JPH04348823A - Cutting tool made of rigid layer-covered cemented carbide - Google Patents

Cutting tool made of rigid layer-covered cemented carbide

Info

Publication number
JPH04348823A
JPH04348823A JP20259991A JP20259991A JPH04348823A JP H04348823 A JPH04348823 A JP H04348823A JP 20259991 A JP20259991 A JP 20259991A JP 20259991 A JP20259991 A JP 20259991A JP H04348823 A JPH04348823 A JP H04348823A
Authority
JP
Japan
Prior art keywords
hard layer
cemented carbide
gas
titanium carbonitride
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20259991A
Other languages
Japanese (ja)
Other versions
JP2827597B2 (en
Inventor
Masao Kawamura
正雄 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP20259991A priority Critical patent/JP2827597B2/en
Publication of JPH04348823A publication Critical patent/JPH04348823A/en
Application granted granted Critical
Publication of JP2827597B2 publication Critical patent/JP2827597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To provide a cutting tool made of rigid layer-covered cemented carbide and manufacture thereof, which provide excellent cutting performance when it is used for intermittent cutting, such as milling, and middle and low speed and high speed continuous cutting, by providing a concentration gradient on a rigid covering layer. CONSTITUTION:(x) of a carbon titanium nitride single rigid layer formed on the surface of a cemented carbide base substance and having a composition represented by Ti(CxNy), where in x+y is equal to 1, takes at least one maximal value between the innermost surface and the outermost surface of the carbon titanium nitride single rigid layer. simultaneously, density of C and N is changed so that (y) takes at least one minimum value between the innermost surface and the outermost surface of the carbon titanium nitride single rigid layer. To form the carbon titanium nitride single rigid layer wherein density of C and N is changed as described above, physical deposition is carried out, as shown in Fig 2, as hydrocarbon and nitrogen gas are fed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、従来よりも結晶粒の
微細な炭窒化チタン単一硬質層を被覆した硬質層被覆超
硬合金製切削工具およびその製造法に関するものであり
、この製造法で製造された硬質層被覆超硬合金製切削工
具は、中低速および高速の連続切削だけでなく、フライ
ス切削などの断続切削に用いた場合にも優れた切削性能
を示すものである。
[Field of Industrial Application] This invention relates to a hard layer-coated cemented carbide cutting tool coated with a single hard layer of titanium carbonitride with finer grains than conventional ones, and a method for manufacturing the same. The hard layer-coated cemented carbide cutting tool produced by the above method exhibits excellent cutting performance not only for medium-low and high-speed continuous cutting, but also for interrupted cutting such as milling.

【0002】0002

【従来の技術】一般に、結合相形成成分として、鉄族金
属のうち1種または2種以上を含有し、さらに必要に応
じて周期律表の4a、5a、および6a族金属の炭化物
、窒化物、炭窒化物を0.5〜30重量%含有し、残り
が炭化タングステン(以下、WCと記す、)および不可
避不純物からなる超硬合金基体(以下、超硬合金基体と
いう)の表面に、TiCN層を物理蒸着法により被覆し
てなる硬質層被覆超硬合金製切削工具は知られている(
特開昭52−10871号公報参照)。
[Prior Art] Generally, one or more iron group metals are contained as a binder phase forming component, and if necessary, carbides and nitrides of metals of groups 4a, 5a, and 6a of the periodic table are contained. , TiCN on the surface of a cemented carbide substrate (hereinafter referred to as the cemented carbide substrate) containing 0.5 to 30% by weight of carbonitrides, with the remainder consisting of tungsten carbide (hereinafter referred to as WC) and unavoidable impurities. Hard layer-coated cemented carbide cutting tools are known, which are coated with a layer by physical vapor deposition (
(See Japanese Unexamined Patent Publication No. 10871/1983).

【0003】0003

【発明が解決しようとする課題】しかし、上記従来の物
理蒸着法により形成されたTiCN層は、結晶粒径は粗
大であるために靭性が不足して亀裂が発生して剥離しや
すく、したがって、(1)  従来の物理蒸着法により
形成されたTiCN層を有する硬質層被覆超硬合金製切
削工具を、フライス切削などの断続切削に用いた場合に
はTiCN硬質層が剥離してその部分から欠損が発生し
、(2)  さらに、上記従来の硬質層被覆超硬合金製
切削工具を用いて、中低速連続切削を行なうと逃げ面摩
耗が激しく、また、高速連続切削を行なうとクレーター
摩耗が激しいために、連続切削速度に応じて硬質層被覆
超硬合金製切削工具を使い分けしなければ満足のいく使
用寿命が得られないにもかかわらず、かかる切削工具の
使い分けは面倒であるところから切削工具の使い分けは
あまり行われておらず、そのために十分な切削寿命が得
られていない、などの課題があった。
[Problems to be Solved by the Invention] However, the TiCN layer formed by the above-mentioned conventional physical vapor deposition method has a coarse crystal grain size, so it lacks toughness and easily cracks and peels off. (1) When a hard layer-coated cemented carbide cutting tool with a TiCN layer formed by the conventional physical vapor deposition method is used for interrupted cutting such as milling, the TiCN hard layer will peel off and break off from that part. (2) Furthermore, when using the above-mentioned conventional hard layer-coated cemented carbide cutting tool, continuous cutting at medium to low speeds causes severe flank wear, and continuous cutting at high speeds causes severe crater wear. Therefore, a satisfactory service life cannot be obtained unless a hard layer-coated cemented carbide cutting tool is used depending on the continuous cutting speed. There have been issues such as not using them properly, and as a result, sufficient cutting life has not been achieved.

【0004】0004

【課題を解決するための手段】そこで、本発明者らは、
上述のような課題を解決し、中低速および高速の連続切
削だけでなく、フライス切削などの断続切削に用いた場
合にも一層の長寿命を示す硬質層被覆超硬合金製切削工
具を得るべく研究を行った結果、超硬合金基体の表面に
炭窒化チタンの単一硬質層を被覆してなる硬質層被覆超
硬合金製切削工具において、上記炭窒化チタンの単一硬
質層の組成ををTi(CxNy)[ただし、x+y=1
]で表すと、上記炭窒化チタンTi(CxNy)単一硬
質層の、xを、上記炭窒化チタン単一硬質層の最内面と
最外面の間で少なくとも1つの極大値または極小値をと
り、これに対応して、yを、上記炭窒化チタン単一硬質
層の最内面と最外面の間で少なくとも1つの極小値また
は極大値をとるようにCおよびNの濃度をそれぞれ変化
せしめると、上記Ti(CxNy)単一硬質層全体の結
晶粒が微細化し、強靭で耐剥離性に優れた硬質層被覆超
硬合金製切削工具が得られるという知見を得たのである
[Means for solving the problem] Therefore, the present inventors
In order to solve the above-mentioned problems and to obtain a hard layer-coated cemented carbide cutting tool that has a longer service life not only for medium-low and high-speed continuous cutting but also for interrupted cutting such as milling. As a result of our research, we found that in hard layer-coated cemented carbide cutting tools in which the surface of a cemented carbide base is coated with a single hard layer of titanium carbonitride, the composition of the single hard layer of titanium carbonitride is Ti(CxNy) [where x+y=1
], x of the titanium carbonitride Ti (CxNy) single hard layer takes at least one maximum value or minimum value between the innermost surface and the outermost surface of the titanium carbonitride single hard layer, Correspondingly, when the concentrations of C and N are respectively changed so that y takes at least one local minimum value or maximum value between the innermost and outermost surfaces of the titanium carbonitride single hard layer, It was discovered that the crystal grains of the entire Ti(CxNy) single hard layer were refined, and a hard layer-coated cemented carbide cutting tool that was tough and had excellent peeling resistance could be obtained.

