JPH04349102A - Method for steam-reforming hydrocarbon - Google Patents

Method for steam-reforming hydrocarbon

Info

Publication number
JPH04349102A
JPH04349102A JP3152548A JP15254891A JPH04349102A JP H04349102 A JPH04349102 A JP H04349102A JP 3152548 A JP3152548 A JP 3152548A JP 15254891 A JP15254891 A JP 15254891A JP H04349102 A JPH04349102 A JP H04349102A
Authority
JP
Japan
Prior art keywords
reformer
reforming
primary
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3152548A
Other languages
Japanese (ja)
Inventor
Hajime Kato
肇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP3152548A priority Critical patent/JPH04349102A/en
Publication of JPH04349102A publication Critical patent/JPH04349102A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To produce a reformed gas contg. hydrogen and carbon oxides by the reaction of hydrocarbons with steam with high heat energy efficiency while stably and easily operating the reactor. CONSTITUTION:A gaseous mixture of hydrocarbons and steam is primarily reformed by using plural heat exchanger-type reformers, and the primarily reformed gaseous reactant is secondarily reformed with an internal combustion reactor-type reformer in the presence of oxygen and/or air or by using a heat exchanger. A part of the heat to be consumed in the heat exchanger-type reformer in the primary stage is replenished with the sensible heat of the secondarily reformed gas, and the remainder is replenished with the sensible heat of the compressed air. The heat to be consumed in the secondary stage is replenished with the sensible heat of the compressed air.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、炭化水素を水蒸気と反
応させて水素と炭素酸化物を含む改質反応ガスを製造す
る水蒸気改質方法(スチームリホーミング)に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam reforming method (steam reforming) for producing a reformed reaction gas containing hydrogen and carbon oxides by reacting hydrocarbons with steam.

【従来技術及びその問題点】[Prior art and its problems]

【0002】炭化水素を水蒸気と反応させて、水素と炭
素酸化物(CO2やCO)を含む改質反応ガスを製造す
ることは、水蒸気改質法(スチームリホーミング)とし
て広く知られている。従来、この水蒸気改質法は、一般
的には、燃焼炉内に、触媒を充填した多数の触媒管を立
設して形成した水蒸気改質炉を用い、その触媒管に予熱
された燃料とスチームとの混合ガスを流通させるととも
に、その触媒管の外部壁を燃焼炉に付設したバーナで加
熱して改質反応に必要な熱を供給することにより実施さ
れている。そして、この水蒸気改質法は、前記水蒸気改
質炉に対し、適当な二次改質装置を組合せてアンモニア
合成用ガスの製造や、メタノール合成用ガスの製造及び
水素の製造等を目的として実施されている。例えば、ア
ンモニア合成用ガスを製造する場合には、前記水蒸気改
質炉(一次改質器)に対し、内部燃焼反応器型の改質器
を二次改質器として組合せ、一次改質器から得られた一
次改質反応ガスを加圧空気とともに二次改質器に供給し
、ここで一次改質反応ガスと加圧空気とを混合し、その
空気中の酸素を一次改質反応ガス中の可燃成分と反応さ
せて二次改質器での反応に必要な熱量を補給するととも
に、後段のアンモニア合成工程に必要な窒素ガスを得て
いる。また、メタノール合成用ガスを製造する場合には
、前記アンモニア合成用ガスを得る場合と同様に、一次
改質器に対して、内部燃焼反応器型の二次改質器を組合
せ、一次改質器から得られた一次改質反応ガスを酸素と
ともに二次改質器へ供給し、この酸素を二次改質器にお
いて、反応ガス中の可燃性成分と混合反応させて二次改
質器での反応に必要な熱量を補給している。この場合、
二次改質器においては、後段のメタノール合成工程で過
剰となる反応ガス中の水素の一部を酸素と反応させて除
去すると同時に、COとCO2の比をメタノール合成に
望ましい比率に調節している。
[0002] The production of a reformed reaction gas containing hydrogen and carbon oxides (CO2 and CO) by reacting hydrocarbons with steam is widely known as steam reforming. Conventionally, this steam reforming method generally uses a steam reforming furnace formed by standing up a large number of catalyst tubes filled with catalyst in a combustion furnace, and the preheated fuel and This is carried out by circulating a gas mixture with steam and heating the outer wall of the catalyst tube with a burner attached to a combustion furnace to supply the heat necessary for the reforming reaction. This steam reforming method is carried out by combining the steam reforming furnace with an appropriate secondary reformer for the purpose of producing ammonia synthesis gas, methanol synthesis gas, hydrogen production, etc. has been done. For example, when producing ammonia synthesis gas, an internal combustion reactor type reformer is combined as a secondary reformer with the steam reformer (primary reformer), and from the primary reformer The obtained primary reformed reaction gas is supplied to the secondary reformer together with pressurized air, where the primary reformed reaction gas and pressurized air are mixed, and the oxygen in the air is transferred to the primary reformed reaction gas. This reacts with the combustible components of the reactor to replenish the amount of heat required for the reaction in the secondary reformer, as well as to obtain the nitrogen gas necessary for the subsequent ammonia synthesis process. In addition, when producing methanol synthesis gas, as in the case of obtaining the ammonia synthesis gas, an internal combustion reactor-type secondary reformer is combined with the primary reformer, and the primary reformer is The primary reformed reaction gas obtained from the reactor is supplied to the secondary reformer together with oxygen, and this oxygen is mixed and reacted with combustible components in the reaction gas in the secondary reformer. supplies the amount of heat required for the reaction. in this case,
In the secondary reformer, part of the excess hydrogen in the reaction gas in the subsequent methanol synthesis step is removed by reacting with oxygen, and at the same time, the ratio of CO and CO2 is adjusted to the ratio desired for methanol synthesis. There is.

