JPH04349124A - Production of iron oxide powder - Google Patents

Production of iron oxide powder

Info

Publication number
JPH04349124A
JPH04349124A JP12331091A JP12331091A JPH04349124A JP H04349124 A JPH04349124 A JP H04349124A JP 12331091 A JP12331091 A JP 12331091A JP 12331091 A JP12331091 A JP 12331091A JP H04349124 A JPH04349124 A JP H04349124A
Authority
JP
Japan
Prior art keywords
powder
iron
oxide powder
iron oxide
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12331091A
Other languages
Japanese (ja)
Other versions
JP2933745B2 (en
Inventor
Katsutomo Oozeki
克知 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP12331091A priority Critical patent/JP2933745B2/en
Publication of JPH04349124A publication Critical patent/JPH04349124A/en
Application granted granted Critical
Publication of JP2933745B2 publication Critical patent/JP2933745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a desired iron oxide powder by introducing iron powder or ferromanganese powder into an aq. soln. contg. >=1 kind among glycin and glutamates (sodium) kept at a specified temp. and passing air or oxygen through the soln. CONSTITUTION:Iron powder or ferromanganese powder is introduced into an aq. soln. contg. at least one kind among glycin and glutamates (sodium) while supplying air or oxygen gas to the soln. The formed precipitate is separated after a specified time, recovered, washed with water and dried to obtain a high-purity iron oxide powder. When iron powder is used as the raw material and the reaction is conducted at <=0.3mol/l of amino acid and <=65 deg.C, gamma-iron hydroxide powder is obtained. When the reaction is conducted at <=0.3mol/l and >=80 deg.C, ferrous-ferric oxide powder is obtained. Meanwhile, when ferromanganese powder is used as the raw material, the iron oxide powder mixed with manganese oxide is obtained, and, when the raw materials having different contents of manganese are used, a mixed oxide powder having the corresponding composition is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁性材料の原料又は顔
料として有用な酸化鉄粉末を湿式法で製造する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing iron oxide powder useful as a raw material for magnetic materials or as a pigment by a wet method.

【0002】0002

【従来の技術】四三酸化鉄やα二三酸化鉄など磁性材料
用の酸化鉄原料は、硫酸鉄や塩化鉄などの無機鉄塩を水
溶液とし、これに水酸化ナトリウム等のアルカリ性物質
を加えてpHを調節すると共に、温度を60〜80℃に
保持して空気か酸素ガスを供給することにより酸化鉄を
析出沈殿させ、濾過、洗浄及び乾燥して作られる。また
、得られた酸化鉄を酸化性ガス雰囲気中で加熱処理する
ことによりγ二三酸化鉄が作られる。
[Prior art] Iron oxide raw materials for magnetic materials, such as triiron tetroxide and α-triferric oxide, are made by making an aqueous solution of inorganic iron salts such as iron sulfate and iron chloride, and adding an alkaline substance such as sodium hydroxide to the solution. The iron oxide is precipitated by adjusting the pH, maintaining the temperature at 60 to 80°C, and supplying air or oxygen gas, followed by filtration, washing, and drying. In addition, γ diiron oxide is produced by heat-treating the obtained iron oxide in an oxidizing gas atmosphere.

【0003】従来の湿式法によると、析出した酸化鉄に
硫酸根又は塩素やナトリウムが残存するので、フェライ
ト等の磁性材料に悪影響を及ぼす虞がある。また、処理
は材料に無機鉄塩とアルカリ性物質を用いる方法である
から全体の工程が長いという欠点があり、使用する薬品
の管理や廃液の処理に留意する必要がある。
According to the conventional wet method, sulfuric acid radicals or chlorine or sodium remain in the precipitated iron oxide, which may have an adverse effect on magnetic materials such as ferrite. Furthermore, since the treatment uses inorganic iron salts and alkaline substances as materials, there is a drawback that the entire process is long, and care must be taken in managing the chemicals used and disposing of the waste liquid.