【0005】この発明は、かかる知見にもとづいて成さ
れたものであって、超硬合金基体の表面に、Ti(Cx
Ny)[ただし、x+y=1]で示される組成を有する
炭窒化チタン単一硬質層を被覆してなる切削工具におい
て、上記炭窒化チタンTi(CxNy)単一硬質層の、
xは、上記炭窒化チタン単一硬質層の最内面と最外面の
間で少なくとも1つの極大値または極小値をとり、これ
に対応して、yは、上記炭窒化チタン単一硬質層の最内
面と最外面の間で少なくとも1つの極小値または極大値
をとるようにCおよびNの濃度が変化している硬質層被
覆超硬合金製切削工具、並びにその製造法、に特徴を有
するものである。
[0005] The present invention was made based on this knowledge, and it is possible to apply Ti(Cx
In a cutting tool coated with a single hard layer of titanium carbonitride having a composition represented by Ny) [where x+y=1], the single hard layer of titanium carbonitride Ti (CxNy)
x takes at least one local maximum or minimum value between the innermost and outermost surfaces of the single hard titanium carbonitride layer, and correspondingly, y takes at least one local maximum or minimum value between the innermost and outermost surfaces of the single hard titanium carbonitride layer. It is characterized by a hard layer-coated cemented carbide cutting tool in which the concentration of C and N changes so as to take at least one minimum value or maximum value between the inner surface and the outermost surface, and a method for manufacturing the same. be.

【0006】この発明の硬質層被覆超硬合金製切削工具
における炭窒化チタン単一硬質層を形成するには、図1
に示される物理蒸着装置を用いる。図1において、1は
反応炉、2は反応ガス導入口、3は基体、4はルツボ、
5は放電用電極、6は金属チタン、7は電子ビーム、8
はヒーター、9はマスフローコントローラー、10は真
空計、11は圧力コントローラーである。
FIG.
A physical vapor deposition apparatus shown in is used. In FIG. 1, 1 is a reactor, 2 is a reaction gas inlet, 3 is a substrate, 4 is a crucible,
5 is a discharge electrode, 6 is titanium metal, 7 is an electron beam, 8
is a heater, 9 is a mass flow controller, 10 is a vacuum gauge, and 11 is a pressure controller.

【0007】反応炉1内に基体3を挿入し、反応炉1内
を所定の温度に加熱し、さらに反応炉1内に設置された
ルツボ4内に金属チタン6を充填したのち、反応炉1の
内部を真空に保持し、マスフローコントローラー9から
反応ガス導入口2を通してArガスを導入し、反応炉1
内をArガス雰囲気に保持して基体3をボンバードクリ
ーニングし、ついで上記Arガスを反応炉1から排出し
たのち窒素ガスおよび炭化水素ガスを導入し、電子ビー
ム7を金属チタン6に照射して溶融蒸発させ、放電用電
極5に正の電圧を印加し、放電用電極5と溶融金属チタ
ン6の間に電子ビーム7が溶融金属チタン6に衝突して
発生させた二次電子と、溶融金属チタン6の表面から蒸
発した金属蒸気によって放電を生起させる。上記窒素ガ
スおよび炭化水素ガスを導入するマスフローコントロー
ラー9は、真空計10と接続した圧力コントローラー1
1により制御される。
After inserting the substrate 3 into the reactor 1, heating the inside of the reactor 1 to a predetermined temperature, and filling the crucible 4 installed in the reactor 1 with metal titanium 6, the reactor 1 is heated to a predetermined temperature. The interior of the reactor 1 is kept in vacuum, and Ar gas is introduced from the mass flow controller 9 through the reaction gas inlet 2.
The substrate 3 is bombarded while being maintained in an Ar gas atmosphere, and then the Ar gas is discharged from the reactor 1, nitrogen gas and hydrocarbon gas are introduced, and the metal titanium 6 is irradiated with an electron beam 7 to melt it. A positive voltage is applied to the discharge electrode 5, and the electron beam 7 collides with the molten titanium 6 between the discharge electrode 5 and the molten titanium 6 to generate secondary electrons and molten titanium. Electric discharge is caused by metal vapor evaporated from the surface of 6. The mass flow controller 9 that introduces the nitrogen gas and hydrocarbon gas is a pressure controller 1 connected to a vacuum gauge 10.
1.

【0008】圧力コントローラー11によりマスフロー
コントローラー9を制御し、上記反応炉1に導入する窒
素ガスと炭化水素ガスからなる反応混合ガスを、例えば
、図2のグラフに示されるように、物理蒸着の進行にと
もなって、窒素ガス導入量を連続的に減少させて極小値
Qminに至らしめ、続けて、上記極小値Qminから
連続的に増加するように供給し、これに反比例するよう
に炭化水素ガスを連続的に増加するように供給して極大
値Qmaxに至らしめ、続けて、上記極大値Qmaxか
ら連続的に減少するように供給する。
The mass flow controller 9 is controlled by the pressure controller 11, and the reaction mixture gas consisting of nitrogen gas and hydrocarbon gas introduced into the reactor 1 is controlled, for example, as shown in the graph of FIG. Accordingly, the amount of nitrogen gas introduced is continuously reduced to reach the minimum value Qmin, and then the amount of nitrogen gas introduced is continuously increased from the minimum value Qmin, and the hydrocarbon gas is inversely proportional to this. It is supplied so as to increase continuously to reach the maximum value Qmax, and then it is supplied so as to continuously decrease from the maximum value Qmax.

【0009】上記極小値Qminとは、反応ガス導入量
が減少から増加に変化する点の値であり、さらに、炭窒
化チタンTi(CxNy)[ただし、x+y=1]単一
硬質層の成分濃度曲線が上記炭窒化チタン単一硬質層の
最内面と最外面の間で谷底を示す値である。極大値Qm
axとは、反応ガスの導入量が増加から減少に変化する
点の値を示し、また、成分濃度曲線が上記炭窒化チタン
単一硬質層の最内面と最外面の間で山頂を示す値である
The above-mentioned minimum value Qmin is the value at the point where the amount of introduced reactant gas changes from decreasing to increasing. The curve shows the bottom of the valley between the innermost surface and the outermost surface of the titanium carbonitride single hard layer. Maximum value Qm
ax indicates the value at which the amount of introduced reactant gas changes from increasing to decreasing, and is the value at which the component concentration curve reaches the peak between the innermost and outermost surfaces of the titanium carbonitride single hard layer. be.

【0010】窒素ガス導入量および炭化水素ガス導入量
は、断続的に変化させても良いが、連続的に変化させる
ほうが好ましく、図2のグラフでは、窒素ガス導入量お
よび炭化水素ガス導入量を曲線的に連続して変化させて
いるが、これに限定されるものではなく、図3に示され
るように、直線的に連続して変化させてもよい。
The amount of nitrogen gas introduced and the amount of hydrocarbon gas introduced may be changed intermittently, but it is preferable to change them continuously. In the graph of FIG. 2, the amount of nitrogen gas introduced and the amount of hydrocarbon gas introduced are Although it is continuously changed in a curved manner, it is not limited to this, and may be changed continuously in a straight line as shown in FIG.

