JPH04346812A - Dehydrating device for hygroscopic liquid - Google Patents

Dehydrating device for hygroscopic liquid

Info

Publication number
JPH04346812A
JPH04346812A JP3115921A JP11592191A JPH04346812A JP H04346812 A JPH04346812 A JP H04346812A JP 3115921 A JP3115921 A JP 3115921A JP 11592191 A JP11592191 A JP 11592191A JP H04346812 A JPH04346812 A JP H04346812A
Authority
JP
Japan
Prior art keywords
tube
aqueous solution
hygroscopic liquid
moisture
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3115921A
Other languages
Japanese (ja)
Other versions
JP2707866B2 (en
Inventor
Kazuyuki Iguchi
和幸 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3115921A priority Critical patent/JP2707866B2/en
Publication of JPH04346812A publication Critical patent/JPH04346812A/en
Application granted granted Critical
Publication of JP2707866B2 publication Critical patent/JP2707866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1435Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification comprising semi-permeable membrane

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To offer a dehydrating device for hygroscopic liquid which is able to prolong service life of tube line for a hygroscopic liquid or a tube made of a steam permeable membrane and is able to remarkably improve energy efficiency when dehydrating to dehydrate a large amount of moisture and is able to attain simplification and reduction of cost of the dehydrating device of the hygroscopic liquid. CONSTITUTION:The LiCl aqueous solution 8 diluted by the water absorbed is heated with the heater 6 at about 80 deg.C and the tube 3 made of a solution permeable membrane is dipped into the heated LiCl aqueous solution 8. Gas in the tube 3 is discharged by a exhaust pump 4 to the outside.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、室内空気に含まれる水
分を吸収する吸湿液体の脱水装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dehydrating device for a hygroscopic liquid that absorbs moisture contained in indoor air.

【0002】0002

【従来の技術】従来、この種の調湿装置として、例えば
図3に示すようなものが知られている(特開平2−14
0535号公報)。この調湿装置は、吸湿液体たる塩化
リチウム(LiCl)の水溶液が、これに接触する空気
の相対湿度を、当該水溶液の濃度が高いほど、また温度
が低いほど低い値に保つという原理を利用している。即
ち、この調湿装置は、空気調和室21内に、水蒸気透過
膜製の数本のチューブ23を並列に配設してなる調湿ユ
ニット22,22と送風ファン24を設け、クーラ26
,撹拌機27,給水弁28を備えたタンク25内に蓄え
たLiCl水溶液29を、ポンプ30により管路31,
32を経て上記調湿ユニット22に循環供給する。一方
、室外に、送風ファン34をもつ上記調湿ユニットと同
様の濃縮ユニット33とヒータ35を設け、タンク25
内のLiCl水溶液29を、ポンプ36により管路37
,38を経て上記ヒータ35と濃縮ユニット33に循環
供給する。
2. Description of the Related Art Hitherto, as a humidity control device of this type, a device as shown in FIG.
Publication No. 0535). This humidity control device utilizes the principle that an aqueous solution of lithium chloride (LiCl), which is a moisture-absorbing liquid, keeps the relative humidity of the air in contact with it at a lower value as the concentration of the aqueous solution increases and the temperature decreases. ing. That is, this humidity control device includes, in an air conditioning room 21, humidity control units 22, 22 each including several tubes 23 made of water vapor permeable membranes arranged in parallel, and a blower fan 24.
, a stirrer 27 , and a water supply valve 28 .
32 and is circulated and supplied to the humidity control unit 22. On the other hand, a concentrating unit 33 and a heater 35 similar to the above-mentioned humidity control unit having a ventilation fan 34 are provided outdoors, and a tank 25
The LiCl aqueous solution 29 in the
, 38, it is circulated and supplied to the heater 35 and concentration unit 33.