【0003】しかし、前記のような一次改質器と二次改
質器の組合せでは、二次改質器を出る二次改質反応ガス
の温度が高く、多大の顕熱を保有するため、装置系全体
としてのエネルギー効率が悪いものとなっている。そこ
で、最近では、二次改質器を出る反応ガスの保有する多
大の顕熱を有効利用し、装置系のエネルギー効率を向上
させるために、一次改質器として、竪型反応容器内に多
数の触媒管を立設した熱交換器型の改質器を用いること
が行われるようになってきている。
However, in the combination of the primary reformer and the secondary reformer as described above, the temperature of the secondary reformed reaction gas exiting the secondary reformer is high and contains a large amount of sensible heat. The energy efficiency of the entire device system is poor. Therefore, in recent years, in order to effectively utilize the large amount of sensible heat possessed by the reaction gas exiting the secondary reformer and improve the energy efficiency of the equipment system, multiple reformers have been installed in the vertical reaction vessel as the primary reformer. The use of a heat exchanger type reformer with upright catalyst tubes has come into use.

【0004】しかしながら、前記した熱交換器型の一次
改質器に対して二次改質器を組合せた従来の装置系を用
いた水蒸気改質法も未だ満足し得るものと言うことはで
きない。この装置系では、二次改質器を出た二次改質反
応ガスの保有する顕熱だけで一次改質器で必要とされる
反応熱を補給することは非常に困難で、実際上は、二次
改質器に対し、過剰の空気及び/又は酸素を供給し、一
次改質器からの一次改質反応ガス中の可燃成分と酸素を
反応させ、その際の発熱により二次改質器での反応熱を
補給しているのが実情である。しかし、反応熱の補給の
ために、このような過剰の空気及び/又は酸素を供給す
ることは、いくつかの不都合な問題を生じている。例え
ば、アンモニア合成用ガスを得るための改質法において
、過剰の空気を供給した場合、後続のアンモニア合成工
程に過剰の窒素が供給されるようになるため、その過剰
窒素の除去が必要となるとともに、さらに改質ガス中の
有用な水素が過剰酸素と反応して大幅に消費される等の
問題を含む。また、アルコール合成用ガスや水素ガスの
製造を目的とした改質法において、過剰の酸素を供給し
た場合、改質反応ガス中の有用な水素が過剰の酸素と反
応して大幅に消費されるという問題がある。さらに、過
剰の空気や酸素を供給することは、その改質反応圧を得
るための圧縮に余分の動力が消費されるという問題もあ
る。以上のように、熱交換型改質器と、内部燃焼反応器
型改質器とを組合せた装置系を用いる従来の水蒸気改質
法は未だ不満足で、改良の余地を残すものであった。
However, the steam reforming method using a conventional system in which a secondary reformer is combined with the heat exchanger type primary reformer described above is still not satisfactory. In this equipment system, it is extremely difficult to replenish the reaction heat required in the primary reformer using only the sensible heat possessed by the secondary reformed reaction gas that exits the secondary reformer; , excess air and/or oxygen is supplied to the secondary reformer, causing the combustible components in the primary reformed reaction gas from the primary reformer to react with oxygen, and the heat generated at that time causes the secondary reforming to occur. The reality is that it is replenishing the reaction heat in the vessel. However, supplying such excess air and/or oxygen to replenish the heat of reaction presents several disadvantages. For example, if excessive air is supplied in a reforming method to obtain gas for ammonia synthesis, excess nitrogen will be supplied to the subsequent ammonia synthesis process, so it is necessary to remove the excess nitrogen. In addition, there are further problems such as the useful hydrogen in the reformed gas reacting with excess oxygen and being consumed to a large extent. In addition, in reforming methods aimed at producing alcohol synthesis gas or hydrogen gas, if excess oxygen is supplied, the useful hydrogen in the reformed reaction gas will react with the excess oxygen and be significantly consumed. There is a problem. Furthermore, supplying excess air or oxygen has the problem that extra power is consumed for compression to obtain the reforming reaction pressure. As described above, the conventional steam reforming method using a device system that combines a heat exchange type reformer and an internal combustion reactor type reformer is still unsatisfactory and leaves room for improvement.

【0005】[0005]

【発明が解決しようとする課題】本発明は、熱交換器型
改質器と内部燃焼反応器型改質器とを組合せた従来の水
蒸気改質法に見られる前記問題点を解決することをその
課題とする。
[Problems to be Solved by the Invention] The present invention aims to solve the above-mentioned problems found in the conventional steam reforming method that combines a heat exchanger type reformer and an internal combustion reactor type reformer. That is the issue.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。
[Means for Solving the Problems] The present inventors have conducted extensive research to solve the above problems, and as a result, have completed the present invention.

