48H, O(CH 2 ) 2 O, N
(CH 2 ) 2 O,

【式】) 4.05〜4.50(m,16H,【formula】) 4.05~4.50 (m, 16H,

【式】【formula】

【式】) (4) (n=1,R1〜R4=n−C3H7,R5=R6=n
−C20H41の場合) 性状 無色透明で粘ちような油状物 元素分析、実測値 C=65.48% H=10.11%
N=3.40% 計算値 C=65.75% H=10.23%
N=3.30% IR(cm-1,neat) 1730(エステルC=O),1640
(アミドC=O) 1H−NMR(δ−ppm,CDCl3中) δ=0.90(t,18H,CH3CH2) 1.05〜1.40(m,84H,CH2(CH217
CH3,CH(CH22CH3) 1.40〜1.80(m,4H,
[Formula]) (4) (n=1, R 1 ~ R 4 = n-C 3 H 7 , R 5 = R 6 = n
-C 20 H 41 ) Properties Colorless and transparent sticky oil Elemental analysis, actual values C = 65.48% H = 10.11%
N=3.40% Calculated value C=65.75% H=10.23%
N=3.30% IR (cm -1 , neat) 1730 (ester C=O), 1640
(Amide C=O) 1H-NMR (δ-ppm, in CDCl 3 ) δ = 0.90 (t, 18H, CH 3 CH 2 ) 1.05-1.40 (m, 84H, CH 2 (CH 2 ) 17
CH 3 , CH (CH 2 ) 2 CH 3 ) 1.40 to 1.80 (m, 4H,

【式】) 2.25(t,6H,【formula】) 2.25(t, 6H,

【式】【formula】

【式】) 3.60(m,44H,O(CH22O,N
(CH22O,
[Formula]) 3.60 (m, 44H, O(CH 2 ) 2 O, N
(CH 2 ) 2 O,

【式】CHCH2) 4.05〜4.50(m,16H,[Formula] CHCH 2 ) 4.05~4.50 (m, 16H,

【式】【formula】

【式】) (5) (n=5,R1〜R4=H,R5=R6=nC5H11
場合) 性状 無色透明の油状物 元素分析、実測値 C=56.78% H=8.51%
N=4.78% 計算値 C=56.67% H=8.32%
N=4.81% IR(cm-1,neat) 1730(エステルC=O),1640
(アミドC=O) 1H−NMR(δ−ppm,CDCl3中) δ=0.90(t,6H,CH3CH2) 1.05〜1.40(m,8H,CH2(CH22
CH3) 1.40〜1.80(m,10H,
[Formula]) (5) (When n = 5, R 1 to R 4 = H, R 5 = R 6 = nC 5 H 11 ) Properties Colorless and transparent oil Elemental analysis, actual value C = 56.78% H = 8.51%
N=4.78% Calculated value C=56.67% H=8.32%
N=4.81% IR (cm -1 , neat) 1730 (ester C=O), 1640
(Amide C=O) 1H-NMR (δ-ppm, in CDCl 3 ) δ = 0.90 (t, 6H, CH 3 CH 2 ) 1.05-1.40 (m, 8H, CH 2 (CH 2 ) 2
CH 3 ) 1.40~1.80 (m, 10H,

【式】【formula】

【式】) 2.25(t,8H,【formula】) 2.25(t, 8H,

【式】) 3.60(m,48H,O(CH22O,N
(CH22O,
[Formula]) 3.60 (m, 48H, O(CH 2 ) 2 O, N
(CH 2 ) 2 O,

【式】) 4.05〜4.50(m,16H,【formula】) 4.05~4.50 (m, 16H,

【式】【formula】

【式】) (6) (n=5,R1〜R4=n−C3H7,R5=R6=n
−C20H41の場合) 性状 無色透明で粘ちような油状物 元素分析、実測値 C=66.51% H=10.23%
N=3.15% 計算値 C=66.39% H=10.36%
N=3.19% IR(cm-1,neat) 1730(エステルC=O),1640
(アミドC=O) 1H−NMR(δ−ppm,CDCl3中) δ=0.90(t,18H,CH3CH2) 1.05〜1.40(m,84H,CH2(CH217
CH3,CH(CH22CH3) 1.40〜1.80(m,10H,
[Formula]) (6) (n=5, R 1 ~ R 4 = n-C 3 H 7 , R 5 = R 6 = n
-C 20 H 41 ) Properties: Colorless, transparent and sticky oil Elemental analysis, measured values: C = 66.51% H = 10.23%
N=3.15% Calculated value C=66.39% H=10.36%
N=3.19% IR (cm -1 , neat) 1730 (ester C=O), 1640
(Amide C=O) 1H-NMR (δ-ppm, in CDCl 3 ) δ = 0.90 (t, 18H, CH 3 CH 2 ) 1.05-1.40 (m, 84H, CH 2 (CH 2 ) 17
CH 3 , CH (CH 2 ) 2 CH 3 ) 1.40 to 1.80 (m, 10H,