【0003】そして、空気調和室21を加湿するには、
濃度検出器39が検出する濃度に基づきコントローラ4
0によって、所定時間クーラ26を動作させかつ給水弁
28を開くことで、タンク25内のLiCl水溶液29
を所定の低温,低濃度にしてポンプ30により調湿ユニ
ット22に供給し、LiCl水溶液中の水分をチューブ
膜を透過させて室内に放出する。また、空気長和室21
を除湿するには、濃度検出器39の検出濃度が所定の高
温、高濃度になるまで、コントローラ40によってポン
プ36,ヒータ35,送風ファン34を動作させ、タン
ク25内のLiCl水溶液29を高温にして濃度ユニッ
ト33に供給し、水溶液中の水分をチューブ膜を透過さ
せて室外に放出する。次いで、所定の高温、高濃度とな
ったLiCl水溶液をポンプ30により調湿ユニット2
2に供給し、空気調和室21内の空気に含まれる水分を
チューブ膜を透過させてLiCl水溶液に吸収する。
[0003] To humidify the air conditioning room 21,
Based on the concentration detected by the concentration detector 39, the controller 4
0, by operating the cooler 26 for a predetermined time and opening the water supply valve 28, the LiCl aqueous solution 29 in the tank 25 is removed.
is supplied to the humidity control unit 22 by the pump 30 at a predetermined low temperature and low concentration, and the water in the LiCl aqueous solution is permeated through the tube membrane and released into the room. In addition, air length Japanese-style room 21
To dehumidify the LiCl aqueous solution 29 in the tank 25, the controller 40 operates the pump 36, heater 35, and blower fan 34 until the concentration detected by the concentration detector 39 reaches a predetermined high temperature and high concentration. The aqueous solution is supplied to the concentration unit 33, and the water in the aqueous solution is passed through the tube membrane and released to the outside. Next, the LiCl aqueous solution at a predetermined high temperature and high concentration is pumped into the humidity control unit 2 by the pump 30.
2, and moisture contained in the air in the air conditioning room 21 is passed through the tube membrane and absorbed into the LiCl aqueous solution.

【0004】0004

【発明が解決しようとする課題】ところが、上記従来の
調湿装置は、吸湿したLiCl水溶液29を、ヒータ3
5にて100〜150℃に加熱後、送風ファン34で通
風される濃縮ユニット33に通して濃縮しているため、
高温のLiCl水溶液で、水蒸気透過膜製のチューブ2
3や管路38などの劣化が激しく、これらの耐用寿命が
短くなるという欠点がある。また、濃縮ユニット33に
おける放熱等で濃縮の際のエネルギ効率が60%程度ま
で低下するという欠点がある。
However, in the conventional humidity control device, the LiCl aqueous solution 29 that has absorbed moisture is transferred to the heater 3.
After heating to 100 to 150°C in step 5, the mixture is concentrated by passing through the concentration unit 33 that is ventilated by the ventilation fan 34.
Tube 2 made of water vapor permeable membrane in high temperature LiCl aqueous solution
3 and the conduit 38 are severely deteriorated, resulting in a shortened service life. Furthermore, there is a drawback that the energy efficiency during concentration decreases to about 60% due to heat radiation etc. in the concentration unit 33.

【0005】かかる欠点の解決策として、ヒータ35等
をなくす一方、送風ファン24をもつ上記調湿ユニット
22と同じ構造の吸湿モジュールと、真空ポンプで排気
される容器内に上記調湿ユニット22を収容した放湿モ
ジュールと、タンクとを循環路をなすように順次管路で
接続し、タンク内のLiCl水溶液をポンプで上記吸湿
モジュールに循環供給して、この吸湿モジュールでLi
Cl水溶液が室内空気から吸収した水分を、放湿モジュ
ールにおいてLiCl水溶液自身の水蒸気圧で外気に放
出する除湿専用の装置が考えられる。
[0005] As a solution to this drawback, while eliminating the heater 35, etc., a moisture absorption module having the same structure as the humidity control unit 22 having the ventilation fan 24 and the humidity control unit 22 installed in a container that is evacuated by a vacuum pump are proposed. The accommodated moisture release module and the tank are sequentially connected through pipes to form a circulation path, and the LiCl aqueous solution in the tank is circulated and supplied to the moisture absorption module using a pump, so that the moisture absorption module absorbs Li.
A device dedicated to dehumidification is conceivable, in which moisture absorbed from indoor air by a Cl aqueous solution is released into the outside air using the water vapor pressure of the LiCl aqueous solution itself in a dehumidification module.