【0007】即ち、本発明によれば、炭化水素とスチー
ムとの混合ガスを複数の熱交換器型改質器を用いて改質
反応させる一次改質工程と、該一次改質工程で得られた
複数の一次改質反応ガスを、酸素及び/又は空気の存在
下、内部燃焼反応器型改質器を用いて改質反応させる二
次改質工程からなり、該一次改質工程で用いる複数の熱
交換器型改質器において消費される熱量において、その
一部を該二次改質工程で得られる二次改質反応ガスの保
有する顕熱で補給し、その残部を圧縮加熱空気の保有す
る顕熱で補給することを特徴とする炭化水素の水蒸気改
質方法が提供される。
That is, according to the present invention, there is a primary reforming step in which a mixed gas of hydrocarbon and steam is subjected to a reforming reaction using a plurality of heat exchanger type reformers, and It consists of a secondary reforming process in which a plurality of primary reformed reaction gases are subjected to a reforming reaction using an internal combustion reactor type reformer in the presence of oxygen and/or air, and the plurality of primary reforming reaction gases used in the primary reforming process are Of the amount of heat consumed in the heat exchanger type reformer, part of it is replenished by the sensible heat possessed by the secondary reformed reaction gas obtained in the secondary reforming process, and the remainder is replenished by the sensible heat possessed by the secondary reformed reaction gas obtained in the secondary reforming step, and the remainder is Provided is a method for steam reforming hydrocarbons characterized by replenishment using retained sensible heat.

【0008】また、本発明によれば、炭化水素とスチー
ムとの混合ガスを熱交換器型改質器を用いて改質反応さ
せる一次改質工程と、該一次改質工程で得られた一次改
質反応ガスを熱交換器型反応器を用いて改質反応させる
二次改質工程からなり、該一次改質工程で用いる熱交換
器型改質器において消費される熱量を該二次改質工程で
得られる改質反応ガスの保有する顕熱で補給し、該二次
改質工程で用いる熱交換器型改質器において消費される
熱量を圧縮加熱空気の保有する顕熱で補給することを特
徴とする炭化水素の水蒸気改質方法が提供される。
Further, according to the present invention, there is provided a primary reforming step in which a mixed gas of hydrocarbons and steam is subjected to a reforming reaction using a heat exchanger type reformer, and a primary reforming step obtained in the primary reforming step. It consists of a secondary reforming process in which the reformed reaction gas undergoes a reforming reaction using a heat exchanger type reactor, and the amount of heat consumed in the heat exchanger type reformer used in the primary reforming process is converted into the secondary reforming process. The amount of heat consumed in the heat exchanger type reformer used in the secondary reforming process is replenished by the sensible heat possessed by the compressed heated air. A method for steam reforming hydrocarbons is provided.

【0009】本発明においては、一次改質器として熱交
換器型改質器を用いる。この熱交換器型改質器は、反応
容器内に多数の触媒管を立設し、加熱ガスがその触媒管
と接触しながら流通する構造のもので、従来公知のもの
である。この改質器において用いる触媒としては、例え
ば、マグネシアやアルミナ等の耐熱性担体にニッケルを
担持させたもの等が用いられる。
In the present invention, a heat exchanger type reformer is used as the primary reformer. This heat exchanger type reformer has a structure in which a large number of catalyst tubes are installed upright in a reaction vessel, and heated gas flows through the catalyst tubes while being in contact with the catalyst tubes, and is a conventionally known type. The catalyst used in this reformer is, for example, one in which nickel is supported on a heat-resistant carrier such as magnesia or alumina.

【0010】また、本発明においては、二次改質器とし
て、内部燃焼反応器型改質器又は熱交換器型改質器を用
いる、内部燃焼反応器型改質器は反応容器内の上部にガ
ス燃焼反応部を有し、ここで燃焼反応したガスが容器内
に配設された改質触媒層を流通する構造のもので、従来
公知のものである。
[0010] Furthermore, in the present invention, an internal combustion reactor type reformer or a heat exchanger type reformer is used as the secondary reformer. It has a gas combustion reaction section in which the gas subjected to the combustion reaction flows through a reforming catalyst layer disposed in the container, and is a conventionally known structure.