【0004】0004

【発明が解決しようとする課題】本発明は、用いる薬品
の取り扱い及び廃液処理が容易で、純度の高い酸化鉄粉
末が得られる方法を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method in which it is easy to handle the chemicals used and treat the waste liquid, and by which iron oxide powder with high purity can be obtained.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、グリシン、グルタミン酸、グルタミン酸ナ
トリウムのうちの少なくとも1種を含む水溶液中に、空
気又は酸素ガスを供給しつつ、該水溶液中に鉄粉又はフ
ェロマンガン粉を投入して所定時間経過後、沈殿生成物
を分離回収して、水洗及び乾燥することを特徴とする酸
化鉄粉末の製造方法を提供するもので、濃度0.1モル
/リットル以下の水溶液を温度65℃以下に保持しつつ
鉄粉を投入してγ水酸化鉄粉末を生成させ、濃度0.3
モル/リットル以下の水溶液を温度80℃以上に保持し
つつ鉄粉を投入して四三酸化鉄粉末を生成させることが
できる。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention is directed to supplying air or oxygen gas to an aqueous solution containing at least one of glycine, glutamic acid, and monosodium glutamate. The present invention provides a method for producing iron oxide powder, which comprises adding iron powder or ferromanganese powder to a container, separating and collecting the precipitated product after a predetermined period of time, washing with water, and drying. While maintaining the temperature of an aqueous solution of mol/liter or less at a temperature of 65°C or less, iron powder is added to generate γ iron hydroxide powder, and the concentration is 0.3.
Triiron tetroxide powder can be produced by adding iron powder to an aqueous solution of mol/liter or less while maintaining the temperature at 80° C. or higher.

【0006】[0006]

【作用】鉄は水素イオンよりもイオン化傾向が大きいた
め、酸性溶液中で水素ガスを発生しながら溶解しFe2
+となる。そして鉄表面のFe2+濃度が高くなるにつ
れ反応速度が遅くなるが、グリシン等のアミノ酸はFe
2+イオンと錯体を形成するので鉄の溶出反応を触媒の
ように促進する働きをする。
[Action] Since iron has a greater tendency to ionize than hydrogen ions, it dissolves in an acidic solution while generating hydrogen gas, making Fe2
It becomes +. As the Fe2+ concentration on the iron surface increases, the reaction rate slows down, but amino acids such as glycine
Since it forms a complex with 2+ ions, it acts like a catalyst to promote the iron elution reaction.

【0007】[0007]

【化1】Fe+2H+   →  Fe2++H2[Chemical 1] Fe+2H+ → Fe2++H2

【0
008】
0
008]

【化2】Fe2++nL−   →  [FeLn]2
−n   (但し、Lはアミノ酸)上記の反応によって
水溶液のpHは上昇し、その結果Fe2 (OH)2 
が一時的に生成されるが、水溶液のアミノ酸濃度及び温
度によってFe3 O4 、γ−FeOOH、又はγ−
FeOOHとα−FeOOHの混合体が得られる。
[Chemical formula 2]Fe2++nL- → [FeLn]2
-n (L is an amino acid) The above reaction increases the pH of the aqueous solution, resulting in Fe2 (OH)2
is temporarily produced, but depending on the amino acid concentration and temperature of the aqueous solution, Fe3O4, γ-FeOOH, or γ-
A mixture of FeOOH and α-FeOOH is obtained.