【0006】しかし、LiCl水溶液の水蒸気圧は、例
えば水溶液が20℃,30重量%の場合、大気圧下で略
10mmHg(図2参照)と僅かなため、上記容器内を
2mmHg程度の極真空にしない限り、水溶液から水分
が放出されない。しかるに、真空ポンプの性能は、図4
に示すように、真空度が上がる(吸引圧力が下がる)に
つれ、単位時間に吸引できる気体体積(大気圧換算流量
)が減少し、80mmHgを達成するのがやっとである
から、2mmHgの真空度は到底達成できない。仮に、
2mmHgの真空度が達成できたとして、標準状態の吸
湿モジュールで500g/hの率で吸収した水分を、気
圧2mmHgの放湿モジュールで同率で放出する場合、
単位時間に吸収した水蒸気の体積は標準状態で622L
(12L/分)であるが、これは2mmHgで略2.4
×105Lに相当し、かかる多量の水蒸気を放出するの
が不可能なことが判る。
However, the water vapor pressure of the LiCl aqueous solution is as low as approximately 10 mmHg (see Figure 2) under atmospheric pressure when the aqueous solution is at 20°C and 30% by weight, so the inside of the container must be kept in an extreme vacuum of about 2 mmHg. No water is released from the aqueous solution unless However, the performance of the vacuum pump is as shown in Figure 4.
As shown in , as the degree of vacuum increases (suction pressure decreases), the volume of gas that can be sucked per unit time (atmospheric pressure equivalent flow rate) decreases, and it is barely possible to achieve 80 mmHg, so the degree of vacuum of 2 mmHg is It cannot be achieved at all. what if,
Assuming that a degree of vacuum of 2 mmHg can be achieved, if moisture is absorbed at a rate of 500 g/h by a standard moisture absorption module and released at the same rate by a moisture release module with an atmospheric pressure of 2 mmHg,
The volume of water vapor absorbed per unit time is 622L under standard conditions.
(12L/min), which is approximately 2.4 at 2mmHg.
x105L, and it can be seen that it is impossible to release such a large amount of water vapor.

【0007】そこで、本発明の目的は、放湿モジュール
の構造を吸湿液体に侵漬できるように簡素化することに
よって、高真空度で大型の真空ポンプを用いず、かつ部
材の耐用寿命を伸ばしつつ、多量の水分を放出でき、吸
湿液体の濃縮の際のエネルギ効率を大幅に改善すること
ができる吸湿液体の脱水装置を提供することにある。
Therefore, an object of the present invention is to simplify the structure of a moisture desorption module so that it can be immersed in a moisture absorbing liquid, thereby eliminating the need for a large vacuum pump at a high degree of vacuum and extending the service life of the components. It is an object of the present invention to provide a dehydrating device for a hygroscopic liquid, which can release a large amount of water and greatly improve energy efficiency when concentrating the hygroscopic liquid.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
、本発明の吸湿液体の脱水装置は、図1に例示するよう
に、吸収した水分で希釈された吸湿液体8を所定温度に
加熱するヒータ6と、このヒータ6で加熱された吸湿液
体8中に浸漬される水蒸気透過膜からなるチューブ3と
、このチューブ3内の気体を外部に排出する排気ポンプ
4を備えたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the hygroscopic liquid dehydrating apparatus of the present invention heats the hygroscopic liquid 8 diluted with absorbed moisture to a predetermined temperature, as illustrated in FIG. It is characterized by being equipped with a heater 6, a tube 3 made of a water vapor permeable membrane immersed in a moisture-absorbing liquid 8 heated by the heater 6, and an exhaust pump 4 for discharging the gas inside the tube 3 to the outside. .