【式】【formula】

【式】) 2.25(t,8H,【formula】) 2.25(t, 8H,

【式】) 3.60(m,44H,O(CH22O,N
(CH22O,
[Formula]) 3.60 (m, 44H, O(CH 2 ) 2 O, N
(CH 2 ) 2 O,

【式】,CHCH2) 4.05〜4.50(m,16H,[Formula], CHCH 2 ) 4.05-4.50 (m, 16H,

【式】【formula】

【式】) (7) (n=7,R1〜R4=H,R5=R6=n−C5
H11の場合) 性状 無色透明の油状物 元素分析、実測値 C=55.20% H=8.31%
N=4.65% 計算値 C=55.35% H=8.46%
N=4.69% IR(cm-1,neat) 1730(エステルC=O),1640
(アミドC=O) 1H−NMR(δ−ppm,CDCl3中) δ=0.90(t,6H,CH3CH2) 1.05〜1.40(m,8H,CH2(CH22
CH3) 1.40〜1.80(m,14H,
[Formula]) (7) (n=7, R 1 to R 4 = H, R 5 = R 6 = n-C 5
In the case of H 11 ) Properties Colorless and transparent oil Elemental analysis, measured values C = 55.20% H = 8.31%
N=4.65% Calculated value C=55.35% H=8.46%
N=4.69% IR (cm -1 , neat) 1730 (ester C=O), 1640
(Amide C=O) 1H-NMR (δ-ppm, in CDCl 3 ) δ = 0.90 (t, 6H, CH 3 CH 2 ) 1.05-1.40 (m, 8H, CH 2 (CH 2 ) 2
CH 3 ) 1.40~1.80 (m, 14H,

【式】【formula】

【式】) 2.25(t,8H,【formula】) 2.25(t, 8H,

【式】) 3.60(m,48H,O(CH22O,N
(CH22O,
[Formula]) 3.60 (m, 48H, O(CH 2 ) 2 O, N
(CH 2 ) 2 O,

【式】) 4.05〜4.50(m,16H,【formula】) 4.05~4.50 (m, 16H,

【式】【formula】

【式】) (8) (n=7,R1〜R4=n−C3H7,R5=R6=n
−C20H41の場合) 性状 無色透明で粘ちような油状物 元素分析、実測値 C=66.75% H=11.53%
N=3.20% 計算値 C=66.69% H=11.42%
N=3.14% IR(cm-1,neat) 1730(エステルC=O),1640
(アミドC=O) 1H−NMR(δ−ppm,CDCl3中) δ=0.90(t,18H,CH3CH2) 1.05〜1.40(m,84H,CH2(CH217
CH3,CH(CH22CH3) 1.40〜1.80(m,14H,
[Formula]) (8) (n=7, R 1 ~ R 4 = n-C 3 H 7 , R 5 = R 6 = n
-C 20 H 41 ) Properties: Colorless, transparent, sticky oil Elemental analysis, measured values: C = 66.75% H = 11.53%
N=3.20% Calculated value C=66.69% H=11.42%
N=3.14% IR (cm -1 , neat) 1730 (ester C=O), 1640
(Amide C=O) 1H-NMR (δ-ppm, in CDCl 3 ) δ = 0.90 (t, 18H, CH 3 CH 2 ) 1.05-1.40 (m, 84H, CH 2 (CH 2 ) 17
CH 3 , CH (CH 2 ) 2 CH 3 ) 1.40 to 1.80 (m, 14H,

【式】【formula】

【式】) 2.25(t,8H,【formula】) 2.25(t, 8H,

【式】) 3.60(m,44H,O(CH22O,N
(CH22O,
[Formula]) 3.60 (m, 44H, O(CH 2 ) 2 O, N
(CH 2 ) 2 O,

