JPH04346088A - Measuring apparatus of triple magnetic resonance - Google Patents

Measuring apparatus of triple magnetic resonance

Info

Publication number
JPH04346088A
JPH04346088A JP3149568A JP14956891A JPH04346088A JP H04346088 A JPH04346088 A JP H04346088A JP 3149568 A JP3149568 A JP 3149568A JP 14956891 A JP14956891 A JP 14956891A JP H04346088 A JPH04346088 A JP H04346088A
Authority
JP
Japan
Prior art keywords
coils
coil
magnetic field
another
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3149568A
Other languages
Japanese (ja)
Inventor
Makoto Fujita
真 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3149568A priority Critical patent/JPH04346088A/en
Publication of JPH04346088A publication Critical patent/JPH04346088A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To acquire more abundant information of analysis by disposing three coils so that a magnetic field generated by each one coil intersects the one of another perpendicularly and by connecting each coil to one of high-frequency power sources being independent of one another. CONSTITUTION:Three exciting coils 1, 2 and 3 are disposed so that the respective axes intersect one another perpendicularly, and these three exciting coils 1, 2 and 3 are connected to high-frequency power sources 4, 5 and 6 being different in an oscillation frequency from one another so that a static magnetic field is impressed in one direction intersecting the axes of these exciting coils 1, 2 and 3 at equal angles. The three high-frequency power sources 4, 5 and 6 are not subjected to induction from the other coils respectively, the frequencies thereof can be changed independently of one another, no mutual interference occurs in measurement of a point of magnetic resonance of a sample, and measurement of triple resonance is enabled. Thus, acquisition of more abundant information on analysis is enabled in measurement of the triple resonance.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は磁気共鳴測定装置に用い
られる高周波磁場発生用コイルの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a high-frequency magnetic field generating coil used in a magnetic resonance measurement apparatus.

【0002】0002

【従来の技術】場内に置いてそれと直交する高周波磁場
を印加し、静磁場の強さを変えて行くと、或る強さの所
で試料が高周波磁場からエネルギーを吸収し、同じ周波
数の電磁波を放射するので、高周波磁場を印加するコイ
ルとは異なる方向のコイルによって、その放射電磁波を
検出することで、試料の磁気共鳴を測定するもので、静
磁場強度に対する検出電磁波の強度変化パターンによっ
て試料分析を行う。所で試料に単一周波数の磁場を印加
しながら、静磁場強度を変えて行く場合、得られる情報
は、試料分子の基底状態からの遷移に関する情報である
が、或る励起状態からの遷移の様子も分析上の有益な情
報を与える。このためには試料に同時に二以上の異なる
周波数の磁場を印加して磁気共鳴吸収能力測定を行う必
要がある。このため従来から、直交する二方向に、互い
に独立した周波数の磁場を印加することにより、同時に
二つの周波数の磁場を印加する磁気共鳴測定法が用いら
れていた。
[Prior Art] When a sample is placed in a field and a high-frequency magnetic field orthogonal to it is applied, and the strength of the static magnetic field is changed, the sample absorbs energy from the high-frequency magnetic field at a certain strength, and electromagnetic waves of the same frequency The magnetic resonance of the sample is measured by detecting the radiated electromagnetic waves using a coil in a direction different from that of the coil that applies the high-frequency magnetic field. Perform analysis. When applying a magnetic field of a single frequency to a sample while changing the static magnetic field strength, the information obtained is information about the transition of sample molecules from the ground state, but it is also information about the transition from a certain excited state. The appearance also provides useful information for analysis. For this purpose, it is necessary to simultaneously apply two or more magnetic fields of different frequencies to the sample and measure the magnetic resonance absorption capacity. For this reason, a magnetic resonance measurement method has conventionally been used in which magnetic fields of two frequencies are simultaneously applied by applying magnetic fields of mutually independent frequencies in two orthogonal directions.