【0011】次に、本発明の実施例について図面を参照
して説明する。図1は、複数の熱交換器型の一次改質器
に対し、内部燃焼反応器型の二次改質器を組合せた装置
系を用いる水蒸気改質法についてのフローシートを示す
。図1において、1及び2は熱交換器型改質器、3は内
部燃焼反応器型改質器、4は熱交換器、5は圧縮機、6
及7は燃焼器、8はガスタービンを示す。炭化水素とス
チームの混合ガスは、ライン10を通って熱交換器4に
送られ、ここで400〜650℃に予熱された後、ライ
ン11を通って抜出され、その一部はライン12を通っ
て第1の熱交換器型の一次改質器1に送られ、その残部
はライン13を通って第2の熱交換器型の一次改質器2
に送られる。スチーム/炭化水素混合ガス中の炭化水素
の割合は、通常、H2O/炭素とモル比が1.5〜6.
0になるような割合である。一方、圧縮機5で6〜18
気圧に圧縮された空気はライン14を通り第1燃焼器6
に導入され、ここで900〜1300℃に加熱された後
、ライン15を通って第1の一次改質器1に送られる。 第1燃焼器6における圧縮空気の加熱は、ライン16を
通って導入されるガス状又は液状の燃料をその圧縮空気
の一部と燃焼反応させ、その際に発生する燃焼熱を利用
して加熱する。第1の一次改質器1は、多数の触媒管を
有するもので、ライン12を通ってこの改質器1に導入
された炭化水素/スチーム混合ガスは、この触媒管の内
部を下方に流れ、一方、ライン15を通ってこの改質器
1に導入された圧縮加熱空気はその触媒管の外壁と接触
しながら上方に流れ、これによって触媒管内を流れる炭
化水素/スチーム混合ガスは600〜900℃の範囲の
温度に加熱されて改質反応を受け、水素と炭素酸化物を
含み、さらに、未反応の燃料を含む一次改質反応ガスが
生成される。この改質器1における炭化水素の転化率は
、通常、20〜60モル%である。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a flow sheet for a steam reforming method using an apparatus system in which a plurality of heat exchanger type primary reformers are combined with an internal combustion reactor type secondary reformer. In FIG. 1, 1 and 2 are heat exchanger type reformers, 3 is an internal combustion reactor type reformer, 4 is a heat exchanger, 5 is a compressor, and 6 is a heat exchanger type reformer.
7 is a combustor, and 8 is a gas turbine. The mixed gas of hydrocarbon and steam is sent through line 10 to heat exchanger 4, where it is preheated to 400-650°C, and then extracted through line 11, and a part of it is sent through line 12. through line 13 to the first heat exchanger type primary reformer 1, and the remainder is sent through line 13 to the second heat exchanger type primary reformer 2.
sent to. The proportion of hydrocarbons in the steam/hydrocarbon gas mixture is usually H2O/carbon in a molar ratio of 1.5 to 6.
The ratio is such that it becomes 0. On the other hand, compressor 5 has 6 to 18
Air compressed to atmospheric pressure passes through line 14 to first combustor 6
After being heated to 900 to 1300° C., it is sent to the first primary reformer 1 through a line 15. The compressed air in the first combustor 6 is heated by causing a gaseous or liquid fuel introduced through the line 16 to undergo a combustion reaction with a part of the compressed air, and using the combustion heat generated at that time. do. The first primary reformer 1 has a large number of catalyst tubes, and the hydrocarbon/steam mixture gas introduced into the reformer 1 through the line 12 flows downward inside the catalyst tubes. On the other hand, the compressed heated air introduced into the reformer 1 through the line 15 flows upward while contacting the outer wall of the catalyst tube, so that the hydrocarbon/steam mixed gas flowing inside the catalyst tube is 600 to 900 C. to undergo a reforming reaction, producing a primary reformed reaction gas containing hydrogen and carbon oxides, as well as unreacted fuel. The conversion rate of hydrocarbons in this reformer 1 is usually 20 to 60 mol%.

【0012】第1の一次改質器1を出た改質ガスの温度
は、通常、600〜900℃であり、この改質ガスはラ
イン17を通って内部燃焼反応器型の二次改質器3の燃
焼反応部aに導入される。一方、第1の一次改質器1を
出た圧縮空気の温度は、通常、500〜700℃であり
、この圧縮空気はライン18を通り、さらに熱交換器4
を通った後、第2燃焼器7に導入され、ここでライン2
0を通って導入される燃料を燃焼させ、その際の燃焼熱
によって900〜1300℃に加熱される。この加熱圧
縮空気は、ガスタービン8に導入され、ここで大気圧近
くに膨張され、その際の膨張力によって圧縮器5を駆動
させてライン21から導入される空気を圧縮する。また
、この際の余剰の膨張エネルギーを利用して、発電機を
回転させて発電を行う。ガスタービン8を出た空気の温
度は、400〜700℃であり、この加熱空気は、ライ
ン22を通ってその熱回収のために、例えば、この装置
系に導入されるスチーム、空気、炭化水素等の予熱に利
用されたり、あるいはスチーム発生用に利用され、その
後、140〜250℃で大気中に放出される。本発明に
おいて、圧縮空気で加熱する一次改質器1と同様の一次
改質器が複数個ある場合、前記第2燃焼器7で加熱され
た圧縮空気は、それらの一次改質器を順次流通させて、
各一次改質器を加熱することもできる。この場合、各一
次改質器を出た圧縮空気は、前記と同様にして、燃焼器
で加熱して次の一次改質器に導入し、そして、最後の一
次改質器を出た圧縮空気は、これを燃焼器で加熱した後
、ガスタービン8に導入する。
The temperature of the reformed gas leaving the first primary reformer 1 is usually 600 to 900°C, and this reformed gas passes through the line 17 to the internal combustion reactor type secondary reformer. is introduced into the combustion reaction section a of the vessel 3. On the other hand, the temperature of the compressed air that exits the first primary reformer 1 is usually 500 to 700°C, and this compressed air passes through the line 18 and further heat exchanger 4.
After passing through, it is introduced into the second combustor 7, where the line 2
The fuel introduced through 0 is combusted and heated to 900-1300°C by the heat of combustion. This heated compressed air is introduced into the gas turbine 8, where it is expanded to near atmospheric pressure, and the expansion force at that time drives the compressor 5 to compress the air introduced from the line 21. In addition, the surplus expansion energy at this time is used to rotate a generator to generate electricity. The temperature of the air leaving the gas turbine 8 is between 400 and 700°C, and this heated air is passed through a line 22 for its heat recovery, e.g. steam, air, hydrocarbons, which are introduced into this equipment system. It is used for preheating, etc., or for generating steam, and then released into the atmosphere at 140 to 250°C. In the present invention, when there are a plurality of primary reformers similar to the primary reformer 1 heated by compressed air, the compressed air heated by the second combustor 7 is sequentially distributed through the primary reformers. Let me,
Each primary reformer can also be heated. In this case, the compressed air exiting each primary reformer is heated in the combustor and introduced into the next primary reformer in the same manner as described above, and the compressed air exiting the last primary reformer is After heating this in a combustor, it is introduced into the gas turbine 8.

