JPH04346004A - Displacement measuring apparatus - Google Patents

Displacement measuring apparatus

Info

Publication number
JPH04346004A
JPH04346004A JP11894991A JP11894991A JPH04346004A JP H04346004 A JPH04346004 A JP H04346004A JP 11894991 A JP11894991 A JP 11894991A JP 11894991 A JP11894991 A JP 11894991A JP H04346004 A JPH04346004 A JP H04346004A
Authority
JP
Japan
Prior art keywords
mark
strain
displacement
measurement
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11894991A
Other languages
Japanese (ja)
Inventor
Hiromitsu Watanabe
広光 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP11894991A priority Critical patent/JPH04346004A/en
Publication of JPH04346004A publication Critical patent/JPH04346004A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform measurement highly accurately at a low cost in the broad range from zero to fracture when the strain or the moving distance of a substance is measured by using an image sensing device such as a CCD camera and the like in a material test and the like. CONSTITUTION:An image sensing device 2 such as a CCD camera and a line sensor is attached to an actuator 3 which is a driving mechanism. The image sensing device is driven in parallel with the measuring surface of a test piece 1 of a substance which is to become an object. The image data are outputted into an image processing part (board) 5. The actuator 3 receives the moving command from a movement control device 4 and reports the position data on the other hand. An operating device (personal computer EWS) 6 operates the strain or the displacement based on the position data and the image data and outputs the measured result 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、材料試験等の際に物体
の歪み又は移動距離を測定する変位測定装置に関し、特
に、CCDカメラ等の撮像装置を使用した変位測定装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement measuring device for measuring distortion or moving distance of an object during material testing, and more particularly to a displacement measuring device using an imaging device such as a CCD camera.