【0011】また、図4に示されるように、物理蒸着の
進行にともなって、窒素ガス導入量を連続的に増加させ
て極大値Qmaxに至らしめ、続けて、上記極大値Qm
axから連続的に減少するように供給し、これに反比例
するように炭化水素ガスを連続的に減少するように供給
して極小値Qminに至らしめ、続けて、上記極小値Q
minから連続的に増加するように供給してもよい。
As shown in FIG. 4, as the physical vapor deposition progresses, the amount of nitrogen gas introduced is continuously increased to reach the maximum value Qmax, and then the maximum value Qm is increased.
ax is supplied so as to continuously decrease, and in inverse proportion to this, hydrocarbon gas is supplied so as to continuously decrease to reach the minimum value Qmin, and then the above minimum value Q
The supply may be continuously increased from min.

【0012】さらに、図5および図6に示されるように
、窒素ガス導入量の極小値Qminおよび極大値Qma
xがそれぞれ1個以上存在し、同時に炭化水素ガスの極
大値Qmaxおよび極小値Qminがそれぞれ1個以上
存在するように連続的に供給してもよい。
Furthermore, as shown in FIGS. 5 and 6, the minimum value Qmin and the maximum value Qma of the amount of nitrogen gas introduced are
It may be supplied continuously so that one or more of each of x exists, and at the same time, one or more of each of maximum value Qmax and minimum value Qmin of hydrocarbon gas exists.

【0013】このようにして反応炉1に窒素ガスと炭化
水素ガスの導入量を変化させながら反応混合ガスを導入
して得られた炭窒化チタン単一硬質層をTi(CxNy
)[ただし、x+y=1]で表すと、xおよびyの値は
、反応ガスとして窒素ガスと炭化水素ガスの混合ガスを
導入する関係から、それぞれ0.005≦x≦0.99
5および0.005≦y≦0.995の範囲内で、上記
図2〜図6の反応混合ガスの供給パターンと類似パター
ンのCおよびNの濃度分布を示す。
The single hard layer of titanium carbonitride obtained by introducing the reaction mixture gas into the reactor 1 in this way while changing the amounts of nitrogen gas and hydrocarbon gas introduced is made of Ti (CxNy
) [where x+y=1], the values of x and y are respectively 0.005≦x≦0.99 due to the relationship that a mixed gas of nitrogen gas and hydrocarbon gas is introduced as the reaction gas.
5 and 0.005≦y≦0.995, the C and N concentration distributions are similar to the supply patterns of the reaction mixture gas shown in FIGS. 2 to 6 above.

【0014】この発明の方法で示されるように、反応混
合ガスとして、窒素ガスと炭化水素ガスをその供給量を
変化させながら導入すると、形成された炭窒化チタン単
一硬質層は、特に結晶粒が微細化するので靭性が向上し
、さらに超硬合金基体に接する最内面でTiNが最大成
分として含まれるようにした炭窒化チタン単一硬質層は
、超硬合金基体に対する付着性が一層優れたものとなる
。したがって、この発明の硬質層被覆超硬合金製切削工
具は、中低速から高速の広範囲の切削速度を有する連続
切削に適用できるだけでなく、フライス切削などの断続
切削にも優れた効果を奏するものである。
[0014] As shown in the method of the present invention, when nitrogen gas and hydrocarbon gas are introduced as a reactive gas mixture while changing their supply amounts, the formed titanium carbonitride single hard layer is particularly sensitive to crystal grains. The titanium carbonitride single hard layer, which contains TiN as the largest component on the innermost surface in contact with the cemented carbide substrate, has even better adhesion to the cemented carbide substrate. Become something. Therefore, the hard layer-coated cemented carbide cutting tool of the present invention is not only applicable to continuous cutting with a wide range of cutting speeds from medium to low speeds to high speeds, but also has excellent effects in interrupted cutting such as milling. be.

【0015】この炭窒化チタン単一硬質層の厚さは、2
0μm以下であることが好ましい。20μmを越えると
切削時に基体との間に熱膨脹の差が大きくなり、亀裂が
生じて剥離しやすくなる。一方、上記単一硬質層が0.
5μm未満では硬質層剥離抑制効果が十分でないために
0.5μm以上であることが好ましい。
The thickness of this single hard layer of titanium carbonitride is 2
It is preferably 0 μm or less. If it exceeds 20 μm, the difference in thermal expansion between the material and the substrate during cutting will become large, causing cracks to occur and peeling to occur easily. On the other hand, the single hard layer is 0.
If the thickness is less than 5 μm, the effect of suppressing peeling of the hard layer will not be sufficient, so the thickness is preferably 0.5 μm or more.

【0016】[0016]

【実施例】つぎに、この発明の硬質層被覆超硬合金製切
削工具およびその製造法の実施例を図面に基づいて具体
的に説明する。
[Embodiments] Next, embodiments of the hard layer-coated cemented carbide cutting tool and the method for manufacturing the same according to the present invention will be described in detail with reference to the drawings.

【0017】実施例1 原料粉末として、それぞれ平均粒径:1.2μmのCo
粉末、TiC粉末、TaC粉末、WC粉末を用意し、こ
れら粉末を、Co粉末:9重量%、TiC粉末:1重量
%、TaC粉末:2重量%、残り:WC粉末となるよう
に配合し、混合したのち、圧粉体に成型し、この圧粉体
を通常の条件で焼結して焼結体を製造し、この焼結体を
研削してISO規格TNGA160408の形状を有し
、ISO規格P30相当の材質を有するWC基超硬合金
製チップを作製した。
Example 1 As the raw material powder, Co with an average particle size of 1.2 μm was used.
Prepare powder, TiC powder, TaC powder, and WC powder, and blend these powders so that Co powder: 9% by weight, TiC powder: 1% by weight, TaC powder: 2% by weight, and the remainder: WC powder, After mixing, it is molded into a green compact, the green compact is sintered under normal conditions to produce a sintered body, and this sintered body is ground to have the shape of ISO standard TNGA160408. A WC-based cemented carbide chip having a material equivalent to P30 was produced.

【0018】つぎに、このWC基超硬合金製チップを基
体とし、図1の通常のイオンプレーティング装置内の反
応炉1の上方に装着し、一方、上記イオンプレーティン
グ装置内の反応炉1の下方に設置されたルツボ4内には
、Ti金属6を充填した。かかる状態で上記イオンプレ
ーティング装置の反応炉1内を1×10−5Torrの
真空に保持し、昇温速度:6℃/min.で700℃に
昇温させた。
Next, this WC-based cemented carbide chip was used as a base and mounted above the reaction furnace 1 in the ordinary ion plating apparatus shown in FIG. A crucible 4 placed below was filled with Ti metal 6. In this state, the inside of the reactor 1 of the ion plating apparatus was maintained at a vacuum of 1×10 −5 Torr, and the temperature was increased at a rate of 6° C./min. The temperature was raised to 700°C.