【0003】上述したように従来から、試料に二種の周
波数の磁場を印加する磁気共鳴測定は行われていたが、
三種の周波数の磁場を印加するようにすれば更に多くの
分析情報を得ることが可能となる。しかし三種の高周波
磁場を同時に印加しようとすると次のような問題が生じ
る。即ち二種の高周波磁場、二つの高周波コイルを互い
に直交させて配置しておくことにより、相互の結合を最
小にし、測定上の相互干渉を最小にすることができる。 しかし第3の周波数の磁場を印加するためコイルを配置
すると、この第3のコイルは他の二つのコイルの何れと
も相互結合を生じるので、直交させた二つのコイルを用
い、その一方のコイルの電気回路を工夫することにより
、二つの共振点を持たせるようにしてい一つのコイルに
二つの周波数を乗せ、全部で三種の周波数の磁場を印加
するようにしている。しかしこのようにすると、第3の
周波数の選択の自由度が制限され、より多くの分析情報
を得ると云う点からは甚だ不満足なものであった。
As mentioned above, magnetic resonance measurements have traditionally been performed in which magnetic fields of two different frequencies are applied to a sample.
By applying magnetic fields of three different frequencies, it is possible to obtain even more analytical information. However, when trying to apply three types of high-frequency magnetic fields simultaneously, the following problem occurs. That is, by arranging two types of high-frequency magnetic fields and two high-frequency coils so as to be orthogonal to each other, mutual coupling can be minimized and mutual interference in measurement can be minimized. However, when a coil is arranged to apply a magnetic field of a third frequency, this third coil causes mutual coupling with either of the other two coils. By devising the electric circuit, it is possible to have two resonance points and put two frequencies on one coil, applying magnetic fields of three different frequencies in total. However, this method limits the degree of freedom in selecting the third frequency, and is extremely unsatisfactory in terms of obtaining more analytical information.

【0004】0004

【発明が解決しようとする課題】本発明は磁気共鳴測定
で試料に三種の互いに全く独立に選択された周波数の磁
場を印加し、相互干渉なしに三重磁気共鳴の測定を行い
得る三重磁場発生装置を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention provides a triple magnetic field generator that applies three types of magnetic fields of frequencies completely independently selected to each other to a sample in magnetic resonance measurement, and can perform triple magnetic resonance measurements without mutual interference. This is what we are trying to provide.

【0005】[0005]

【課題を解決するための手段】夫々のコイルが発生する
磁場が互いに直交するように三つのコイルを配置し、各
コイルを夫々互いに独立した高周波電源に接続した。
[Means for Solving the Problems] Three coils were arranged so that the magnetic fields generated by the respective coils were orthogonal to each other, and each coil was connected to an independent high-frequency power source.

【0006】[0006]

【作用】二つの環状コイルを夫々のコイル面を直交させ
て置くと、一方のコイルのコイル面は他方のコイルの作
る磁場の中にあって、コイル面がその磁場と平行になっ
ているので、磁場がコイルと鎖交せず、二つのコイル間
の相互結合は0となる。三つのコイルが夫々互いに上述
した関係に配置されることが可能であるのは空間におい
て、三直線を直交させることが可能であることに基づい
ている。本発明では三つのコイルがこのように配置され
ているので、三つの高周波電源は夫々他のコイルからの
誘導作用を受けず、互いに独立に周波数を変えることが
でき、試料の磁気共鳴点の測定において相互干渉が生ぜ
ず、三重共鳴の測定が可能となる。
[Operation] When two annular coils are placed with their coil surfaces perpendicular to each other, the coil surface of one coil is in the magnetic field created by the other coil, and the coil surface is parallel to that magnetic field. , the magnetic field does not interlink with the coils, and the mutual coupling between the two coils is zero. The fact that the three coils can be arranged in the relationship described above with respect to each other is based on the fact that the three straight lines can be orthogonal in space. In the present invention, since the three coils are arranged in this way, each of the three high-frequency power sources is not affected by the induction effect from the other coils and can change the frequency independently of each other, making it possible to measure the magnetic resonance point of the sample. There is no mutual interference in this case, making it possible to measure triple resonance.