【0009】[0009]

【作用】水分を吸収した吸湿液体8を脱水する場合、こ
の吸湿液体8をヒータ6で所定温度に加熱し、加熱した
吸湿液体8中に水蒸気透過膜からなるチューブ3を侵漬
するとともに、このチューブ3内の気体を排気ポンプ4
で外部に排出する。すると、チューブ3外の吸湿液体8
の水蒸気圧は、加熱により常温における水蒸気圧の10
倍程度に上昇する一方、チューブ3内の気圧は、高真空
度で大型の排気ポンプを用いずとも上記水蒸気圧より低
くなる。従って、吸湿液体8中の水分は、水蒸気となっ
て容易かつ多量にチューブ3の膜を透過してチューブ3
内に放出され、外部へ排出される。こうして、吸水で飽
和状態だった吸湿液体8は、次第に脱水され、再び吸湿
可能な状態まで濃縮される。上記所定温度は、チューブ
3内を排気しているので、従来の加熱濃縮の温度よりも
低く抑えられるから、チューブ3や吸湿液体の管路が劣
化しない。
[Operation] When dehydrating the hygroscopic liquid 8 that has absorbed water, the hygroscopic liquid 8 is heated to a predetermined temperature by the heater 6, and the tube 3 made of a water vapor permeable membrane is immersed in the heated hygroscopic liquid 8. Exhaust the gas in tube 3 with pump 4
and discharge it to the outside. Then, the hygroscopic liquid 8 outside the tube 3
By heating, the water vapor pressure of
On the other hand, the air pressure inside the tube 3 becomes lower than the above water vapor pressure even at a high degree of vacuum and without using a large exhaust pump. Therefore, the water in the hygroscopic liquid 8 becomes water vapor and easily and in large quantities permeates through the membrane of the tube 3.
released inward and expelled to the outside. In this way, the hygroscopic liquid 8, which has been saturated with water, is gradually dehydrated and concentrated to a state where it can absorb moisture again. Since the inside of the tube 3 is evacuated, the predetermined temperature can be kept lower than the temperature of conventional heating concentration, so that the tube 3 and the hygroscopic liquid conduit do not deteriorate.

【0010】0010

【実施例】以下、本発明を図示の実施例により詳細に説
明する。図1は、本発明の吸湿液体の脱水装置の一例を
示す断面図である。この脱水装置は、円盤状の取付板1
に合流部2を嵌合した水蒸気透過膜からなる数本の盲管
状のチューブ3,3…と、チューブ3内の気体を外部に
排出すべく上記合流部2の端に設けられた排気ポンプ4
と、チューブ3を取り囲むように上記取付板1に固定し
た網筒5と、この網筒5の外周に螺旋状に設けられたヒ
ータ6からなり、タンク7に蓄えられた吸湿液体として
のLiCl水溶液8中に図示に如く浸漬される。上記排
気ポンプ4の能力は、例えば吸引圧力が100mmHg
、吸引流量が3NL(標準状態換算)/hである(図4
参照)。 上記ヒータ6は、LiCl水溶液8を例えば80℃に加
熱する。なお、合流部2を含む各チューブ3は、内部が
上記排気ポンプ4で吸引されても萎まないように図示し
ない補強剤で補強されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to illustrated embodiments. FIG. 1 is a sectional view showing an example of a hygroscopic liquid dehydrating apparatus according to the present invention. This dewatering device consists of a disc-shaped mounting plate 1
Several blind tubes 3, 3... made of water vapor permeable membranes are fitted with a confluence section 2, and an exhaust pump 4 is provided at the end of the confluence section 2 to discharge the gas inside the tubes 3 to the outside.
It consists of a mesh tube 5 fixed to the mounting plate 1 so as to surround the tube 3, and a heater 6 spirally provided around the outer circumference of the mesh tube 5, and a LiCl aqueous solution as a hygroscopic liquid stored in a tank 7. 8 as shown. The capacity of the exhaust pump 4 is, for example, a suction pressure of 100 mmHg.
, the suction flow rate is 3NL (standard state conversion)/h (Fig. 4
reference). The heater 6 heats the LiCl aqueous solution 8 to, for example, 80°C. Note that each tube 3 including the merging portion 2 is reinforced with a reinforcing agent (not shown) so that the tube 3 does not shrink even if the inside thereof is sucked by the exhaust pump 4.