【0019】この温度に保持しながら、マスフローコン
トローラー9から反応ガス導入口2を通してArガスを
供給し、5×10−2TorrのArガス雰囲気に保持
してボンバードクリーニングした。
While maintaining this temperature, Ar gas was supplied from the mass flow controller 9 through the reaction gas inlet 2 to maintain an Ar gas atmosphere of 5×10 −2 Torr for bombardment cleaning.

【0020】ついで、Ti金属6を電子ビーム7より加
熱蒸発させるとともに、マスフローコントローラー9を
切り替えて反応ガス導入口2より窒素ガス:99.95
容量%、アセチレンガス:0.05%の混合ガスとなる
ように導入してスタートし、使用済みの反応混合ガスは
、排気口より排気させながらイオンプレーティング装置
の反応炉1内の圧力を真空計10により2.0×10−
4Torrに維持し、上記窒素ガスを図7の実線で示さ
れるように供給すると同時にアセチレンガスを図7の点
線で示されるように供給した。
Next, the Ti metal 6 is heated and evaporated by the electron beam 7, and the mass flow controller 9 is switched to supply nitrogen gas (99.95%) from the reaction gas inlet 2.
Start by introducing a mixed gas of 0.05% acetylene gas by volume, and reduce the pressure inside the reactor 1 of the ion plating device to vacuum while exhausting the used reaction mixed gas from the exhaust port. Total 10 gives 2.0×10-
The temperature was maintained at 4 Torr, and the nitrogen gas was supplied as shown by the solid line in FIG. 7, and at the same time, acetylene gas was supplied as shown by the dotted line in FIG.

【0021】図7において、反応混合ガスは、窒素ガス
を99.5容量%、アセチレンガスを0.5容量%の混
合割合でスタートし、窒素ガス供給量をリニアに減少さ
せ、一方、アセチレンガスはリニアに増加させ、50分
経過した時点では窒素ガスを0.5容量%、アセチレン
ガス:99.5容量%の混合割合となるようにし、10
0分経過した時点では窒素ガスを99.5容量%、アセ
チレンガスを0.5容量%の混合割合となるようにリニ
アに変化させて供給することを示している。
In FIG. 7, the reaction mixture gas starts at a mixing ratio of 99.5% by volume of nitrogen gas and 0.5% by volume of acetylene gas, and the amount of nitrogen gas supplied is linearly reduced. was increased linearly, and at the end of 50 minutes, the mixing ratio was 0.5% by volume for nitrogen gas and 99.5% by volume for acetylene gas.
At the time when 0 minutes have elapsed, it is shown that the mixing ratio of nitrogen gas is 99.5% by volume and acetylene gas is 0.5% by volume, which is linearly changed and supplied.

【0022】上記のように、窒素ガスとアセチレンガス
の量を反比例するように連続的に変化させながら物理蒸
着を行い、上記WC基超硬合金製チップの表面に厚さ:
5μmを有する炭窒化チタン単一硬質層を被覆してなる
本発明硬質層被覆超硬合金製チップ1を10個製造した
As described above, physical vapor deposition is performed while continuously changing the amounts of nitrogen gas and acetylene gas in inverse proportion to each other, so that the surface of the WC-based cemented carbide chip has a thickness of:
Ten chips 1 made of hard metal coated with a hard layer of the present invention each coated with a single hard layer of titanium carbonitride having a thickness of 5 μm were manufactured.

【0023】上記10個の本発明硬質層被覆超硬合金製
チップ1の内の任意の1個を取り出し、その表面に形成
された厚さ:5μmの炭窒化チタン単一硬質層のオージ
ェ分析による深さ方向のポイント分析してTiNおよび
TiCのスペクトル強度を求め、このスペクトル強度に
基ずくTiN/TiCのファクター解析を行ったところ
、図8に示されるCおよびNの層厚深さ方向の濃度分布
が得られた。
[0023] Any one of the ten hard layer coated cemented carbide chips 1 of the present invention was taken out, and a single hard layer of titanium carbonitride with a thickness of 5 μm formed on its surface was analyzed by Auger analysis. The spectral intensities of TiN and TiC were determined by point analysis in the depth direction, and the factor analysis of TiN/TiC was performed based on the spectral intensities. As a result, the concentrations of C and N in the depth direction of the layer thickness shown in Fig. distribution was obtained.

【0024】さらに、上記炭窒化チタン単一硬質層をX
線回折し、(200)面の半価幅を用いてScherr
erの式により平均結晶粒径を算出してその結果を表1
に示した。
Furthermore, the single hard layer of titanium carbonitride is
Scherr
The average grain size was calculated using the formula er, and the results are shown in Table 1.
It was shown to.

【0025】実施例2 実施例1で作製したWC基超硬合金製チップを実施例1
と同様にイオンプレーティング装置内でボンバードクリ
ーニングし、ついで、Ti金属6を電子ビーム7より加
熱蒸発させるとともに、マスフローコントローラー9を
切り替えて反応ガス導入口2より窒素ガス:0容量%、
アセチレンガス:100%の混合ガスとなるように導入
してスタートし、使用済みの反応混合ガスは、排気口よ
り排気させながらイオンプレーティング装置の反応炉1
内の圧力を真空計10により2.0×10−4Torr
に維持し、上記窒素ガスを図9の実線で示されるように
供給すると同時にアセチレンガスを図9の点線で示され
るように供給した。
Example 2 The WC-based cemented carbide tip produced in Example 1 was used in Example 1.
Bombard cleaning is performed in the ion plating apparatus in the same manner as above, and then the Ti metal 6 is heated and evaporated by the electron beam 7, and the mass flow controller 9 is switched to inject nitrogen gas from the reaction gas inlet 2: 0% by volume,
Acetylene gas: Start by introducing a 100% mixed gas, and the used reaction mixed gas is exhausted from the exhaust port while being pumped into the reactor 1 of the ion plating equipment.
The pressure inside was set to 2.0 x 10-4 Torr by the vacuum gauge 10.
The nitrogen gas was supplied as shown by the solid line in FIG. 9, and at the same time, the acetylene gas was supplied as shown by the dotted line in FIG.

【0026】図9において、反応混合ガスは、窒素ガス
を0.5容量%、アセチレンガスを99.5容量%の混
合割合でスタートし、窒素ガス供給量をリニアに増加さ
せ、一方、アセチレンガスはリニアに減少させ、40分
経過した時点では窒素ガスを99.5容量%、アセチレ
ンガスを0.5容量%の混合割合となるようにし、10
0分経過した時点では窒素ガスを0.5容量%、アセチ
レンガスを99.5容量%の混合割合となるようにリニ
アに変化させて供給することを示している。
In FIG. 9, the reaction mixture gas starts at a mixing ratio of 0.5% by volume of nitrogen gas and 99.5% by volume of acetylene gas, and the amount of nitrogen gas supplied is increased linearly. was reduced linearly, and at the end of 40 minutes, the mixing ratio was 99.5% by volume for nitrogen gas and 0.5% by volume for acetylene gas, and 10% by volume for acetylene gas.
At the time when 0 minutes have elapsed, it is shown that the mixing ratio of nitrogen gas is 0.5% by volume and that of acetylene gas is 99.5% by volume, which is linearly changed and supplied.