【0002】0002

【従来の技術】材料を構造部材として利用する場合、そ
の物性値のうち、弾性係数や伸び等の機械的特性が重要
である。この機械的特性を求めるためには、引張試験時
の荷重(応力)と試験片の伸び(歪み)を測定して、弾
性係数,引張強さ,破断伸び等の応力と歪みとの関係を
調べる。また、繰り返し荷重を受ける場合には疲労強度
を考慮しなければならないので、疲労試験を行って実験
的に求めることにもなる。例えば金属材料の場合、応力
を1×107回繰り返しても破断しないような応力の大
きさを求め、材料の強度特性の目安(疲労限度)とする
。そこで歪みと応力の高精度な測定が必要になるが、こ
こで、荷重をP、断面積をA、実際の長さをL、元の長
さをLoとすると、応力σ=P/A、伸び量δ=L−L
o、歪みε=δ/Loである。尚、縦弾性係数はE=ε
/σ、ポアソン比はν=横歪み/縦歪みである。伸びは
破断後の長さを実際の長さとした伸び量で、長さを計測
する標点間距離は試験片形状と共に日本工業規格で定め
られている。このような材料試験で歪みの測定は、従来
、歪みゲージ又は干渉縞を応用する光弾性法やモアレ法
等によっていた。このうち、歪みゲージは、低コストで
微小な範囲から10%程度までの歪みを測定できる利点
があるが、破断に至るような大歪みの測定は不可能であ
る。これは、ゲージが接触しているため、疲労試験のよ
うに歪みの繰り返し数が1×106回を越えると、ゲー
ジ自体の特性やゲージと測定物体とを固定している接着
剤が劣化して、測定値が変動したりゲージが剥離したり
してしまうからである。一方、干渉縞を用いる方法のう
ち表面に格子点をつけてカメラ内の基準格子との干渉を
利用するモアレ法は、微小な歪みは測定できないものの
0.1%位の大きな歪みは測定できるが、金属材料の如
く表面にすべり帯が発生して凹凸を生じると、格子点が
ゆがんで縞ができなくなる。また、試験片の表面に格子
をつけるため表面の前処理として研磨仕上げが必要で、
実験の準備にかなりの手間がかかる。干渉縞を利用する
もう1つの方法である光弾性法は、弾性範囲内での制度
は極めて高いが、その適用が文字通り弾性限度以内でな
ければならないという制限がある。そこで、近年、CC
Dカメラを用いて画像処理技術により変形を測定する方
法が工夫されているが、微小な変形を測定するためには
CCDカメラの解像度即ち画素数が膨大に必要で、コス
トが高く、画像解析の処理量も多い。また、逆に変形量
が多くなると、CCDカメラの測定範囲からはずれてし
まい、破断に至るような大きな変形を測定することは困
難である。
2. Description of the Related Art When a material is used as a structural member, among its physical properties, mechanical properties such as elastic modulus and elongation are important. In order to determine this mechanical property, we measure the load (stress) and elongation (strain) of the test piece during a tensile test, and investigate the relationship between stress and strain, such as elastic modulus, tensile strength, and elongation at break. . In addition, since fatigue strength must be taken into account when subjected to repeated loads, fatigue strength may be determined experimentally by conducting a fatigue test. For example, in the case of a metal material, the magnitude of the stress that does not break even if the stress is repeated 1×10 7 times is determined and used as a measure of the strength characteristics (fatigue limit) of the material. Therefore, highly accurate measurement of strain and stress is required. Here, if the load is P, the cross-sectional area is A, the actual length is L, and the original length is Lo, then stress σ = P/A, Amount of elongation δ=L−L
o, strain ε=δ/Lo. In addition, the longitudinal elastic modulus is E=ε
/σ, Poisson's ratio is ν=lateral strain/longitudinal strain. Elongation is the amount of elongation with the length after breakage being the actual length, and the distance between the gauges used to measure the length is specified by the Japanese Industrial Standards along with the specimen shape. Conventionally, strain in such material tests has been measured using a photoelastic method, a moiré method, or the like, which uses strain gauges or interference fringes. Among these, strain gauges have the advantage of being low cost and capable of measuring strains from a minute range to about 10%, but cannot measure large strains that may lead to breakage. This is because the gauges are in contact with each other, so if the strain is repeated more than 1x106 times as in a fatigue test, the characteristics of the gauge itself and the adhesive that fixes the gauge and the object to be measured deteriorate. This is because the measured value may fluctuate or the gauge may peel off. On the other hand, among the methods using interference fringes, the moiré method, which uses grid points on the surface and utilizes interference with the reference grid in the camera, cannot measure minute distortions, but can measure large distortions of about 0.1%. When slip bands occur on the surface of a metal material, resulting in unevenness, the lattice points become distorted and no stripes are formed. In addition, in order to attach a grid to the surface of the test piece, polishing is required as a pretreatment of the surface.
It takes a lot of time to prepare for the experiment. The photoelastic method, which is another method that utilizes interference fringes, has extremely high accuracy within the elastic range, but has the limitation that its application must literally be within the elastic limit. Therefore, in recent years, CC
A method of measuring deformation using image processing technology using a D-camera has been devised, but in order to measure minute deformations, the resolution of the CCD camera, that is, the number of pixels, is required, the cost is high, and image analysis is difficult. The amount of processing is also large. On the other hand, if the amount of deformation increases, it will move out of the measurement range of the CCD camera, making it difficult to measure large deformations that may lead to breakage.