【0011】上記構成の脱水装置は、次のように動作す
る。水分を吸収したLiCl水溶液(濃度30重量%)
を脱水する場合、図1に示すように、タンク7に蓄えら
れたLiCl水溶液8中に脱水装置を浸漬する。そして
、ヒータ6に通電してLiCl水溶液を80℃程度に加
熱するとともに、排気ポンプ4を駆動してチューブ3,
3…内の気体を矢印Aの如く外部に排出する。すると、
チューブ3外のLiCl水溶液の水蒸気圧は、図2(大
気圧下)に示すように80℃では150mmHgとなり
、常温(20℃)における水蒸気圧10mmHgの15
倍となって、チューブ3内の吸引圧力100mmHgよ
り50mmHg高くなる。 従って、LiCl水溶液中の水分は、水蒸気となって容
易かつ多量にチューブ3の膜を通ってチューブ3内に放
出され、矢印Aの如く外部へ排出される。
The dewatering apparatus having the above structure operates as follows. LiCl aqueous solution that absorbed water (concentration 30% by weight)
When dehydrating the liquid, the dehydrating device is immersed in the LiCl aqueous solution 8 stored in the tank 7, as shown in FIG. Then, the heater 6 is energized to heat the LiCl aqueous solution to about 80°C, and the exhaust pump 4 is driven to remove the tube 3,
3. The gas inside is discharged to the outside as shown by arrow A. Then,
The water vapor pressure of the LiCl aqueous solution outside the tube 3 is 150 mmHg at 80°C, as shown in Figure 2 (under atmospheric pressure), and 15% of the water vapor pressure of 10 mmHg at room temperature (20°C).
The suction pressure inside the tube 3 becomes 50 mmHg higher than the 100 mmHg. Therefore, the water in the LiCl aqueous solution becomes water vapor and is easily and in large quantities released into the tube 3 through the membrane of the tube 3, and is discharged to the outside as shown by arrow A.

【0012】例えば、標準状態下の吸湿モジュール22
(図3参照)で500g/hの率で水分を吸収すれば、
吸収した全水分を上記脱水装置で放出する必要があり、
単位時間当たりの吸収水重量は標準状態下の水蒸気体積
にして622L(12L/分)であるが、これをチュー
ブ3内の気圧100mmHgに換算すると4700L程
度にしかならず、従来例で述べた2.4×105より遥
かに少ない。つまり、排気ポンプ4が、標準状態換算で
毎分12Lの水蒸気を排出できれば、吸湿モジュール2
2の吸水率と同率で水分の放出ができ、排出ポンプ4の
吸引流量は100mmHgで3NL/分であるから、吸
水時の4倍の時間をかければ全水分を放出でき、小型か
つ低真空度の排気ポンプ4で十分であることが判る。こ
うして、ポンプ4とヒータ6を所定時間運転することに
より、吸水で飽和状態だったLiCl水溶液は、次第に
脱水され、再び吸湿可能な状態まで濃縮される。なお、
以上の脱水処理は、LiCl水溶液を多量に用いて調湿
装置(図3参照)の吸水能を増したうえで、夜間などの
装置停止時に、タンク7内のLiCl水溶液中に上記脱
水装置を投入し、安価な夜間電力を利用して行えば経済
的である。
For example, the moisture absorption module 22 under standard conditions
(See Figure 3) and absorbs water at a rate of 500g/h.
It is necessary to release all the absorbed water using the dehydration equipment mentioned above.
The weight of water absorbed per unit time is 622 L (12 L/min) in terms of water vapor volume under standard conditions, but when converted to an air pressure of 100 mmHg in the tube 3, it is only about 4700 L, which is 2.4 L as described in the conventional example. It is much less than ×105. In other words, if the exhaust pump 4 can discharge 12 L of water vapor per minute in standard conditions, the moisture absorption module 2
Water can be released at the same rate as the water absorption rate of 2, and the suction flow rate of the discharge pump 4 is 3NL/min at 100 mmHg, so all the water can be released in four times the time taken for water absorption, and it is small and has a low vacuum. It turns out that the exhaust pump 4 is sufficient. In this manner, by operating the pump 4 and heater 6 for a predetermined period of time, the LiCl aqueous solution, which was saturated with water absorption, is gradually dehydrated and concentrated to a state where it can absorb moisture again. In addition,
The above dehydration process uses a large amount of LiCl aqueous solution to increase the water absorption capacity of the humidity control device (see Figure 3), and then inserts the dehydration device into the LiCl aqueous solution in the tank 7 when the device is stopped, such as at night. However, it is economical to use inexpensive nighttime electricity.