【0027】上記のように、窒素ガスとアセチレンガス
の量を反比例するように連続的に変化させながら物理蒸
着を行い、上記WC基超硬合金製チップの表面に厚さ:
5μmを有する炭窒化チタン単一硬質層を被覆してなる
本発明硬質層被覆超硬合金製チップ2を10個製造した
As described above, physical vapor deposition is performed while continuously changing the amounts of nitrogen gas and acetylene gas in inverse proportion to the surface of the WC-based cemented carbide chip to a thickness of:
Ten hard layer-coated cemented carbide chips 2 of the present invention each coated with a single hard layer of titanium carbonitride having a thickness of 5 μm were manufactured.

【0028】上記10個の本発明硬質層被覆超硬合金製
チップ2の内の任意の1個を取り出し、その表面に形成
された厚さ:5μmの炭窒化チタン単一硬質層のオージ
ェ分析による深さ方向のポイント分析してTiNおよび
TiCのスペクトル強度を求め、このスペクトル強度に
基ずくTiN/TiCのファクター解析を行ったところ
、図10に示されるCおよびNの層厚深さ方向の濃度分
布が得られた。
[0028] Any one of the ten hard layer-coated cemented carbide chips 2 of the present invention was taken out, and a single hard layer of titanium carbonitride with a thickness of 5 μm formed on its surface was analyzed by Auger analysis. The spectral intensities of TiN and TiC were determined by point analysis in the depth direction, and the factor analysis of TiN/TiC based on these spectral intensities was performed. As a result, the concentration of C and N in the depth direction of the layer thickness shown in Fig. 10 was distribution was obtained.

【0029】さらに、上記炭窒化チタン単一硬質層をX
線回折し、(200)面の半価幅を用いてScherr
erの式により平均結晶粒径を算出してその結果を表1
に示した。
Furthermore, the single hard layer of titanium carbonitride is
Scherr
The average grain size was calculated using the formula er, and the results are shown in Table 1.
It was shown to.

【0030】従来例1 一方、比較のために、実施例1と同様にWC基超硬合金
製チップをボンバードクリーニングし、ついで、窒素ガ
スおよびアセチレンガスの混合ガスを窒素ガス:アセチ
レンガス=1:1の一定比率で100分間流しながら物
理蒸着することにより、上記WC基超硬合金製チップの
表面に厚さ:5μmの炭窒化チタン層からなる従来硬質
層被覆超硬合金製チップ1を10個製造した。この10
個の従来硬質層被覆超硬合金製チップ1の内の任意の1
個を取り出して、その表面に形成された厚さ:5μmの
炭窒化チタン単一硬質層の組成をEPMAを用いて測定
した結果、最表面からの内部に向かってTi(C0.5
 N0.5 )均一組成の被覆層が形成されていること
が確認された。さらにX線回折し、(200)面の半価
幅を用いてScherrerの式により平均結晶粒径を
算出してその結果を表1に示した。
Conventional Example 1 On the other hand, for comparison, a WC-based cemented carbide chip was subjected to bombardment cleaning in the same manner as in Example 1, and then a mixed gas of nitrogen gas and acetylene gas was mixed with nitrogen gas:acetylene gas=1: By physical vapor deposition while flowing at a constant ratio of 1 for 100 minutes, ten conventional hard layer-coated cemented carbide chips 1 made of a titanium carbonitride layer with a thickness of 5 μm were deposited on the surface of the WC-based cemented carbide chips. Manufactured. These 10
Any one of the conventional hard layer coated cemented carbide tips 1
As a result of measuring the composition of a single hard layer of titanium carbonitride with a thickness of 5 μm formed on its surface using EPMA, it was found that Ti (C0.5
N0.5) It was confirmed that a coating layer with a uniform composition was formed. Further, X-ray diffraction was performed, and the average crystal grain size was calculated using the Scherrer equation using the half width of the (200) plane, and the results are shown in Table 1.

【0031】実施例1で作製した10個の本発明硬質層
被覆超硬合金製チップ1、実施例2で作製した10個の
本発明硬質層被覆超硬合金製チップ2および従来例1で
作製した10個の従来硬質層被覆超硬合金製チップ1に
ついて、下記の条件で断続切削試験、中低速連続切削試
験および高速連続切削試験を実施し、それらの切削試験
結果も表1に示した。
Ten hard layer coated cemented carbide chips 1 of the present invention produced in Example 1, ten hard layer coated cemented carbide chips 2 of the present invention produced in Example 2, and conventional example 1. An interrupted cutting test, a medium-low speed continuous cutting test, and a high-speed continuous cutting test were conducted on the 10 conventional hard layer-coated cemented carbide tips 1 under the following conditions, and the cutting test results are also shown in Table 1.

【0032】断続乾式切削試験 被削材:SCM440(ブリネル硬さ:300)製で軸
方向外周に4本の溝の付いた円柱体、 切削速度:100m/min、 送り:0.21mm/rev.、 切込み:1.0mm、 切削時間:2min. の条件で断続乾式切削し、10個の試験切刃のうちの欠
損が発生した切刃数を測定した。
Intermittent dry cutting test Work material: Cylindrical body made of SCM440 (Brinell hardness: 300) with four grooves on the axial outer circumference, cutting speed: 100 m/min, feed: 0.21 mm/rev. , Depth of cut: 1.0mm, Cutting time: 2min. Intermittent dry cutting was carried out under these conditions, and the number of cutting edges in which breakage occurred among the 10 test cutting edges was measured.

【0033】中低速連続切削試験 被削材:SNCM439(ブリネル硬さ:250)、切
削速度:150m/min、 送り:0.3mm/rev.、 切込み:1.5mm、 の条件でそれぞれ10個のチップについて連続切削し、
中低速連続切削において最も激しく摩耗する逃げ面摩耗
幅VB が0.3mmになるまでの時間(分)を測定し
、それらの平均値を求めた。
Medium and low speed continuous cutting test Work material: SNCM439 (Brinell hardness: 250), cutting speed: 150 m/min, feed: 0.3 mm/rev. , Depth of cut: 1.5 mm, 10 chips were each continuously cut under the following conditions.
The time (minutes) required for the flank wear width VB, which wears most severely in medium and low speed continuous cutting, to reach 0.3 mm was measured, and the average value thereof was determined.

【0034】高速連続切削試験 被削材:SNCM439(ブリネル硬さ:250)、切
削速度:210m/min、 送り:0.25mm/rev.、 切込み:1.5mm、 切削時間:20min. の条件でそれぞれ10個のチップについて乾式高速連続
切削し、高速連続切削において最も激しく摩耗するクレ
ーター摩耗深さの平均値を求めた。
High-speed continuous cutting test Work material: SNCM439 (Brinell hardness: 250), cutting speed: 210 m/min, feed: 0.25 mm/rev. , Depth of cut: 1.5mm, Cutting time: 20min. Dry high-speed continuous cutting was performed on each of 10 chips under the following conditions, and the average value of the depth of crater wear, which is the most severe wear during high-speed continuous cutting, was determined.