【式】,CHCH2) 4.05〜4.50(m,16H,[Formula], CHCH 2 ) 4.05-4.50 (m, 16H,

【式】【formula】

【式】) 実施例 1 一般式(1)において、n=5,R1〜R4=CH3
R5=R6=C7H15であるビス大環状ポリエーテルジ
アミド誘導体の3重量%、カリウムテトラキス
(p−クロロフエニル)ボレートの1.1重量%及び
可塑剤としてのo−ニトロフエニルオクチルエー
テルの65.9重量%を含むポリ塩化ビニル膜を調製
した。この感応膜を直径5mmの円形に切り取り
philips−IS561電極下部に取り付け、Ag・
Agcl/10-3MCaCl2/膜/試料溶液/0.1MNH4
NO3/KCl(飽和)/Hg2Cl2・Hgの電極構成で測
定試料溶液中のカルシウムイオンの活量(aca
と電極間電位差(EMF/mV)を測定し、検量
線を作成した。なお、測定はCorning pH
meter130型を用い、25℃±0.1℃で行つた。その
結果、検量線は、acaが3×10-5〜3×10-2の広
い範囲で直線性を有し、かつネルンスト応答を示
した。その一例を第1図に示す。またpHによる
影響も、pH4〜10の範囲にわたつて実質的に認め
られなかつた。 次に種々の妨害イオンM(M+は、Li+、Na+
K+,Mg2+,Sr2+,Ba2+を意味する)に対する選
択係数KcaMは混合溶液法すなわち測定試料溶液
における妨害イオンMの活量を一定のaMに保ち、
acaを変化させて電極間電位を測定し、ネルンス
ト応答を示さなくなるacaを求め、aca/(aM2/m
(ただしmはMの価数)で求めた。マグネシウム
イオンに対する選択係数KcaMgは1×10-5であつ
た。これは感応膜が、マグネシウムイオンよりも
カルシウムイオンに対して約100000倍高感度であ
ることを意味している。 実施例 2 petra′nekらは、単環性の大環状ポリエーテル
ジアミドについての報告を行つているが
(Analytica Chimica Acta,128,129(1981)).
その類似化合物(下記化合物1,2)と、本発明
のビス大環状ポリエーテルジアミド誘導体との選
択係数の比較を実施例1と同様にして行つた。な
お化合物3は一般式(I)においてn=5,R1
〜R4=CH3,R5=R6=C7H15、化合物4は一般
式(I)においてn=5,R1〜R4=CH3,R5
R6=C11H23を表わす。
[Formula]) Example 1 In general formula (1), n=5, R 1 to R 4 =CH 3 ,
3% by weight of a bis-macrocyclic polyether diamide derivative with R 5 = R 6 = C 7 H 15 , 1.1% by weight of potassium tetrakis(p-chlorophenyl)borate and 65.9% of o-nitrophenyl octyl ether as a plasticizer. A polyvinyl chloride membrane containing % by weight was prepared. Cut this sensitive film into a circle with a diameter of 5 mm.
Attached to the bottom of the philips-IS561 electrode, Ag・
Agcl/10 -3 MCaCl 2 /Membrane/Sample solution/0.1MNH 4
Calcium ion activity (ac a ) in the measurement sample solution with the electrode configuration of NO 3 /KCl (saturated) /Hg 2 Cl 2・Hg
and the interelectrode potential difference (EMF/mV) were measured, and a calibration curve was created. In addition, the measurement was conducted using Corning pH.
The test was carried out using a meter 130 model at 25℃±0.1℃. As a result, the calibration curve had linearity over a wide range of aca from 3×10 −5 to 3×10 −2 and showed a Nernst response. An example is shown in FIG. Furthermore, virtually no influence by pH was observed over the pH range of 4 to 10. Next, various interfering ions M (M + are Li + , Na + ,
The selectivity coefficient K caM for K + , Mg 2+ , Sr 2+ , Ba 2+ ) is determined by the mixed solution method, that is, by keeping the activity of the interfering ion M in the measurement sample solution at a constant a M ;
Measure the interelectrode potential by varying a ca , find the a ca that no longer shows a Nernst response, and calculate a ca / (a M ) 2/m
(where m is the valence of M). The selectivity coefficient K caMg for magnesium ions was 1×10 −5 . This means that the sensitive membrane is approximately 100,000 times more sensitive to calcium ions than to magnesium ions. Example 2 Petra'nek et al. have reported on monocyclic macrocyclic polyether diamide (Analytica Chimica Acta, 128, 129 (1981)).
Comparison of selectivity coefficients between similar compounds (compounds 1 and 2 below) and the bis macrocyclic polyether diamide derivative of the present invention was carried out in the same manner as in Example 1. Compound 3 has general formula (I) where n=5, R 1
~ R4 = CH3 , R5 = R6 = C7H15 , Compound 4 has n=5 in general formula (I ) , R1 ~ R4 = CH3 , R5 =
R 6 =C 11 H 23 .