【0009】空気又は酸素ガスの供給は、鉄の酸化反応
を促進する。水溶液のアミノ酸濃度及び温度と生成物の
関係は、供給する空気又は酸素ガスによって若干異なる
が、おおよそ図1に示す通りである。すなわち、鉄粉を
原料とする場合、水溶液の濃度、温度によって四三酸化
鉄(Fe3 O4 )又はγ水酸化鉄(γ−FeOOH
)が得られ、γ水酸化鉄を得るにはアミノ酸濃度を0.
1モル/リットル以下とし液温を65℃以下とすること
が好ましく、四三酸化鉄を得るにはアミノ酸濃度を0.
3モル/リットル以下とし液温を80℃以上とすること
が好ましい。
[0009] The supply of air or oxygen gas promotes the oxidation reaction of iron. The relationship between the amino acid concentration and temperature of the aqueous solution and the product varies slightly depending on the supplied air or oxygen gas, but is approximately as shown in FIG. 1. In other words, when iron powder is used as a raw material, it may be mixed with triiron tetroxide (Fe3O4) or γ-iron hydroxide (γ-FeOOH) depending on the concentration and temperature of the aqueous solution.
) is obtained, and in order to obtain γ iron hydroxide, the amino acid concentration should be reduced to 0.
It is preferable that the concentration is 1 mol/liter or less and the liquid temperature is 65°C or less. To obtain triiron tetroxide, the amino acid concentration is 0.
It is preferable that the amount is 3 mol/liter or less and the liquid temperature is 80° C. or higher.

【0010】本発明においてはアミノ酸としてグリシン
(C2 H5 NO2 )、グルタミン酸(C2 H9
 NO4 )、グルタミン酸ナトリウム(C5 H8 
NNaO4 )を使用する。これ等はアミノ酸の一種で
あり、無害であるから取扱が容易であり、水溶液は弱酸
性である。水溶液中で生成されたγ水酸化鉄又は四三酸
化鉄は、濾過装置などを用いて分離回収し、水洗及び乾
燥して粉末が得られるが、加熱処理して別の酸化物にす
る場合は水洗及び乾燥処理を省くことができる。
[0010] In the present invention, glycine (C2 H5 NO2) and glutamic acid (C2 H9
NO4), monosodium glutamate (C5 H8
NNaO4) is used. These are a type of amino acid and are easy to handle because they are harmless, and their aqueous solutions are weakly acidic. Gamma iron hydroxide or triiron tetroxide produced in an aqueous solution can be separated and recovered using a filtration device, washed with water, and dried to obtain a powder. However, if heat treatment is used to convert it into another oxide, Washing and drying processes can be omitted.

【0011】γ水酸化鉄は、顔料等として用いられるほ
か、空気中又は窒素ガス中で加熱して脱水することによ
りα二三酸化鉄(α−Fe2 O3 )が得られ、これ
を還元性雰囲気中で加熱すると四三酸化鉄が得られ、さ
らに酸化雰囲気中で加熱することによりγ二三酸化鉄を
得ることができる。四三酸化鉄は、磁性材料、顔料など
に用いることができる。また、酸化雰囲気中で加熱して
酸化処理することにより、γ二三酸化鉄が得られ、磁性
材料として用いることができる。
[0011] In addition to being used as a pigment, γ-iron hydroxide can be heated and dehydrated in air or nitrogen gas to obtain α-triiron oxide (α-Fe2 O3), which is heated in a reducing atmosphere. By heating in an oxidizing atmosphere, triiron tetroxide can be obtained, and by further heating in an oxidizing atmosphere, triiron tetroxide can be obtained. Triiron tetroxide can be used in magnetic materials, pigments, and the like. In addition, by heating and oxidizing the material in an oxidizing atmosphere, γditriferric oxide can be obtained and can be used as a magnetic material.

【0012】一方、フェロマンガン粉を原料にすると、
酸化マンガンが混合された酸化鉄粉末が得られ、磁性材
料に用いることができる。また、フェロマンガン粉のマ
ンガン含有量を変更すれば、対応して組成の異なる混合
酸化物粉末が得られる。本発明によれば、水溶液に鉄粉
又はフェロマンガン粉の形で添加するので処理が簡単で
あり、反応沈殿物を分離することにより、溶液は再利用
できる。また、アミノ酸を含有する水溶液は、濃度を調
整して適宜の無機物及び有機物を添加することにより土
壌改良材として用いることができる。
On the other hand, if ferromanganese powder is used as a raw material,
Iron oxide powder mixed with manganese oxide is obtained and can be used for magnetic materials. Furthermore, by changing the manganese content of the ferromanganese powder, mixed oxide powders with correspondingly different compositions can be obtained. According to the present invention, since it is added to the aqueous solution in the form of iron powder or ferromanganese powder, processing is simple, and the solution can be reused by separating the reaction precipitate. Furthermore, an aqueous solution containing amino acids can be used as a soil improvement material by adjusting the concentration and adding appropriate inorganic and organic substances.