【0013】このように、本発明では、チューブ3内を
排気しつつ吸湿液体たるLiCl水溶液8を加熱してい
るので、LiCl水溶液の加熱温度を従来例より低い1
00℃以下に抑えるとともに、排気ポンプ4を低真空度
で小型のものにできる。従って、チューブや管路の寿命
を伸ばしつつ、多量の水分を放出でき、脱水の際のエネ
ルギ効率を大幅に改善できて、脱水装置の簡素化と低廉
化を図ることができる。
As described above, in the present invention, since the LiCl aqueous solution 8, which is a hygroscopic liquid, is heated while evacuating the inside of the tube 3, the heating temperature of the LiCl aqueous solution is lower than that of the conventional example.
In addition to suppressing the temperature to 00° C. or lower, the exhaust pump 4 can be made small with a low degree of vacuum. Therefore, a large amount of water can be released while extending the life of the tube or conduit, and the energy efficiency during dewatering can be greatly improved, making it possible to simplify and reduce the cost of the dewatering apparatus.

【0014】なお、上記実施例では、排気ポンプ4をも
つチューブ3とヒータ6を取付板1に一体に設けたが、
ヒータのみをタンク内に設ける等、両者を別体に設けて
もよい。
In the above embodiment, the tube 3 with the exhaust pump 4 and the heater 6 are integrally provided on the mounting plate 1.
Both may be provided separately, such as by providing only the heater in the tank.

【0015】[0015]

【発明の効果】以上の説明で明らかなように、本発明の
吸湿液体の脱水装置は、吸収した水分で稀釈された吸湿
液体をヒータで所定温度に加熱し、加熱された吸湿液体
中に水蒸気透過膜からなるチューブを浸漬するとともに
、チューブ内の気体を排気ポンプで外部に排出するよう
にしているので、吸湿液体の管路やチューブの寿命を伸
ばし、脱水の際のエネルギ効率を大幅に改善しつつ、多
量の水分を脱水でき、脱水装置の簡素化と低廉化を図る
ことができる。
Effects of the Invention As is clear from the above description, the dehydrating device for hygroscopic liquid of the present invention heats the hygroscopic liquid diluted with absorbed moisture to a predetermined temperature with a heater, and then creates water vapor in the heated hygroscopic liquid. The tube made of a permeable membrane is immersed, and the gas inside the tube is exhausted to the outside using an exhaust pump, extending the life of the moisture-absorbing liquid conduit and tube, and greatly improving energy efficiency during dewatering. At the same time, a large amount of water can be dehydrated, and the dehydration device can be simplified and inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の吸湿液体の脱水装置の一例を示す
断面図である。
FIG. 1 is a sectional view showing an example of a hygroscopic liquid dehydrating apparatus of the present invention.

【図2】  吸湿液体たるLiCl水溶液の大気圧下に
おける温度と水蒸気圧の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the temperature and water vapor pressure of a LiCl aqueous solution, which is a hygroscopic liquid, under atmospheric pressure.

【図3】  従来の調湿装置を示す回路図である。FIG. 3 is a circuit diagram showing a conventional humidity control device.

【図4】真空ポンプの吸引圧力と吸引流量の関係を示す
図である。
FIG. 4 is a diagram showing the relationship between suction pressure and suction flow rate of a vacuum pump.