【式】 化合物1 R=C7H15 化合物2 R=C11H23 その結果、第2図に示す様に本発明のビス大環
状ポリエーテルジアミド誘導体の方が、単環性の
大環状ポリエーテルに比べ、各妨害イオンに対
し、5〜10倍選択係数が向上していることが明ら
かになつた。 Ca2+は、大環状ポリエーテルジアミド環とは、
その比が2:1(環:カチオン)の、カチオンが
環にサンドイツチ状にはさまれた安定な錯体を形
成すると考えられるが、錯形成に関与する2つの
大環状ポリエーテルジアミド環を同一分子中に2
個有する発明のビス大環状ポリエーテルジアミド
誘導体は、単環性の大環状ポリエーテルジアミド
に比べ、はるかに容易に、安定な錯体を形成しう
るため、このようにすぐれた選択係数を示すもの
と思われる。 実施例 3 本発明の種々のビス大環状ポリエーテルジアミ
ド誘導体をニユートラルキヤリヤーとし、実施例
1と同様にして固体膜を調整し、KcaMを測定し
た。その結果得られKcaMの対数値を表1に示す。 実施例 4 実施例1と同様に作製した感応膜150mgを0.5ml
のTHFに溶解し、その溶液をFETのSi3N4ゲー
ト膜上にデイツプコートしたのちTHFを蒸発さ
せて感応膜を形成し、カルシウムイオン選択性電
界効果型トランジスタ(Ca−ISFET)を作製し
た。このCa−ISFETは実施例1でのイオン選択
性電極と同様acaが3×10-5〜3×10-2の広い範
囲にわたつてネルンスト応答を示し、選択性も同
様の性能であつた。
[Formula] Compound 1 R=C 7 H 15 Compound 2 R=C 11 H 23 As a result, as shown in FIG. It was revealed that the selectivity coefficient for each interfering ion was improved by 5 to 10 times compared to ether. Ca 2+ is a macrocyclic polyether diamide ring.
It is thought that a stable complex is formed in which the cation is sandwiched between the rings in a sandwich-like manner with a ratio of 2:1 (ring: cation), but the two macrocyclic polyether diamide rings involved in the complex formation are inside 2
The bis-macrocyclic polyether diamide derivative of the individual invention can form a stable complex much more easily than monocyclic macrocyclic polyether diamide, which is why it exhibits such an excellent selectivity coefficient. Seem. Example 3 Using various bis-macrocyclic polyether diamide derivatives of the present invention as neutral carriers, solid films were prepared in the same manner as in Example 1, and K caM was measured. Table 1 shows the logarithmic values of K caM obtained as a result. Example 4 0.5ml of 150mg of sensitive membrane prepared in the same manner as Example 1
was dissolved in THF, and the solution was dip-coated on the Si 3 N 4 gate film of the FET, and the THF was evaporated to form a sensitive film, thereby fabricating a calcium ion-selective field-effect transistor (Ca-ISFET). Similar to the ion-selective electrode in Example 1, this Ca-ISFET exhibited a Nernst response over a wide range of a ca from 3 × 10 -5 to 3 × 10 -2 , and had similar selectivity. .

【表】【table】

【表】 (ヘ) 効果 以上のように本発明のビス大環状ポリエーテル
ジアミド誘導体によれば、カルシウムイオンに対
する応答性、選択性、再現性などにすぐれたカル
シウムイオン感応膜が得られる。
[Table] (F) Effects As described above, according to the bis-macrocyclic polyether diamide derivative of the present invention, a calcium ion-sensitive membrane having excellent responsiveness, selectivity, reproducibility, etc. to calcium ions can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の感応膜を使用したCa2+選択
性電極の検量線を例示するグラフである。第2図
は本発明の感応膜を用いる電極と、単環性の大環
状ポリエーテルジアミドをニユートラルキヤリア
とした感応膜を用いる電極とのさまざまなイオン
に対する選択係数の対数値の比較を例示するグラ
フである。
FIG. 1 is a graph illustrating a calibration curve of a Ca 2+ selective electrode using the sensitive membrane of the present invention. Figure 2 illustrates a comparison of log values of selectivity coefficients for various ions between an electrode using the sensitive membrane of the present invention and an electrode using a sensitive membrane using monocyclic macrocyclic polyether diamide as a neutral carrier. It is a graph.