【0013】[0013]

【実施例】以下、実施例により本発明を説明する。 〔実施例1〕グリシン濃度を0.0067モル/リット
ル、液温を65℃に保持した水溶液に空気を600ミリ
リットル/分通気している中に、粒度200メッシュ以
下の鉄粉を投入し、6時間保持した。その後、沈殿物を
濾過して回収し、水洗し、噴霧乾燥した。粉末をX線分
析したらγ水酸化鉄であった。
[Examples] The present invention will be explained below with reference to Examples. [Example 1] Iron powder with a particle size of 200 mesh or less was introduced into an aqueous solution with a glycine concentration of 0.0067 mol/liter and a temperature of 65°C while air was being aerated at 600 ml/min. Holds time. The precipitate was then collected by filtration, washed with water, and spray dried. X-ray analysis of the powder revealed that it was gamma iron hydroxide.

【0014】〔実施例2〕グルタミン酸濃度を0.3モ
ル/リットル、液温を85℃に保持した水溶液に酸素を
600ミリリットル/分通気している中に、粒度200
メッシュ以下の鉄粉を投入し、6時間保持した。その後
、沈殿物を濾過して回収し、水洗し、噴霧乾燥した。 粉末をX線分析したら四三酸化鉄であった。
[Example 2] Oxygen was bubbled through an aqueous solution with a glutamic acid concentration of 0.3 mol/liter and a temperature of 85° C. at a rate of 600 ml/min.
Iron powder below the mesh size was added and held for 6 hours. The precipitate was then collected by filtration, washed with water, and spray dried. X-ray analysis of the powder revealed that it was triiron tetroxide.

【0015】〔実施例3〕グルタミン酸ナトリウム濃度
を0.5モル/リットル、液温を80℃に保持した水溶
液に空気を600ミリリットル/分通気している中に、
粒度250メッシュ以下のフェロマンガン粉を投入し、
6時間保持した。その後、沈殿物を濾過して回収し、水
洗し、噴霧乾燥した。粉末をX線分析したら四三酸化マ
ンガンが混合されていた四三酸化鉄であった。
[Example 3] While blowing air at 600 ml/min into an aqueous solution with a sodium glutamate concentration of 0.5 mol/liter and a liquid temperature of 80°C,
Add ferromanganese powder with a particle size of 250 mesh or less,
It was held for 6 hours. The precipitate was then collected by filtration, washed with water, and spray dried. X-ray analysis of the powder revealed that it was triiron tetroxide mixed with trimanganese tetroxide.

【0016】[0016]