【0007】[0007]

【実施例】図1に示す三つの励振コイル1,2,3を図
示の方向を保って図2に示すように組合せ、夫々のコイ
ルを夫々の高周波電源4,5,6に接続する。コイル1
はx方向の磁場を形成し、コイル2はy方向,3はz方
向の磁場を形成するもので、各コイルは正方形の一対の
枠部11,12および21,22および31,32を有
し、各コイルはこれら一対の枠部を結んで図矢印のよう
に電流を流すようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The three excitation coils 1, 2, and 3 shown in FIG. 1 are combined as shown in FIG. 2 while maintaining the orientation shown in the drawing, and each coil is connected to a respective high-frequency power source 4, 5, and 6. coil 1
forms a magnetic field in the x direction, coil 2 forms a magnetic field in the y direction, coil 3 forms a magnetic field in the z direction, and each coil has a pair of square frame parts 11, 12, 21, 22 and 31, 32. , each coil connects these pair of frame parts so that current flows as shown by the arrow in the figure.

【0008】励振コイル1,2,3の各枠部は図1に示
すように一隅が角を落として斜めに継いだ形にしてあり
、三つのコイルを図2に示すように組合せたとき、枠部
が構成する立方体の一対の対向頂点に三角形の隙間が出
来るようになっている。この隙間はこれを通して一つの
対角線に沿い試料を挿入するために設けられている。
As shown in FIG. 1, each frame of the excitation coils 1, 2, and 3 has one corner cut off and joined diagonally, and when the three coils are combined as shown in FIG. A triangular gap is created between a pair of opposing vertices of the cube that the frame constitutes. This gap is provided through which the sample can be inserted along one diagonal.

【0009】磁気共鳴測定では各高周波磁場で試料が置
かれる静磁場Boに対し直交する成分だけが測定上有効
なので、静磁場は図2に矢印Boで示すように隙間を形
成した一対の対頂対角線とは別の対頂対角線の方向に形
成し、静磁場Boに対して各コイルが同等の関係となる
ようにする。
In magnetic resonance measurement, only the component orthogonal to the static magnetic field Bo in which the sample is placed in each high-frequency magnetic field is effective for measurement, so the static magnetic field is composed of a pair of opposing vertices with a gap as shown by the arrow Bo in FIG. The coils are formed in the direction of a diagonal line different from the diagonal line, so that each coil has an equal relationship with respect to the static magnetic field Bo.

【0010】7,8,9は夫々検出コイルで、コイル7
の軸は図2の枠部の作る立方体の対向2辺a,bの中点
を結ぶ直線であり、コイル1の作る磁場と直交しており
、従ってコイル1からの誘導作用は受けないので、コイ
ル7にコイル1の電源4の発振周波数F1に同調させた
同調回路10を介して検出回路11を接続することによ
り、試料の周波数Fxの電磁波に対する共鳴を検出する
ことができる。他の検出コイル8,9についても同様に
して同調回路12,13および検出回路14,15が接
続されて、電源5,6の発振周波数F2,F3に対する
試料の共鳴が検出される。
7, 8, and 9 are detection coils, respectively, and the coil 7
The axis of is a straight line connecting the midpoints of the two opposing sides a and b of the cube formed by the frame in Figure 2, and is perpendicular to the magnetic field created by the coil 1, so it is not subject to the inductive action from the coil 1. By connecting the detection circuit 11 to the coil 7 via a tuning circuit 10 tuned to the oscillation frequency F1 of the power source 4 of the coil 1, resonance of the sample with respect to the electromagnetic wave of the frequency Fx can be detected. Tuning circuits 12, 13 and detection circuits 14, 15 are similarly connected to other detection coils 8, 9, and resonance of the sample with respect to oscillation frequencies F2, F3 of power supplies 5, 6 is detected.

【0011】[0011]

【発明の効果】本発明によれば試料に印加する高周波磁
場の三種の周波数を全く独立に設定し、かつ互いに対称
的に試料に印加することができるので、三重共鳴の測定
で、従来よりより豊富な分析情報を入手することが可能
となる。
[Effects of the Invention] According to the present invention, the three frequencies of the high-frequency magnetic field applied to the sample can be set completely independently and applied to the sample symmetrically with respect to each other. It becomes possible to obtain a wealth of analytical information.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の一実施例における三個の励振コイ
ルを分離した状態の斜視図。
FIG. 1 is a perspective view of three excitation coils separated in an embodiment of the present invention.