【符号の説明】[Explanation of symbols]

1…取付板、2…合流部、3…チューブ、4…排気ポン
プ、6…ヒータ、7…タンク、8…LiCl水溶液。
DESCRIPTION OF SYMBOLS 1... Mounting plate, 2... Merging part, 3... Tube, 4... Exhaust pump, 6... Heater, 7... Tank, 8... LiCl aqueous solution.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  吸収した水分で希釈された吸湿液体(
8)を所定温度に加熱するヒータ(6)と、このヒータ
(6)で加熱された吸湿液体(8)中に浸漬される水蒸
気透過膜からなるチューブ(3)と、このチューブ(3
)内の気体を外部に排出する排気ポンプ(4)を備えた
ことを特徴とする吸湿液体の脱水装置。
[Claim 1] Hygroscopic liquid diluted with absorbed water (
8) to a predetermined temperature, a tube (3) consisting of a water vapor permeable membrane immersed in the moisture-absorbing liquid (8) heated by the heater (6), and
) A dehydrating device for a hygroscopic liquid, characterized in that it is equipped with an exhaust pump (4) for discharging the gas in the liquid to the outside.
JP3115921A 1991-05-21 1991-05-21 Hygroscopic liquid dehydrator Expired - Fee Related JP2707866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3115921A JP2707866B2 (en) 1991-05-21 1991-05-21 Hygroscopic liquid dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3115921A JP2707866B2 (en) 1991-05-21 1991-05-21 Hygroscopic liquid dehydrator

Publications (2)

Publication Number Publication Date
JPH04346812A true JPH04346812A (en) 1992-12-02
JP2707866B2 JP2707866B2 (en) 1998-02-04

Family

ID=14674506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3115921A Expired - Fee Related JP2707866B2 (en) 1991-05-21 1991-05-21 Hygroscopic liquid dehydrator

Country Status (1)

Country Link
JP (1) JP2707866B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835916U (en) * 1981-08-29 1983-03-09 住友電気工業株式会社 Deodorizing device
JPS6422324A (en) * 1987-07-20 1989-01-25 Komatsu Mfg Co Ltd Absorption dehumidifying device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835916U (en) * 1981-08-29 1983-03-09 住友電気工業株式会社 Deodorizing device
JPS6422324A (en) * 1987-07-20 1989-01-25 Komatsu Mfg Co Ltd Absorption dehumidifying device

Also Published As

Publication number Publication date
JP2707866B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US4287721A (en) Chemical heat pump and method
CN108187459B (en) Air spiral type membrane dehumidifier, electrodialysis regeneration device and dehumidification heating system thereof
CN107631393B (en) Air purification method with air energy dehumidification function
WO2019229749A1 (en) Atmospheric water generation method, device and system
WO2017016313A1 (en) Bladeless fan with air energy dehumidification function
CN108954579A (en) Airhandling equipment
WO2017012421A1 (en) Intelligent and efficient moisture absorption machine
US4661128A (en) Air desiccating apparatus
CN106765787A (en) A kind of refrigerated dehumidification air-conditioning system
WO2017016312A1 (en) Bladeless fan with air energy moisture absorption function
JPH04346812A (en) Dehydrating device for hygroscopic liquid
CN209147287U (en) Airhandling equipment
JP2008180493A (en) Air conditioner with humidity regulating function
JP2000279745A (en) Moisture controlling device
JP2000171056A (en) Dehumidification/humidification unit
JPH07108127A (en) Dehumidification regenerator using hygroscopic liquid
JPH04346813A (en) Dehumidifier system
JP2522126B2 (en) Indoor air conditioner
CN106310889A (en) Dehumidifying device and control method thereof
CN206404592U (en) Indoor pollution removal device and indoor purifying equipment
JP4232494B2 (en) Humidity control device and humidity control exhaust system
JP2606479B2 (en) Air conditioner
CN216716439U (en) A dehydrating unit for operating room purifies
KR102628049B1 (en) Humidity control device
CN217383149U (en) Dehumidifier for low temperature environment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees