JPH04349099A - Radiative cooling device - Google Patents

Radiative cooling device

Info

Publication number
JPH04349099A
JPH04349099A JP3025853A JP2585391A JPH04349099A JP H04349099 A JPH04349099 A JP H04349099A JP 3025853 A JP3025853 A JP 3025853A JP 2585391 A JP2585391 A JP 2585391A JP H04349099 A JPH04349099 A JP H04349099A
Authority
JP
Japan
Prior art keywords
inert gas
gas
airtight structure
infrared sensor
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3025853A
Other languages
Japanese (ja)
Other versions
JP2665057B2 (en
Inventor
Yukio Kato
幸男 加藤
Yasunobu Torikai
鳥飼 泰伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Engineering Ltd
Original Assignee
NEC Corp
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Engineering Ltd filed Critical NEC Corp
Priority to JP3025853A priority Critical patent/JP2665057B2/en
Publication of JPH04349099A publication Critical patent/JPH04349099A/en
Application granted granted Critical
Publication of JP2665057B2 publication Critical patent/JP2665057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To allow a radiative cooler to respond both to a structure, in which inert gas flows uncontrolled, and a simple structure to contain inert gas sealedly by constructing the periphery of an infrared sensor in an airtight structure, filling inside of this airtight structure with inert gas or a dried gas at any appropriate timing, and sealing the place with blind caps through O-ring packing. CONSTITUTION:A radiative cooler as per invention is to cool an infrared sensor 11. The periphery of the infrared sensor 11 is made in airtight structure using O-rings 17-25, and inside of the airtight structure is filled with an inert gas or dried gas at any appropriate timing, wherein the airtightness is maintained by sealing the area with blind caps 14A, 14B through O-ring packing 26. Thereby dry gas can be kept for a long period of time certainly to purge the moisture, the infrared sensor be produced from deterioration on the ground, and consumption of the inert gas or dried gas be lessened.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は放射冷却器に関し、特に
人工衛星搭載の赤外線検知器等の冷却に使用され、打上
前の地上環境の試験において、赤外線検知器の検知感度
の低下を防止するために改良された放射冷却器に関する
[Industrial Application Field] The present invention relates to a radiation cooler, and is particularly used for cooling infrared detectors mounted on artificial satellites, and is used to prevent a decrease in the detection sensitivity of infrared detectors during tests of the ground environment before launch. This invention relates to an improved radiant cooler.

【0002】0002

【従来の技術】最近の地球資源探査衛星に搭載される赤
外線カメラ用の赤外線検知器には、Hg,Cd,Te等
の光量子検知器が用いられている。
2. Description of the Related Art Photon detectors for Hg, Cd, Te, etc. are used in infrared detectors for infrared cameras mounted on recent earth resource exploration satellites.

【0003】従来、この種の検知器素子は、空気中の湿
度により性能劣化を引き起す。さらに地上における性能
確認試験における汚染物質であるコンタミの付着により
感度低下を招くので、不活性ガス(たとえば乾燥窒素ガ
ス)を放射冷却器内の赤外線検知器周辺を覆うように一
方向に流動させる、いわゆるたれ流しをして赤外線検知
器が空気あるいはコンタミ等に直接接触するのを防止す
る構造となっていた。
Conventionally, this type of detector element suffers from performance deterioration due to humidity in the air. Furthermore, since the adhesion of contaminants during performance confirmation tests on the ground can lead to a decrease in sensitivity, an inert gas (such as dry nitrogen gas) is flowed in one direction to cover the area around the infrared detector in the radiant cooler. The structure was designed to prevent the infrared detector from coming into direct contact with air or contaminants by using a so-called dripping system.

【0004】なお赤外線検知器を密封構造のガラス容器
内に入れて真空封止する方式もあるが、ガラスが打上時
の振動、衝撃に弱いことと熱収縮等によるクラックの可
能性もあるために使用されていなかった。
[0004] There is also a method of placing the infrared detector in a sealed glass container and sealing it in a vacuum, but this method is difficult because glass is susceptible to vibration and impact during launch and there is a possibility of cracking due to heat shrinkage, etc. It wasn't used.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の放射冷
却器において、不活性ガスをたれ流しする構造の場合に
は次のような欠点がある。
Problems to be Solved by the Invention In the conventional radiation cooler described above, the structure in which inert gas is dripped has the following drawbacks.