【0035】[0035]

【表1】[Table 1]

【0036】表1に示される結果から、本発明硬質層被
覆超硬合金製チップ1および2は被覆硬質層の結晶粒径
は微細であり、断続乾式切削において、いずれも欠損発
生がなく、さらに中低速および高速の連続切削において
も長期にわたって優れた切削性能を発揮するのに対し、
従来硬質層被覆超硬合金製チップ1は、被覆硬質層の結
晶粒径は粗大であり、断続乾式切削において欠損発生も
多く、さらに中低速連続切削において逃げ面摩耗幅が0
.3mmになるまでの時間が短く、また高速連続切削に
おいて短時間で切刃欠損が発生し、従って、チップの寿
命も短いところから切削性能が劣ったものであることが
明らかである。
From the results shown in Table 1, the hard layer coated cemented carbide tips 1 and 2 of the present invention have fine crystal grain sizes in the coated hard layer, do not cause any breakage in intermittent dry cutting, and While it exhibits excellent cutting performance over a long period of time in continuous cutting at medium to low speeds and high speeds,
In the conventional hard layer coated cemented carbide tip 1, the crystal grain size of the coated hard layer is coarse, there are many defects in intermittent dry cutting, and the flank wear width is 0 in medium to low speed continuous cutting.
.. It is clear that the cutting performance is poor because it takes a short time to reach 3 mm, and cutting edge breakage occurs in a short period of time during high-speed continuous cutting, and the life of the tip is therefore short.

【0037】実施例3〜9 実施例1と同様に窒素ガスの極小値Qminおよびアセ
チレンガスの極大値Qmaxを有するように窒素ガスと
アセチレンガスを連続的に変化させながらガスの供給時
間を調節して表2に示される各種厚さの炭窒化チタン単
一硬質層を、実施例1で作製したWC基超硬合金製チッ
プ表面に形成し、本発明硬質層被覆超硬合金製チップ3
〜9をそれぞれ10個づつ作製した。
Examples 3 to 9 As in Example 1, the gas supply time was adjusted while continuously changing nitrogen gas and acetylene gas so that the nitrogen gas had a minimum value Qmin and the acetylene gas had a maximum value Qmax. A single hard layer of titanium carbonitride with various thicknesses shown in Table 2 was formed on the surface of the WC-based cemented carbide chip prepared in Example 1, and the hard layer coated cemented carbide chip 3 of the present invention was prepared.
-9 were produced in 10 pieces each.

【0038】これら本発明硬質層被覆超硬合金製チップ
3〜9についても、炭窒化チタン単一硬質層をX線回折
して(200)面の半価幅を用いてScherrerの
式により平均結晶粒径を算出し、さらに実施例1と同一
条件で断続乾式切削試験、中低速連続切削試験および高
速連続切削試験を行ない、それらの結果を表2に示した
Regarding these hard layer-coated cemented carbide chips 3 to 9 of the present invention, the average crystallization was determined by X-ray diffraction of a single hard layer of titanium carbonitride using the half-width of the (200) plane according to Scherrer's formula. The particle size was calculated, and an intermittent dry cutting test, a medium-low speed continuous cutting test, and a high-speed continuous cutting test were conducted under the same conditions as in Example 1, and the results are shown in Table 2.

【0039】実施例10 窒素ガスおよびアセチレンガスの極小値Qminおよび
極大値Qmaxをそれぞれ複数個有するように、すなわ
ち図11に示されるように、窒素ガスとアセチレンガス
を連続的に変化させながらガスの供給時間を調節して厚
さ:13μmの炭窒化チタン単一硬質層を、実施例1で
作製したWC基超硬合金製チップ表面に形成し、本発明
硬質層被覆超硬合金製チップ10を10個づつ作製した
Example 10 Nitrogen gas and acetylene gas were continuously changed to have a plurality of minimum values Qmin and maximum values Qmax, respectively, as shown in FIG. A single hard layer of titanium carbonitride with a thickness of 13 μm was formed on the surface of the WC-based cemented carbide chip prepared in Example 1 by adjusting the supply time, and the hard layer-coated cemented carbide chip 10 of the present invention was formed. Ten pieces were produced each.

【0040】これら本発明硬質層被覆超硬合金製チップ
10について、炭窒化チタン単一硬質層をX線回折して
(200)面の半価幅を用いてScherrerの式に
より平均結晶粒径を算出し、さらに実施例1と同一条件
で断続乾式切削試験、中低速連続切削試験および高速連
続切削試験を行ない、それらの結果を表2に示した。
Regarding these hard layer coated cemented carbide chips 10 of the present invention, a single hard layer of titanium carbonitride was subjected to X-ray diffraction, and the average crystal grain size was determined by Scherrer's equation using the half width of the (200) plane. Further, an intermittent dry cutting test, a medium-low speed continuous cutting test, and a high-speed continuous cutting test were conducted under the same conditions as in Example 1, and the results are shown in Table 2.

【0041】従来例2〜6 一方、比較のために、実施例1と同様にボンバードクリ
ーニングしたのち、窒素ガスおよびアセチレンガスの混
合ガスを窒素ガス:アセチレンガス=1:1の一定比率
で所定時間間流しながら物理蒸着することにより、上記
WC基超硬合金製チップの表面に表3に示される厚さの
炭窒化チタン層からなる従来硬質層被覆超硬合金製チッ
プ2〜6を10個づつ製造した。これら従来硬質層被覆
超硬合金製チップ2〜6を従来例1と同様にX線回折し
、(200)面の半価幅を用いてScherrerの式
により平均結晶粒径を算出し、さらに実施例1と同一条
件で断続乾式切削試験、中低速連続切削試験および高速
連続切削試験を行ない、それらの結果を表3に示した。
Conventional Examples 2 to 6 On the other hand, for comparison, after bombardment cleaning in the same manner as in Example 1, a mixed gas of nitrogen gas and acetylene gas was heated at a fixed ratio of nitrogen gas: acetylene gas = 1:1 for a predetermined period of time. By physical vapor deposition while flowing, ten conventional hard layer-coated cemented carbide chips 2 to 6 each consisting of a titanium carbonitride layer with a thickness shown in Table 3 are deposited on the surface of the above-mentioned WC-based cemented carbide chips. Manufactured. These conventional hard layer coated cemented carbide chips 2 to 6 were subjected to X-ray diffraction in the same manner as in Conventional Example 1, and the average crystal grain size was calculated using the Scherrer formula using the half width of the (200) plane. An intermittent dry cutting test, a medium-low speed continuous cutting test, and a high-speed continuous cutting test were conducted under the same conditions as in Example 1, and the results are shown in Table 3.

【0042】[0042]

【表2】[Table 2]

【0043】[0043]

【表3】[Table 3]

【0044】表2および表3に示される結果から、本発
明硬質層被覆超硬合金製チップ3〜9は被覆硬質層の結
晶粒径は微細であり、断続乾式切削において、いずれも
欠損発生がなく、さらに中低速および高速の連続切削に
おいても長期にわたって優れた切削性能を発揮するのに
対し、従来硬質層被覆超硬合金製チップ2〜6は、被覆
硬質層の結晶粒径は粗大であり、断続乾式切削において
欠損発生も多く、さらに中低速連続切削において逃げ面
摩耗幅が0.3mmになるまでの時間が短く、また高速
連続切削において短時間で切刃欠損が発生し、従って、
チップの寿命も短いところから切削性能が劣り、実施例
1とほぼ同じ結果が得られていることが分かる。
From the results shown in Tables 2 and 3, the hard layer-coated cemented carbide chips 3 to 9 of the present invention have fine crystal grain sizes in the hard coating layer, and no chipping occurs in any of them during intermittent dry cutting. In contrast, the conventional hard layer-coated cemented carbide tips 2 to 6 have a coarse grain size in the hard coating layer, and exhibit excellent cutting performance over a long period of time in continuous cutting at medium to low speeds and high speeds. , Frequent chipping occurs during intermittent dry cutting, and it takes a short time for the flank wear width to reach 0.3 mm during medium- and low-speed continuous cutting, and cutting edge chipping occurs in a short period of time during high-speed continuous cutting.
It can be seen that the cutting performance was inferior due to the short life of the tip, and almost the same results as in Example 1 were obtained.