Claims (1)

【特許請求の範囲】 1 一般式(I): (式中nは1〜7の整数、R1〜R4は各々水素
原子又は炭素数1〜3のアルキル基、R5,R6
各々炭素数5〜20のアルキル基を意味する)で表
わされるビス大環状ポリエーテルジアミド誘導
体。 2 一般式(I): (式中nは1〜7の整数、R1〜R4は各々水素
原子又は炭素数1〜3のアルキル基、R5,R6
各々炭素数5〜20のアルキル基を意味する)で表
わされるビス大環状ポリエーテルジアミド誘導体
からなるイオンセンサー用ニユートラルキヤリ
ア。
[Claims] 1 General formula (I): (In the formula, n is an integer from 1 to 7, R 1 to R 4 each represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 and R 6 each represent an alkyl group having 5 to 20 carbon atoms.) A bis-macrocyclic polyether diamide derivative represented by: 2 General formula (I): (In the formula, n is an integer from 1 to 7, R 1 to R 4 each represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 and R 6 each represent an alkyl group having 5 to 20 carbon atoms.) A neutral carrier for an ion sensor comprising the bis-macrocyclic polyether diamide derivative shown below.
JP59172986A 1984-08-20 1984-08-20 Bis large ring polyether diamide derivative and use thereof Granted JPS6150972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59172986A JPS6150972A (en) 1984-08-20 1984-08-20 Bis large ring polyether diamide derivative and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59172986A JPS6150972A (en) 1984-08-20 1984-08-20 Bis large ring polyether diamide derivative and use thereof

Publications (2)

Publication Number Publication Date
JPS6150972A JPS6150972A (en) 1986-03-13
JPH0434995B2 true JPH0434995B2 (en) 1992-06-09

Family

ID=15952053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172986A Granted JPS6150972A (en) 1984-08-20 1984-08-20 Bis large ring polyether diamide derivative and use thereof

Country Status (1)

Country Link
JP (1) JPS6150972A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE CHEMICAL SOCIETY CHEMICAL COMMUNICATIONS=1984 *

Also Published As

Publication number Publication date
JPS6150972A (en) 1986-03-13

Similar Documents

Publication Publication Date Title
US4554362A (en) Bis-crown-ether derivatives and their use
Siswanta et al. Structural ion selectivity of thia crown ether compounds with a bulky block subunit and their application as an ion-sensing component for an ion-selective electrode
JPS6219702B2 (en)
AU607325B2 (en) Lithium ion-selective compositions, electrodes and a method of use
JPS61155949A (en) Ph sensor
US6635683B1 (en) Film responsive to bicarbonate ion
JPH0434995B2 (en)
EP0255610A2 (en) Lithium ion-selective membrane electrode
Kolytcheva et al. Influence of the organic matrix on the properties of membrane coated ion sensor field-effect transistors
JPH0762009B2 (en) Bis (monoaza-12-crown-4) derivative and its use
JPH07258261A (en) Porphyrin/indium complex and anion-sensitive membrane
Mizani et al. Synthesis, metal ion complexation and first use of a thia-aza substituted macrocyclic diamide as a novel sensing material for preparation of selective and sensitive poly (vinyl chloride)-membrane potentiometric sensors for Ag+ ion
JPS62102149A (en) Sodium ion selective electrode
JP3999826B2 (en) Porphyrin complex and anion sensitive membrane
JPH01250750A (en) Sensitive film for sodium ion selecting electrode
JPH08327584A (en) Ion-selective electrode and method for measuring ion concentration
JPH0149352B2 (en)
JPH07206852A (en) Calixarene derivative
JPS6351502B2 (en)
JPH09208576A (en) Crown compound excellent in sodium ion selectivity
JP3659756B2 (en) Ionophore for sodium ion selective electrode
JP3526677B2 (en) Anion sensitive membrane
JP2000119291A (en) Alkoxysilylated boric salt derivative, production and use thereof
JPH0471907B2 (en)
SU1557508A1 (en) Composition of membrane of ion-selective electrode for determining cations of heterocyclic quaternary ammonium compounds

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term