【0006】(1)打上げまでの期間が長いと大量の不
活性ガスを必要とする。
(1) If the period until launch is long, a large amount of inert gas is required.

【0007】(2)人工衛星に組込み後に行われるシス
テム試験等において、たれ流し作業が著しく制限される
(2) In system tests and the like performed after installation in an artificial satellite, the flow-through work is significantly restricted.

【0008】(3)不活性ガスの流れにムラが生じ、均
一に覆うことができない。
(3) Unevenness occurs in the flow of the inert gas, making it impossible to cover it uniformly.

【0009】本発明の目的は赤外線検知器の単体試験の
場合における不活性ガスのたれ流しの構造と最終システ
ム試験の場合における不活性ガスを密封する簡易な構造
との両方に対応できる放射冷却器を提供することにある
The object of the present invention is to provide a radiation cooler that can accommodate both the inert gas dripping structure for infrared detector unit tests and the simple structure for sealing inert gas in the final system test. It is about providing.

【0010】0010

【課題を解決するための手段】本発明の放射冷却器は、
人工衛星に搭載される赤外線検知器等を冷却する放射冷
却器において、前記赤外線検知器周辺を気密構造にし、
かつ、前記気密構造の内部に任意の時期に不活性ガス又
は乾燥気体を充てんした後にOリングパッキンを介して
めくらキャップで封止し機密維持する。
[Means for Solving the Problems] The radiation cooler of the present invention includes:
In a radiation cooler that cools an infrared detector etc. mounted on an artificial satellite, the area around the infrared detector is made into an airtight structure,
After filling the inside of the airtight structure with inert gas or dry gas at any time, it is sealed with a blind cap via an O-ring packing to maintain confidentiality.

【0011】[0011]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0012】図1は、本発明の一実施例の断面図である
。図1の実施例において、従来例の構造に追加した個所
は、2個の排気ポート13A,13Bと、取り外し自在
なめくらキャップ14A,14Bと、2重構造で形成さ
れている内部空間27A,27Bの気密を完全にするた
めに10個所にOリングパッキン17〜26とを設けて
密閉状態にできる構造になっている。又、めくらキャッ
プ14A,14Bをはずすことにより、単体試験時に排
気ポート13Aから排気ポート13Bに不活性ガスを一
方向に流動させることもできる。
FIG. 1 is a sectional view of one embodiment of the present invention. In the embodiment of FIG. 1, the parts added to the structure of the conventional example are two exhaust ports 13A, 13B, removable blind caps 14A, 14B, and internal spaces 27A, 27B formed with a double structure. In order to achieve complete airtightness, O-ring packings 17 to 26 are provided at 10 locations to create a hermetic state. Furthermore, by removing the blind caps 14A and 14B, the inert gas can be made to flow in one direction from the exhaust port 13A to the exhaust port 13B during a unit test.