【0013】第2の一次改質器2にライン13を通って
導入された炭化水素/スチーム混合ガスは、ここで二次
改質器3からライン25を通って抜出される二次改質反
応ガスの持つ顕熱によって加熱されて改質反応を受け、
この一次改質器2で生成した一次改質反応ガスはライン
26を通って二次改質器3の燃焼反応部aに導入される
。二次改質器3を出てライン25を通る二次改質反応ガ
スの温度は、通常、900〜1100℃であり、第2の
一次改質器2からライン27を通って出る二次改質反応
ガスの温度は、500〜800℃であり、この二次改質
反応ガスは、熱回収システムに送られる。また、ライン
26を通る第2の一次改質器2からの一次改質反応ガス
の温度は、600〜900℃である。この一次改質反応
ガスは、水素と炭素酸化物を含み、さらに未反応の燃料
を含む。炭化水素の転化率は、通常、20〜60モル%
である。二次改質器3においては、その上部の燃焼反応
部aに、ライン17及びライン26を通って第1の一次
改質器1及び第2の一次改質反応器2からのそれぞれの
一次改質反応ガスが導入され、さらに、ライン28を通
って空気及び/又は酸素が必要に応じてスチームとの混
合物の形で導入される。この空気及び/又は酸素の温度
は、通常、400〜700℃である。この二次改質器3
の燃焼反応部aにおいては、前記した一次改質反応ガス
中に含まれる可燃成分(水素、一酸化炭素、炭化水素)
と空気及び/又は酸素との発熱反応が起って、改質反応
に必要な熱量が補給される。また、同時にスチームと炭
化水素との間の改質反応も起る。二次改質器3の燃焼反
応器部aで得られた反応ガスの温度は、通常、1000
〜1300℃であり、この反応ガスは、その下部の触媒
反応部bの触媒管内を流通した後、ライン25を通って
加熱媒体として第2の一次改質器2に送られる。
The hydrocarbon/steam mixture gas introduced into the second primary reformer 2 through line 13 is now subjected to a secondary reforming reaction which is withdrawn from the secondary reformer 3 through line 25. It is heated by the sensible heat of the gas and undergoes a reforming reaction,
The primary reformed reaction gas generated in the primary reformer 2 is introduced into the combustion reaction section a of the secondary reformer 3 through a line 26. The temperature of the secondary reformed reaction gas exiting the secondary reformer 3 and passing through line 25 is typically 900 to 1100°C; The temperature of the secondary reformed reaction gas is 500 to 800°C, and this secondary reformed reaction gas is sent to a heat recovery system. Further, the temperature of the primary reformed reaction gas from the second primary reformer 2 passing through the line 26 is 600 to 900°C. This primary reformed reaction gas contains hydrogen and carbon oxides, and further contains unreacted fuel. The conversion rate of hydrocarbons is usually 20 to 60 mol%
It is. In the secondary reformer 3, the primary reformers from the first primary reformer 1 and the second primary reforming reactor 2 pass through lines 17 and 26 to the upper combustion reaction section a. The reactant gas is introduced, as well as air and/or oxygen optionally in a mixture with steam through line 28. The temperature of this air and/or oxygen is usually 400 to 700°C. This secondary reformer 3
In the combustion reaction part a, the combustible components (hydrogen, carbon monoxide, hydrocarbons) contained in the primary reformed reaction gas are
An exothermic reaction between the gas and the air and/or oxygen occurs to replenish the amount of heat required for the reforming reaction. At the same time, a reforming reaction between steam and hydrocarbons also occurs. The temperature of the reaction gas obtained in the combustion reactor section a of the secondary reformer 3 is usually 1000
~1300° C., and this reaction gas flows through the catalyst tube of the catalytic reaction section b in the lower part thereof, and then is sent to the second primary reformer 2 as a heating medium through the line 25.

【0014】二次改質器3の燃焼反応部aにおいては、
一次改質反応ガス中の未反応炭化水素の大部分がスチー
ムと反応し、その下部の触媒反応部bにおいては、改質
反応の平衡状態が得られるように反応が起り、その二次
改質器3の出口ガスにおいては、改質反応は殆んど平衡
状態に達している。前記した図1のフローシート従う水
蒸気改質法は、アンモニアやメタノールの合成用の改質
反応ガスの製造方法として好適のものである。即ち、ア
ンモニア合成用の改質反応ガスを得る場合には、二次改
質器3の燃焼反応部aに空気を導入し、水素及び炭素酸
化物とともに窒素を含む改質反応ガスを得る。また、メ
タノール合成用の改質反応ガスを得る場合には、二次改
質器3の燃焼反応部aに酸素を導入し、水素と炭素酸化
物を含むが窒素を含まない改質反応ガスを得る。図1に
示した水蒸気改質法においては種々の変更が可能であり
、例えば、一次改質器の数は、3〜5個であることがで
きるし、二次改質器の数も2〜3個であることができる
In the combustion reaction section a of the secondary reformer 3,
Most of the unreacted hydrocarbons in the primary reforming reaction gas react with the steam, and in the lower catalytic reaction section b, a reaction occurs so that an equilibrium state of the reforming reaction is obtained, and the secondary reforming In the outlet gas of vessel 3, the reforming reaction has almost reached an equilibrium state. The steam reforming method according to the flow sheet shown in FIG. 1 described above is suitable as a method for producing a reformed reaction gas for synthesizing ammonia and methanol. That is, when obtaining a reformed reaction gas for ammonia synthesis, air is introduced into the combustion reaction section a of the secondary reformer 3 to obtain a reformed reaction gas containing nitrogen as well as hydrogen and carbon oxides. In addition, when obtaining a reformed reaction gas for methanol synthesis, oxygen is introduced into the combustion reaction section a of the secondary reformer 3 to produce a reformed reaction gas containing hydrogen and carbon oxides but not nitrogen. obtain. Various changes are possible in the steam reforming method shown in FIG. 1. For example, the number of primary reformers can be 3 to 5, and the number of secondary reformers can also be 2 to 5. There can be three pieces.

【0015】図2は、熱交換器型の一次改質器に対して
同様に熱交換器型の二次改質器を組合せた装置系を用い
た水蒸気改質法のフロシートを示す。図2において、3
1は熱交換器型の一次改質器及び32は熱交換器型の二
次改質器を示す。なお、図2において示した符号におい
て、図1に示した符号と同じものは同じ意味を示す。ラ
イン10を通る炭化水素/スチーム混合ガスは、熱交換
器4を通って400〜650℃に予熱された後、ライン
11及び13を通って一次改質器31に導入され、ここ
で得られた一次改質反応ガスはライン26を通って二次
改質器32に送られる。圧縮機5で圧縮された空気は、
図1に示したのと同様にして、第1燃焼器6を通った後
、二次改質器32に導入され、ここでライン26を通っ
て導入された一次改質反応ガスを加熱した後、ライン1
8を通って抜出され、図1に示した場合と同様の処理を
受ける。ライン26を通って二次改質器32に導入され
た一次改質反応ガスは、ここで改質反応を受ける。この
二次改質器32で得られた二次改質反応ガスは、ライン
17を通って抜出され、加熱媒体として一次改質器31
に導入され、ここでライン13を通って導入された炭化
水素/スチーム混合物を加熱した後、ライン27を通っ
て抜出される。ライン26を通って二次改質器32に導
入される一次改質反応ガスの温度は600〜750℃で
あり、ライン17を通って二次改質器32から抜出され
る二次改質反応ガスの温度は750〜850℃である。 ライン15を通って二次改質器32に導入される加熱圧
縮空気は、圧力8〜20気圧で、その温度は900〜1
300℃である。ライン18を通って二次改質器32か
ら抜出される圧縮空気の温度は700〜950℃である
。この図2に示したフローシートに従う水蒸気改質法は
、水素の製造を目的とした改質反応ガスを得るのに好適
のものである。
FIG. 2 shows a flow sheet of a steam reforming method using an apparatus system in which a heat exchanger type primary reformer is similarly combined with a heat exchanger type secondary reformer. In Figure 2, 3
Reference numeral 1 indicates a heat exchanger type primary reformer, and 32 indicates a heat exchanger type secondary reformer. Note that in the symbols shown in FIG. 2, the same symbols as those shown in FIG. 1 have the same meanings. The hydrocarbon/steam mixture gas passing through line 10 is preheated to 400-650°C through heat exchanger 4, and then introduced through lines 11 and 13 to primary reformer 31, where the obtained The primary reformed reaction gas is sent to the secondary reformer 32 through line 26. The air compressed by the compressor 5 is
In a manner similar to that shown in FIG. , line 1
8 and undergoes processing similar to that shown in FIG. The primary reformed reaction gas introduced into the secondary reformer 32 through line 26 undergoes a reforming reaction here. The secondary reformed reaction gas obtained in the secondary reformer 32 is extracted through the line 17 and is used as a heating medium in the primary reformer 31.
, where the hydrocarbon/steam mixture introduced through line 13 is heated and then withdrawn through line 27 . The temperature of the primary reformed reaction gas introduced into the secondary reformer 32 through line 26 is 600 to 750°C, and the secondary reformed reaction gas is extracted from the secondary reformer 32 through line 17. The temperature of the gas is 750-850°C. The heated compressed air introduced into the secondary reformer 32 through the line 15 has a pressure of 8 to 20 atmospheres and a temperature of 900 to 1
The temperature is 300°C. The temperature of the compressed air extracted from the secondary reformer 32 through line 18 is 700-950°C. The steam reforming method according to the flow sheet shown in FIG. 2 is suitable for obtaining a reformed reaction gas for the purpose of producing hydrogen.

【0016】[0016]

【発明の効果】複数の熱交換器型の一次改質器に対して
混合反応器型の二次改質器を組合せた装置系を用いる本
発明の水蒸気改質法は、それら複数の一次改質器のうち
の一部の加熱を、圧縮加熱空気により行うことから、二
次改質器の燃焼反応部に供給する酸素や空気を過剰に行
う必要がなく、しかも一次改質器を出た後の圧縮加熱空
気は、これを再び高温に加熱し、ガスタービン駆動させ
ることにより、その圧縮加熱空気の持つエネルギーを効
率的に利用することができる。従って、本発明では、単
位水素量当りに必要とされるエネルギーを大幅に節約す
ることができる。その上、複数の熱交換器型の一次改質
器の加熱を、前記のように圧縮加熱空気を用いて行うこ
とから、装置系の運転の自由度も著しく増大し、得られ
る改質反応ガス組成の調整を容易に行うことができる。 また、熱交換器型の一次改質器と熱交換器型の二次改質
器を組合せた装置系を用いる本発明の水蒸気改質法は、
装置系が小型化されるとともに、その二次改質器の加熱
媒体として圧縮加熱空気を用いることから、製造される
単位水素量当りに必要とされるエネルギーを大幅に節約
することができる上、装置系の運転の自由度も著しく増
大する。
Effects of the Invention The steam reforming method of the present invention uses a device system in which a plurality of heat exchanger type primary reformers are combined with a mixed reactor type secondary reformer. Since heating of a part of the reformer is performed using compressed heated air, there is no need to supply excess oxygen or air to the combustion reaction section of the secondary reformer, and there is no need to supply excess oxygen or air to the combustion reaction section of the secondary reformer By heating the subsequent compressed and heated air to a high temperature again and driving the gas turbine, the energy of the compressed and heated air can be efficiently utilized. Therefore, in the present invention, the energy required per unit amount of hydrogen can be significantly saved. Furthermore, since the multiple heat exchanger-type primary reformers are heated using compressed heated air as described above, the degree of freedom in operating the equipment system is significantly increased, and the resulting reformed reaction gas The composition can be easily adjusted. In addition, the steam reforming method of the present invention uses a device system that combines a heat exchanger type primary reformer and a heat exchanger type secondary reformer,
As the equipment system is downsized and compressed heated air is used as the heating medium for the secondary reformer, the energy required per unit amount of hydrogen produced can be significantly reduced. The degree of freedom in operating the device system is also significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の1つの実施例についてのフローシート
を示す。
FIG. 1 shows a flow sheet for one embodiment of the invention.

【図2】本発明の他の実施例についてのフローシートを
示す。
FIG. 2 shows a flow sheet for another embodiment of the invention.

【符号の説明】[Explanation of symbols]

1,2,31,32  熱交換器型改質器3  内部燃
焼反応器型改質器 4  熱交換器 5  圧縮機 6,7  燃焼器 8  ガスタービン
1, 2, 31, 32 Heat exchanger type reformer 3 Internal combustion reactor type reformer 4 Heat exchanger 5 Compressor 6, 7 Combustor 8 Gas turbine