【0045】さらに、本発明硬質層被覆超硬合金製チッ
プ7および10は、いずれも炭窒化チタン単一硬質層の
膜厚が13μmであるが、窒素ガスおよびアセチレンガ
スの極小値Qminおよび極大値Qmaxをそれぞれ複
数個有するように、すなわち図11に示されるように、
極小値Qminおよび極大値Qmaxが1個以上存在す
るように窒素ガスとアセチレンガスを連続的に変化させ
ながらガスの供給量を調節して作製した厚さ:13μm
の炭窒化チタン単一硬質層10は、窒素ガスおよびアセ
チレンガスの極小値Qminおよび極大値Qmaxをそ
れぞれ1個だけ有するように、すなわち図2に示される
ように、窒素ガスとアセチレンガスを連続的に変化させ
ながらガスの供給時間を調節して作製した厚さ:13μ
mの炭窒化チタン単一硬質層7よりも被覆硬質層の結晶
粒径は微細であり、優れた性能を示すことが分かる。
Furthermore, in the hard layer coated cemented carbide chips 7 and 10 of the present invention, the thickness of the single hard layer of titanium carbonitride is 13 μm, but the minimum value Qmin and the maximum value of nitrogen gas and acetylene gas are In order to have a plurality of Qmax, that is, as shown in FIG.
Thickness: 13 μm manufactured by adjusting the gas supply amount while continuously changing nitrogen gas and acetylene gas so that one or more minimum value Qmin and maximum value Qmax exist.
The single hard titanium carbonitride layer 10 of 10 has only one minimum value Qmin and one maximum value Qmax of nitrogen gas and acetylene gas, that is, as shown in FIG. 2, nitrogen gas and acetylene gas are continuously supplied. Thickness made by adjusting gas supply time while changing: 13μ
It can be seen that the crystal grain size of the covering hard layer is finer than that of the titanium carbonitride single hard layer 7 of m, and exhibits excellent performance.

【0046】[0046]

【発明の効果】上述のように、この発明の硬質層被覆超
硬合金切削工具は、優れた耐欠損性を有するので、優れ
た切削性能を長期にわたって発揮することができ、産業
上優れた効果をもたらすものである。
[Effects of the Invention] As mentioned above, the hard layer-coated cemented carbide cutting tool of the present invention has excellent fracture resistance, so it can exhibit excellent cutting performance over a long period of time, and has excellent industrial effects. It brings about

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明で用いる物理蒸着装置の概略図である
FIG. 1 is a schematic diagram of a physical vapor deposition apparatus used in the present invention.

【図2】この発明の窒素ガスおよび炭化水素ガスの導入
量を模型的に示したグラフである。
FIG. 2 is a graph schematically showing the amounts of nitrogen gas and hydrocarbon gas introduced in the present invention.

【図3】この発明の窒素ガスおよび炭化水素ガスの導入
量を模型的に示したグラフである。
FIG. 3 is a graph schematically showing the amounts of nitrogen gas and hydrocarbon gas introduced in the present invention.

【図4】この発明の窒素ガスおよび炭化水素ガスの導入
量を模型的に示したグラフである。
FIG. 4 is a graph schematically showing the amounts of nitrogen gas and hydrocarbon gas introduced according to the present invention.

【図5】この発明の窒素ガスおよび炭化水素ガスの導入
量を模型的に示したグラフである。
FIG. 5 is a graph schematically showing the amounts of nitrogen gas and hydrocarbon gas introduced according to the present invention.

【図6】この発明の窒素ガスおよび炭化水素ガスの導入
量を模型的に示したグラフである。
FIG. 6 is a graph schematically showing the amounts of nitrogen gas and hydrocarbon gas introduced in the present invention.

【図7】この発明の実施例1における窒素ガスおよび炭
化水素ガスの導入量を示したグラフである。
FIG. 7 is a graph showing the amounts of nitrogen gas and hydrocarbon gas introduced in Example 1 of the present invention.

【図8】実施例1により得られた炭窒化チタン単一硬質
層におけるCとNの濃度分布を示すグラフである。
8 is a graph showing the concentration distribution of C and N in a single hard titanium carbonitride layer obtained in Example 1. FIG.

【図9】この発明の実施例2における窒素ガスおよび炭
化水素ガスの導入量を示したグラフである。
FIG. 9 is a graph showing the amounts of nitrogen gas and hydrocarbon gas introduced in Example 2 of the present invention.

【図10】実施例2により得られた炭窒化チタン単一硬
質層におけるCとNの濃度分布を示すグラフである。
10 is a graph showing the concentration distribution of C and N in a single hard titanium carbonitride layer obtained in Example 2. FIG.

【図11】この発明の実施例10における窒素ガスおよ
び炭化水素ガスの導入量を示したグラフである。
FIG. 11 is a graph showing the amounts of nitrogen gas and hydrocarbon gas introduced in Example 10 of the present invention.

【0047】[0047]

【符号の説明】[Explanation of symbols]

1  反応炉 2  反応ガス導入口 3  基体 4  ルツボ 5  放電用電極 6  金属チタン 7  電子ビーム 8  ヒーター 9  マスフローコントローラー 10  真空計 11  圧力コントローラー Qmax  極大値 Qmin  極小値 1 Reactor 2 Reactant gas inlet 3 Base 4 Crucible 5 Discharge electrode 6 Metal titanium 7 Electron beam 8 Heater 9 Mass flow controller 10 Vacuum gauge 11 Pressure controller Qmax Maximum value Qmin Minimum value