【0013】次に本実施例の構造と動作を説明する。赤
外線検知器11は断熱リング4で支持されている冷却板
5上に取り付けられている。冷却板5は中間冷却板3に
取り付けられ、中間冷却板3は断熱リング4に取り付け
られている。又、断熱リング6は排気ポート13A,B
が取り付けているベースプレート7上に固定されている
。赤外線検知器11を動作温度約100Kに冷却する方
法は熱伝導板1を約90Kの冷却源に接続し、冷却板5
の熱伝導により冷却される。さらに100K温度部分の
輻射熱リークを少なくするために、断熱リング6の常温
ステージとの間に約160Kの中間冷却板3を設けてい
る。中間冷却板3も冷却板5と同様に、外部の冷却源に
熱伝導板2が接続されて所定の温度(約160K)に冷
却される。この状態で内部に水分を含んだ空気があった
場合には、赤外線検知器11の表面を含む100K,1
60K表面は結露し赤外線検知器11の性能が劣化する
。赤外線10はゲルマニウムレンズ8を通過して、赤外
線検知器11に検出され、その信号はフレキシブルプリ
ント基板12を介して外部へ出力される。フレキシブル
フリント基板12は、ドーナッツ状の気密リング15に
よってサンドイッチに一体成形し、気密保持している。 各部品の取付面にはOリングパッキン17〜26を挿入
し、ベースプレート7の端面に排気ポート13A,13
Bを2箇所設け、一方から乾燥気体を注入し、他方を解
放しておくと内部は乾燥気体で充満され、前述の結露を
除去することができる。そして、両方の排気ポート13
A,13Bの入口にOリングパッキン26を入れ、めく
らキャップ14A,14Bを取付けておけば、内部は、
乾燥気体が充満した状態が維持される。内部の圧力は外
部の大気圧と同じ圧力にし、圧力差によりOリングパッ
キン26からの乾燥気体の透過を防止している。
Next, the structure and operation of this embodiment will be explained. The infrared detector 11 is mounted on a cooling plate 5 supported by an insulating ring 4. The cooling plate 5 is attached to the intermediate cooling plate 3, and the intermediate cooling plate 3 is attached to the heat insulating ring 4. In addition, the heat insulating ring 6 is connected to the exhaust ports 13A and 13B.
is fixed on the base plate 7 to which is attached. A method for cooling the infrared detector 11 to an operating temperature of about 100K is to connect the heat conduction plate 1 to a cooling source of about 90K,
It is cooled by heat conduction. Furthermore, in order to reduce radiant heat leakage in the 100K temperature portion, an intermediate cooling plate 3 of about 160K is provided between the heat insulating ring 6 and the normal temperature stage. Similar to the cooling plate 5, the intermediate cooling plate 3 is cooled to a predetermined temperature (approximately 160K) by connecting the heat conduction plate 2 to an external cooling source. In this state, if there is air containing moisture inside, the surface of the infrared detector 11 will be 100K, 1
Dew condensation occurs on the 60K surface and the performance of the infrared detector 11 deteriorates. The infrared rays 10 pass through the germanium lens 8, are detected by the infrared detector 11, and the signals are outputted to the outside via the flexible printed circuit board 12. The flexible flint substrate 12 is integrally molded into a sandwich with a donut-shaped airtight ring 15 to maintain airtightness. O-ring packings 17 to 26 are inserted into the mounting surface of each component, and exhaust ports 13A and 13 are inserted into the end surface of the base plate 7.
If B is provided at two locations and dry gas is injected from one side and the other is left open, the interior will be filled with dry gas and the aforementioned dew condensation can be removed. And both exhaust ports 13
If you insert the O-ring packing 26 into the inlets of A and 13B and attach the blind caps 14A and 14B, the inside will be as follows.
A state filled with dry gas is maintained. The internal pressure is the same as the external atmospheric pressure, and the pressure difference prevents dry gas from permeating through the O-ring packing 26.

【0014】[0014]

【発明の効果】以上説明したように本発明は、赤外線検
知器周辺を気密構造にし、気密構造内部を最終システム
試験の任意の時期に不活性ガス又は乾燥気体を充てんし
て、気密維持できる構造としたので、次のような効果が
ある。
As explained above, the present invention has a structure in which the area around the infrared detector is made airtight, and the inside of the airtight structure can be filled with inert gas or dry gas at any time during the final system test to maintain the airtightness. Therefore, it has the following effects.

【0015】(1)長期間確実な乾燥気体を保持して湿
気を一掃することが可能であり、地上での赤外線検知器
の劣化はない。
(1) It is possible to keep dry gas reliably for a long period of time and wipe out moisture, and there is no deterioration of the infrared detector on the ground.

【0016】(2)不活性ガス又は乾燥気体の消費は少
なく、経済的である。
(2) The consumption of inert gas or drying gas is small, making it economical.