【図2】  同実施例の全体の斜視図。 1,2,3    互いに直交させた励振コイル4,5
,6    各コイルに接続された高周波電源7,8,
9    検出コイル 10,11,12    同調回路 13,14,15    検出回路
FIG. 2 is a perspective view of the entire embodiment. 1, 2, 3 Excitation coils 4, 5 orthogonal to each other
, 6 High frequency power supplies 7, 8, connected to each coil
9 Detection coils 10, 11, 12 Tuned circuits 13, 14, 15 Detection circuit

Claims (1)

【特許請求の範囲】[Claims] 三つの励振コイルを夫々の軸を互いに直交させて配置し
、これら三励振コイルを夫々発振周波数の異なる高周波
電源に接続し、これら各励振コイルの軸と夫々等しい角
度で交わる一つの方向に静磁場を印加するようにしたこ
とを特徴とする三重磁気共鳴測定装置。
Three excitation coils are arranged with their respective axes perpendicular to each other, and these three excitation coils are connected to high-frequency power sources with different oscillation frequencies, and a static magnetic field is applied in one direction that intersects the axis of each excitation coil at an equal angle. A triplex magnetic resonance measuring device characterized in that it applies .
JP3149568A 1991-05-24 1991-05-24 Measuring apparatus of triple magnetic resonance Pending JPH04346088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3149568A JPH04346088A (en) 1991-05-24 1991-05-24 Measuring apparatus of triple magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3149568A JPH04346088A (en) 1991-05-24 1991-05-24 Measuring apparatus of triple magnetic resonance

Publications (1)

Publication Number Publication Date
JPH04346088A true JPH04346088A (en) 1992-12-01

Family

ID=15478035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3149568A Pending JPH04346088A (en) 1991-05-24 1991-05-24 Measuring apparatus of triple magnetic resonance

Country Status (1)

Country Link
JP (1) JPH04346088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324014B2 (en) * 2003-03-11 2008-01-29 The Chamberlain Group, Inc. Inductive loop detector with automatic frequency change
JP2008298421A (en) * 2007-05-29 2008-12-11 Jeol Ltd Nmr probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324014B2 (en) * 2003-03-11 2008-01-29 The Chamberlain Group, Inc. Inductive loop detector with automatic frequency change
JP2008298421A (en) * 2007-05-29 2008-12-11 Jeol Ltd Nmr probe

Similar Documents

Publication Publication Date Title
US4642569A (en) Shield for decoupling RF and gradient coils in an NMR apparatus
US4680548A (en) Radio frequency field coil for NMR
US6008649A (en) RF coil apparatus for MR system with lateral B0 field
US4686473A (en) Device for creating and/or receiving an alternating magnetic field for an apparatus using nuclear magnetic resonance
Jin et al. On the SAR and field inhomogeneity of birdcage coils loaded with the human head
Bolef et al. Nuclear magnetic resonance acoustic absorption in KI and KBr
Auld et al. Eddy current probe response to open and closed surface flaws
JPS61111448A (en) Probe for nuclear magnetic resonance spectral method with atleast one surface coil
JPS61113308A (en) Rf coil matching apparatus for nmr by mutual inductance
JPH0420619B2 (en)
CN110431409A (en) Ferromagnetic resonance measuring system and its measurement method
EP0177855B1 (en) Radio frequency field coil for nmr
Kocharyan et al. Millimeter-wave magnetooptics: New method for characterization of ferrites in the millimeter-wave range
Chen et al. Electromagnetic field analysis of a dipole coil element with surface impedance characterized shielding plate for 7-T MRI
US3469180A (en) Apparatus for improving the homogeneity of a magnetic field
JPS60117137A (en) High frequency device for nuclear spin resonator
JPH04346088A (en) Measuring apparatus of triple magnetic resonance
US4290017A (en) Apparatus and method for nondestructive evaluation of surface flaws in conductive materials
US20100073000A1 (en) Radio frequency coil apparatus and methods
Yang et al. A method for evaluating the magnetic field homogeneity of a radiofrequency coil by its field histogram
JPH11253418A (en) Rf coil of magnetic resonance imaging device
JP3549633B2 (en) Quadrature coil for MRI
Tarapov et al. Millimeter waveband resonator cell of scanning ESR-spectrometer
Lee et al. Theory and mitigation of motional eddy current in high-field eddy current shielding
Unwin et al. A novel broadband ferromagnetic resonance spectrometer