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  超硬合金基体の表面に、Ti(CxN
y)[ただし、x+y=1]で示される組成を有する炭
窒化チタン単一硬質層を被覆してなる切削工具において
、上記炭窒化チタンTi(CxNy)単一硬質層の、x
は、上記炭窒化チタン単一硬質層の最内面と最外面の間
で少なくとも1つの極大値をとり、一方、yは、上記炭
窒化チタン単一硬質層の最内面と最外面の間で少なくと
も1つの極小値をとるようにCおよびNの濃度が変化し
ていることを特徴とする硬質層被覆超硬合金製切削工具
Claim 1: Ti(CxN
y) In a cutting tool coated with a single hard layer of titanium carbonitride having a composition shown by x+y=1, x of the single hard layer of titanium carbonitride Ti (CxNy)
has at least one maximum value between the innermost and outermost surfaces of the single hard titanium carbonitride layer, while y has at least one maximum value between the innermost and outermost surfaces of the single hard titanium carbonitride layer. A hard layer-coated cemented carbide cutting tool characterized in that the concentrations of C and N vary so as to take one minimum value.
【請求項2】  物理蒸着反応炉内に超硬合金基体を装
備し、反応ガスとして炭化水素ガスと窒素ガスの混合ガ
スを導入しながら炭窒化チタン単一硬質層を物理蒸着す
る硬質層被覆超硬合金製切削工具の製造法において、上
記混合ガスの炭化水素ガスの比率を、物理蒸着開始から
終了に至るまでに少なくとも1つの極大値をとるように
変化せしめ、同時に上記混合ガスの窒素ガスの比率を、
物理蒸着開始から終了に至るまでに少なくとも1つの極
小値をとるように変化せしめることを特徴とする硬質層
被覆超硬合金製切削工具の製造法。
2. A hard layer coating method in which a hard metal substrate is equipped in a physical vapor deposition reactor, and a single hard layer of titanium carbonitride is physically deposited while introducing a mixed gas of hydrocarbon gas and nitrogen gas as a reaction gas. In a method for manufacturing a cutting tool made of hard metal, the ratio of hydrocarbon gas in the mixed gas is changed to take at least one maximum value from the start to the end of physical vapor deposition, and at the same time, the ratio of nitrogen gas in the mixed gas is changed to take at least one maximum value from the start to the end of physical vapor deposition. the ratio,
A method for manufacturing a hard layer-coated cemented carbide cutting tool, characterized in that the hard layer is changed to take at least one minimum value from the start to the end of physical vapor deposition.
【請求項3】  超硬合金基体の表面に、Ti(CxN
y)[ただし、x+y=1]で示される組成を有する炭
窒化チタン単一硬質層を被覆してなる切削工具において
、上記炭窒化チタンTi(CxNy)単一硬質層の、x
は、上記炭窒化チタン単一硬質層の最内面と最外面の間
で少なくとも1つの極小値をとり、一方、yは、上記炭
窒化チタン単一硬質層の最内面と最外面の間で少なくと
も1つの極大値をとるようにCおよびNの濃度が変化し
ていることを特徴とする硬質層被覆超硬合金製切削工具
3. Ti(CxN) on the surface of the cemented carbide substrate.
y) In a cutting tool coated with a single hard layer of titanium carbonitride having a composition shown by x+y=1, x of the single hard layer of titanium carbonitride Ti (CxNy)
takes at least one minimum value between the innermost and outermost surfaces of the single hard titanium carbonitride layer, while y takes at least one minimum value between the innermost and outermost surfaces of the single hard titanium carbonitride layer. A cutting tool made of a hard layer coated cemented carbide, characterized in that the concentrations of C and N vary so as to take one maximum value.
【請求項4】  物理蒸着反応炉内に超硬合金基体を装
備し、反応ガスとして炭化水素ガスと窒素ガスの混合ガ
スを導入しながら炭窒化チタン単一硬質層を物理蒸着す
る硬質層被覆超硬合金製切削工具の製造法において、上
記混合ガスの炭化水素ガスの比率を、物理蒸着開始から
終了に至るまでに少なくとも1つの極小値をとるように
変化せしめ、同時に上記混合ガスの窒素ガスの比率を、
物理蒸着開始から終了に至るまでに少なくとも1つの極
大値をとるように変化せしめることを特徴とする硬質層
被覆超硬合金製切削工具の製造法。
4. A hard layer coating method in which a hard metal substrate is equipped in a physical vapor deposition reactor, and a single hard layer of titanium carbonitride is physically deposited while introducing a mixed gas of hydrocarbon gas and nitrogen gas as a reaction gas. In a method for manufacturing a hard metal cutting tool, the ratio of hydrocarbon gas in the mixed gas is changed to take at least one minimum value from the start to the end of physical vapor deposition, and at the same time, the ratio of nitrogen gas in the mixed gas is changed to take at least one minimum value from the start to the end of physical vapor deposition. the ratio,
A method for producing a hard layer-coated cemented carbide cutting tool, characterized in that the hard layer is changed to take at least one maximum value from the start to the end of physical vapor deposition.
JP20259991A 1991-03-18 1991-07-17 Hard layer coated cemented carbide cutting tool and its manufacturing method Expired - Lifetime JP2827597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20259991A JP2827597B2 (en) 1991-03-18 1991-07-17 Hard layer coated cemented carbide cutting tool and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7860491 1991-03-18
JP3-78604 1991-03-18
JP20259991A JP2827597B2 (en) 1991-03-18 1991-07-17 Hard layer coated cemented carbide cutting tool and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH04348823A true JPH04348823A (en) 1992-12-03
JP2827597B2 JP2827597B2 (en) 1998-11-25

Family

ID=26419662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20259991A Expired - Lifetime JP2827597B2 (en) 1991-03-18 1991-07-17 Hard layer coated cemented carbide cutting tool and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2827597B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306166A (en) * 2003-04-03 2004-11-04 Mitsubishi Materials Kobe Tools Corp Cutting tool made of surface coated cemented carbide having hard coating layer exhibiting excellent wear resistance under high-speed cutting condition and its manufacturing method
JP2004322267A (en) * 2003-04-25 2004-11-18 Mitsubishi Materials Kobe Tools Corp Surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed cutting condition and its manufacturing method
JP2011503364A (en) * 2007-11-20 2011-01-27 インテリジェント システム インク. Diffusion thin film deposition method and apparatus
JP2015033757A (en) * 2013-06-26 2015-02-19 日立金属株式会社 Coated cutting tool for processing titanium or titanium alloy, manufacturing method of the same and processing method of titanium or titanium alloy using the same
JP2017177237A (en) * 2016-03-28 2017-10-05 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and peeling resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306166A (en) * 2003-04-03 2004-11-04 Mitsubishi Materials Kobe Tools Corp Cutting tool made of surface coated cemented carbide having hard coating layer exhibiting excellent wear resistance under high-speed cutting condition and its manufacturing method
JP2004322267A (en) * 2003-04-25 2004-11-18 Mitsubishi Materials Kobe Tools Corp Surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed cutting condition and its manufacturing method
JP2011503364A (en) * 2007-11-20 2011-01-27 インテリジェント システム インク. Diffusion thin film deposition method and apparatus
JP2015033757A (en) * 2013-06-26 2015-02-19 日立金属株式会社 Coated cutting tool for processing titanium or titanium alloy, manufacturing method of the same and processing method of titanium or titanium alloy using the same
JP2017177237A (en) * 2016-03-28 2017-10-05 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and peeling resistance

Also Published As

Publication number Publication date
JP2827597B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP5339984B2 (en) Cutting tools
JP2010094763A (en) Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance and wear resistance
JP4991361B2 (en) Rotating tool
JP2003211304A (en) Surface coating cemented carbide cutting tool having hard coating layer showing excellent wear resistance at high speed cutting
JPH04348823A (en) Cutting tool made of rigid layer-covered cemented carbide
JP5287126B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5287124B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287123B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2917555B2 (en) Hard layer coated cemented carbide cutting tool and its manufacturing method
JP3198636B2 (en) Cutting tool made of cemented carbide with graded hard layer coating
JPH04240005A (en) Cutting tool made of hard layer covering sintered hard alloy and manufacture thereof
JPH0617230A (en) Cutting tool made of gradient hard layer coated sintered hard alloy
JP2970016B2 (en) Hard layer coated cemented carbide cutting tool
JP2932732B2 (en) Hard layer coated cemented carbide cutting tool
JP2005028474A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4211508B2 (en) Surface coated cermet cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of difficult-to-cut materials
JP3991272B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2004058217A (en) Surface coated cemented carbide cutting tool whose hard coating layer exhibits chipping resistance under high-speed heavy cutting condition
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP4211500B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4211509B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP3962921B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

EXPY Cancellation because of completion of term