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  炭化水素とスチームとの混合ガスを複
数の熱交換器型改質器を用いて改質反応させる一次改質
工程と、該一次改質工程で得られた複数の一次改質反応
ガスを、酸素及び/又は空気の存在下、内部燃焼反応器
型改質器を用いて改質反応させる二次改質工程からなり
、該一次改質工程で用いる複数の熱交換器型改質器にお
いて消費される熱量において、その一部を該二次改質工
程で得られる二次改質反応ガスの保有する顕熱で補給し
、その残部を圧縮加熱空気の保有する顕熱で補給するこ
とを特徴とする炭化水素の水蒸気改質方法。
[Claim 1] A primary reforming step in which a mixed gas of hydrocarbon and steam undergoes a reforming reaction using a plurality of heat exchanger type reformers, and a plurality of primary reformers obtained in the primary reforming step. It consists of a secondary reforming process in which a reaction gas is subjected to a reforming reaction using an internal combustion reactor type reformer in the presence of oxygen and/or air, and includes a plurality of heat exchanger type reformers used in the primary reforming process. In the amount of heat consumed in the reformer, part of it is replenished by the sensible heat possessed by the secondary reformed reaction gas obtained in the secondary reforming process, and the remainder is replenished by the sensible heat possessed by the compressed heated air. A method for steam reforming hydrocarbons, characterized by:
【請求項2】  炭化水素とスチームとの混合ガスを熱
交換器型改質器を用いて改質反応させる一次改質工程と
、該一次改質工程で得られた一次改質反応ガスを熱交換
器型反応器を用いて改質反応させる二次改質工程からな
り、該一次改質工程で用いる熱交換器型改質器において
消費される熱量を該二次改質工程で得られる二次改質反
応ガスの保有する顕熱で補給し、該二次改質工程で用い
る熱交換器型改質器において消費される熱量を圧縮加熱
空気の保有する顕熱で補給することを特徴とする炭化水
素の水蒸気改質方法。
2. A primary reforming step in which a mixed gas of hydrocarbons and steam undergoes a reforming reaction using a heat exchanger type reformer, and a primary reforming reaction gas obtained in the primary reforming step is heated. It consists of a secondary reforming process in which a reforming reaction is carried out using an exchanger type reactor, and the amount of heat consumed in the heat exchanger type reformer used in the primary reforming process is converted into the amount of heat obtained in the secondary reforming process. The secondary reforming reaction gas is supplied with sensible heat, and the amount of heat consumed in the heat exchanger type reformer used in the secondary reforming process is replenished with the sensible heat possessed by the compressed heated air. A method for steam reforming hydrocarbons.
【請求項3】  該熱交換器型改質器を流通し、降温し
た圧縮空気を燃料の燃焼熱により加熱した後膨張させる
ことにより、該加熱圧縮空気の持つエネルギーを回収す
る請求項1又は2の方法。
3. The compressed air flowing through the heat exchanger type reformer and having a lower temperature is heated by the combustion heat of the fuel and then expanded to recover the energy of the heated compressed air. the method of.
JP3152548A 1991-05-28 1991-05-28 Method for steam-reforming hydrocarbon Pending JPH04349102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152548A JPH04349102A (en) 1991-05-28 1991-05-28 Method for steam-reforming hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152548A JPH04349102A (en) 1991-05-28 1991-05-28 Method for steam-reforming hydrocarbon

Publications (1)

Publication Number Publication Date
JPH04349102A true JPH04349102A (en) 1992-12-03

Family

ID=15542873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152548A Pending JPH04349102A (en) 1991-05-28 1991-05-28 Method for steam-reforming hydrocarbon

Country Status (1)

Country Link
JP (1) JPH04349102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059995A (en) * 1998-01-21 2000-05-09 Haldor Topsoe A/S Process and preparation of hydrogen-rich gas
JP2005350299A (en) * 2004-06-10 2005-12-22 Hitachi Ltd Hydrogen fuel production system, hydrogen fuel production method and hydrogen fuel production program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059995A (en) * 1998-01-21 2000-05-09 Haldor Topsoe A/S Process and preparation of hydrogen-rich gas
JP2005350299A (en) * 2004-06-10 2005-12-22 Hitachi Ltd Hydrogen fuel production system, hydrogen fuel production method and hydrogen fuel production program

Similar Documents

Publication Publication Date Title
RU2147692C1 (en) Power generation process
EP0212755B1 (en) Process and apparatus for producing synthesis gas
US5229102A (en) Catalytic ceramic membrane steam-hydrocarbon reformer
CN105377798B (en) The method and system of methyl alcohol is produced using the reforming system based on oxygen transport film
EP0503482B1 (en) Autothermal steam reforming process
US7914764B2 (en) Hydrogen manufacture using pressure swing reforming
CA2472326C (en) Process for the production of hydrocarbons
EP0504471B1 (en) Autothermal steam reforming process
US7214251B2 (en) Compact steam reformer
EP0266861A1 (en) Improvements in or relating to reforming a gaseous reformable fuel within a solid oxide fuel cell generator
RU2222492C2 (en) Method for gas synthesis and electrical energy coproduction
KR970006922B1 (en) Process for the preparation of carbon monoxide rich gas
EP1926171A1 (en) Method and apparatus for integrating a liquid fuel processor and a fuel cell through dual reforming and a gas turbine
JPH06239601A (en) Combined reformer and conversion reactor
JPH04214001A (en) Manufacture of hydrogen-containing gas stream
EP1162170B2 (en) Method of manufacturing a synthesis gas to be employed for the synthesis of gasoline, kerosene and gas oil
JP4427173B2 (en) Syngas production method
US7351750B2 (en) Method for producing long-chain hydrocarbons from natural gas
JPH0218303A (en) Reactor and process for reforming hydrocarbon
US6863879B2 (en) Installation and process for the production of synthesis gas comprising a reactor for steam reforming and a reactor for converting CO2 heated by a hot gas
DK162935B (en) PRODUCT GAS PRODUCTION CONTAINING HYDROGEN AND CARBON OXIDES
AU778771B2 (en) Cogeneration of methanol and electrical power
JP4795517B2 (en) Method for producing synthesis gas for synthesizing gasoline, kerosene and light oil
JP4681101B2 (en) Method for producing synthesis gas for gasoline, light oil and kerosene
JPH01500252A (en) Equipment for endothermic reactions, especially hydrogen generation reactions