【0017】(3)人工衛星への組込みが容易になり、
かつ、組み込み後に不活性ガスを内部空間にたれ流しす
るような作業工程を削除できる。
(3) It becomes easier to integrate into artificial satellites,
Moreover, it is possible to eliminate the work process of pouring inert gas into the internal space after assembly.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の放射冷却器の断面図である
FIG. 1 is a sectional view of a radiation cooler according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    熱伝導板 2    熱伝導板 3    中間冷却板 4    断熱リング 5    冷却板 6    断熱リング 7    ペースプレート 8    ゲルマニウムレンズ 9    ゲルマニウムレンズ 10    赤外線 11    赤外線検知器 12    フレキシブルプリント基板13A,13B
    排気ポート14    めくらキャップ15 
   気密リング 16    フィルタ 17〜26    Oリングパッキン 27    内部空間 28    取付板
1 Heat conduction plate 2 Heat conduction plate 3 Intermediate cooling plate 4 Heat insulation ring 5 Cooling plate 6 Heat insulation ring 7 Space plate 8 Germanium lens 9 Germanium lens 10 Infrared ray 11 Infrared detector 12 Flexible printed circuit board 13A, 13B
Exhaust port 14 Blind cap 15
Airtight ring 16 Filters 17 to 26 O-ring packing 27 Internal space 28 Mounting plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  人工衛星に搭載される赤外線検知器等
を冷却する放射冷却器において、前記赤外線検知器周辺
を気密構造にし、かつ、前記気密構造の内部に任意の時
期に不活性ガス又は乾燥気体を充てんした後にOリング
パッキンを介してめくらキャップで封止し機密維持する
ことを特徴とする放射冷却器。
1. A radiation cooler for cooling an infrared detector etc. mounted on an artificial satellite, wherein the area around the infrared detector is made into an airtight structure, and an inert gas or dry gas is added to the inside of the airtight structure at any time. A radiation cooler characterized in that after being filled with gas, it is sealed with a blind cap via an O-ring packing to maintain confidentiality.
【請求項2】  前記気密構造の所定の2個所の一方か
ら不活性ガス又は乾燥空気を注入し他方から排出する2
個の排気ポートを設け、かつ、この排気ポートの入口に
前記めくらキャップを取り付けて封止できる構造とした
ことを特徴とする請求項1記載の放射冷却器。
2. Inert gas or dry air is injected from one of two predetermined locations of the airtight structure and discharged from the other.
2. The radiant cooler according to claim 1, further comprising a structure in which the blind cap is attached to the inlet of the exhaust port to seal it.
JP3025853A 1991-02-20 1991-02-20 Radiant cooler Expired - Lifetime JP2665057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025853A JP2665057B2 (en) 1991-02-20 1991-02-20 Radiant cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025853A JP2665057B2 (en) 1991-02-20 1991-02-20 Radiant cooler

Publications (2)

Publication Number Publication Date
JPH04349099A true JPH04349099A (en) 1992-12-03
JP2665057B2 JP2665057B2 (en) 1997-10-22

Family

ID=12177392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025853A Expired - Lifetime JP2665057B2 (en) 1991-02-20 1991-02-20 Radiant cooler

Country Status (1)

Country Link
JP (1) JP2665057B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211274A (en) * 1984-04-03 1985-10-23 富士通株式会社 Radiational cooler
JPS60220828A (en) * 1984-04-18 1985-11-05 Nec Corp Cooling type infrared detector
JPS6187293U (en) * 1984-11-14 1986-06-07
JPH0256236A (en) * 1988-08-17 1990-02-26 Nec Kyushu Ltd Vacuum vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211274A (en) * 1984-04-03 1985-10-23 富士通株式会社 Radiational cooler
JPS60220828A (en) * 1984-04-18 1985-11-05 Nec Corp Cooling type infrared detector
JPS6187293U (en) * 1984-11-14 1986-06-07
JPH0256236A (en) * 1988-08-17 1990-02-26 Nec Kyushu Ltd Vacuum vessel

Also Published As

Publication number Publication date
JP2665057B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
US4926227A (en) Sensor devices with internal packaged coolers
US5921461A (en) Vacuum package having vacuum-deposited local getter and its preparation
KR100478550B1 (en) Molecular Contamination Control System
US20040169771A1 (en) Thermally cooled imaging apparatus
EP0087827B1 (en) Infra-red radiation detectors
US4488414A (en) Disc detector assembly
US7279682B2 (en) Device for maintaining an object under vacuum and methods for making same, use in non-cooled infrared sensors
US20040025691A1 (en) Pressure equalization apparatus and methods
US8373561B2 (en) Infrared detector
JPH04349099A (en) Radiative cooling device
US4766316A (en) Disc detector assembly having vacuum chamber
JP4374349B2 (en) Image sensor cooling container
US4881320A (en) Method of making vented seal for electronic components and an environmentally protected component
EP0213421A2 (en) Infrared detector assembly having vacuum chambers
EP0547839B1 (en) Color scanning device and method for producing the device
JPS5949697B2 (en) semiconductor equipment
US4661707A (en) Disc detector assembly having prefabricated vacuum chambers
JPH11129999A (en) Rediational cooler
US7082003B2 (en) Pressure compensating device for optical apparatus
JP3309429B2 (en) Closed container for CCD cooling
CN105261658A (en) Photoelectric sensor package and method therefor
CN218634086U (en) Camera module and terminal equipment
US4950421A (en) Dewar cryopumping using molecular sieve
JPH07236077A (en) Protective case for video camera
KR0136331Y1 (en) Packaging structure of semiconductor wafer box

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970610