【発明の効果】本発明の酸化鉄粉末の製造方法によれば
、反応液は、1種類で金属粉から直接生成でき、繰返し
使用できるから経済的であると共に、公害の虞が少なく
、しかも純度の高い粉末が得られるという特長があり、
産業上の利用価値が極めて高いものである。
[Effects of the Invention] According to the method for producing iron oxide powder of the present invention, the reaction solution can be produced directly from metal powder using only one type, and is economical because it can be used repeatedly. It has the advantage of producing powder with high
It has extremely high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】水溶液のアミノ酸濃度と温度が及ぼす生成物の
種類を説明する図である。
FIG. 1 is a diagram illustrating the types of products affected by the amino acid concentration and temperature of an aqueous solution.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  グリシン、グルタミン酸、グルタミン
酸ナトリウムのうちの少なくとも1種を含む水溶液中に
、空気又は酸素ガスを供給しつつ、該水溶液中に鉄粉又
はフェロマンガン粉を投入して所定時間経過後、沈殿生
成物を分離回収して、水洗及び乾燥することを特徴とす
る酸化鉄粉末の製造方法。
Claim 1: A predetermined period of time after iron powder or ferromanganese powder is introduced into an aqueous solution containing at least one of glycine, glutamic acid, and sodium glutamate while supplying air or oxygen gas to the aqueous solution. A method for producing iron oxide powder, which comprises separating and recovering a precipitated product, washing with water, and drying.
【請求項2】  濃度0.1モル/リットル以下の水溶
液を温度65℃以下に保持しつつ鉄粉を投入してγ水酸
化鉄粉末を生成させる請求項1記載の酸化鉄粉末の製造
方法。
2. The method for producing iron oxide powder according to claim 1, wherein iron powder is added to an aqueous solution having a concentration of 0.1 mol/liter or less while maintaining the temperature at 65° C. or less to produce γ iron hydroxide powder.
【請求項3】  濃度0.3モル/リットル以下の水溶
液を温度80℃以上に保持しつつ鉄粉を投入して四三酸
化鉄粉末を生成させる請求項1記載の酸化鉄粉末の製造
方法。
3. The method for producing iron oxide powder according to claim 1, wherein iron powder is added to an aqueous solution having a concentration of 0.3 mol/liter or less while maintaining the temperature at 80° C. or higher to produce triiron tetroxide powder.
JP12331091A 1991-05-28 1991-05-28 Manufacturing method of iron oxide powder Expired - Lifetime JP2933745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12331091A JP2933745B2 (en) 1991-05-28 1991-05-28 Manufacturing method of iron oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12331091A JP2933745B2 (en) 1991-05-28 1991-05-28 Manufacturing method of iron oxide powder

Publications (2)

Publication Number Publication Date
JPH04349124A true JPH04349124A (en) 1992-12-03
JP2933745B2 JP2933745B2 (en) 1999-08-16

Family

ID=14857381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12331091A Expired - Lifetime JP2933745B2 (en) 1991-05-28 1991-05-28 Manufacturing method of iron oxide powder

Country Status (1)

Country Link
JP (1) JP2933745B2 (en)

Also Published As

Publication number Publication date
JP2933745B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
US3970738A (en) Process for producing iron oxide products from waste liquids containing ferrous salts
US4119536A (en) Method of disposing of a ferrous-ion containing acidic aqueous waste by forming polycrystalline iron compound particles
JPH06122519A (en) Hydrated amorphous ferric oxide particle powder and its production
CN1033786A (en) Utilize iron and steel pickling waste liquid to produce the processing method of iron oxide yellow
WO2001028929B1 (en) Method for production of iron oxide pigments
JPH10194747A (en) Production of ferric oxide yellow pigment and use of the same
JPH04349124A (en) Production of iron oxide powder
CN111268743A (en) Method for preparing ferroferric oxide by using copperas
US3840479A (en) Catalyst preparation
JPH0812338A (en) Leaflet lepidocrocite particle powder and its production
JP3824709B2 (en) Manufacturing method of high purity iron oxide powder
CN111825201A (en) Preparation method and application of self-adaptive liquid Fenton reaction catalyst for industrial wastewater treatment
CN1276877C (en) Method for preparing manganomanganic oxide from native manganese ore
Lee et al. Recovery of synthetic rutile and iron oxide from ilmenite ore by sulfation with ammonium sulfate
JPH0310578B2 (en)
KR900001490B1 (en) Process for production of fenoso-ferric oxide containing cobalt for magnetic recording
JPS60235726A (en) Preparation of ferric oxide for ferrite
JPH08183617A (en) Production of fine lepidocrocite particles or powder
KR900001489B1 (en) Method for production of fenoso-ferric oxide containing cobalt and mangane for magnetic recording
KR100349829B1 (en) Process for producing magnetite powder
CA2011839A1 (en) Process for the preparation of iron yellow pigments
JPS6020329B2 (en) Method for producing ferromagnetic oxide
KR100327946B1 (en) Method for eliminating nitrate using fine reduced iron powder
JPH03285831A (en) Magnetite for decomposing oxygen compound and production thereof
KR950002226B1 (en) Process for preparing mn3o4 for magnetic material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511