【0003】0003

【発明が解決しようとする課題】このように、従来の変
位測定装置のうち歪みゲージなど接触式によるものは、
被試験体に接着する必要があるため、ゲージの測定装置
自体が温度,雰囲気等の試験環境や歪みの影響を受け、
大きな歪みを受けた場合など接着剤等の測定物の取り付
け部分が剥離や位置ズレを生じて測定ができなくなるし
、また繰り返し変形を受けると、ゲージ自体が疲労して
特性が変化するうえ、接着剤も変形の繰り返しによって
劣化し、剥離や接着力の低下を生じる。一方、干渉縞を
利用する方法は、表面の状態が初期状態と異なると干渉
縞が不鮮明になって、大変形を含むような広範囲の測定
はできない。CCDカメラによる方法は、カメラが1台
で微小変位を測定したときは画面を拡大さえすれば可能
だが、測定範囲は小さくなるし、測定範囲を広くすれば
変位の分離能は低下する。CCD受光部の画素を増やせ
ば分離能を低下させずに測定範囲を拡大できるが、CC
D分解能を高くするとコストが大幅に増大する。例えば
市販されているもので1024×1024画素のものが
あるが、これでは分解能は1/1024=0.1%に過
ぎない。分解能を高くすると、画像解析の処理量も増大
し、処理に時間がかかり、リアルタイムの測定は困難に
なる。更に、処理データの増加により、画像メモリの大
容量化も必要になる。
[Problems to be Solved by the Invention] As described above, among the conventional displacement measuring devices, contact type ones such as strain gauges are
Because it needs to be bonded to the test object, the gauge measurement device itself is affected by the test environment such as temperature and atmosphere, and by distortion.
When subjected to large strain, the part to which the measured object is attached, such as adhesive, may peel or shift, making measurement impossible. Also, when subjected to repeated deformation, the gauge itself will become fatigued and its characteristics will change, and the adhesive may The agent also deteriorates due to repeated deformation, resulting in peeling and a decrease in adhesive strength. On the other hand, in the method using interference fringes, if the surface condition differs from the initial state, the interference fringes become unclear, making it impossible to measure a wide range including large deformations. In the method using a CCD camera, it is possible to measure minute displacements with just one camera by enlarging the screen, but the measurement range becomes smaller, and if the measurement range is widened, the resolution of displacement decreases. By increasing the number of pixels in the CCD light receiving section, the measurement range can be expanded without reducing the resolution, but the CCD
Increasing the D resolution significantly increases cost. For example, there are commercially available devices with 1024×1024 pixels, but the resolution is only 1/1024=0.1%. Increasing the resolution also increases the amount of processing required for image analysis, which takes time and makes real-time measurement difficult. Furthermore, as the amount of processing data increases, it becomes necessary to increase the capacity of the image memory.

【0004】本発明は、このような課題に鑑みて創案さ
れたもので、低コストかつ高精度で、零から破断までの
広範囲に亘って歪みの測定が可能な変位測定装置を提供
することを目的としている。
The present invention was devised in view of these problems, and aims to provide a displacement measuring device that is low cost, highly accurate, and capable of measuring strain over a wide range from zero to fracture. The purpose is

【0005】[0005]

【課題を解決するための手段】本発明における上記課題
を解決するための手段は、撮像装置を駆動機構に取り付
けた測定部と、該測定部自体を物体の歪み又は変位に追
従させる移動機構とを備える変位測定装置であって、測
定部自体の移動量とその測定範囲内での撮像装置の位置
とをそれぞれ検出する手段を備え、それらの物体の歪み
又は変位を測定する変位測定装置とするものである。
[Means for Solving the Problems] Means for solving the above problems in the present invention includes a measuring section in which an imaging device is attached to a drive mechanism, and a moving mechanism that causes the measuring section itself to follow the distortion or displacement of an object. The displacement measuring device is equipped with a means for detecting the amount of movement of the measuring section itself and the position of the imaging device within its measurement range, and measures the distortion or displacement of those objects. It is something.

【0006】[0006]

【作用】本発明は、CCDカメラ等の撮像装置を利用し
、高精度で広範囲の測定が可能な変位測定装置である。 このため、本発明では、撮像装置を駆動機構に取り付け
、この測定部自体を移動機構により物体の歪み又は変位
に追従させるようにして、測定部自体の移動量とその測
定範囲内での撮像装置の位置とを別個に検出し、これら
の値から物体の歪み又は変位を測定する。
[Operation] The present invention is a displacement measuring device that uses an imaging device such as a CCD camera and is capable of measuring a wide range with high precision. Therefore, in the present invention, the imaging device is attached to a drive mechanism, and the measuring section itself is made to follow the distortion or displacement of the object by the moving mechanism, so that the amount of movement of the measuring section itself and the imaging device within its measurement range are The position of the object is detected separately, and the distortion or displacement of the object is measured from these values.

【0007】[0007]

【実施例】以下、図面を参照して、本発明の実施例を詳
細に説明する。図1は、本発明の測定部の一実施例を示
す構成図である。同図において、1は対象となる物体の
試験片、2はCCDカメラやラインセンサ等の撮像装置
である。撮像装置2は、その駆動機構であるアクチュエ
ータ3に取り付けられ、試験片1の測定面に平行に駆動
される。撮像装置2の台数は、試験片1の測定面にけが
き線又は圧痕で予め設定された標点1a間の数と同一に
する方法もあり、また複数の撮像装置を移動させて標点
位置を測定する方法もある。アクチュエータ3は、本発
明の移動機構の移動制御装置4から移動指令を受け、位
置データを報告する。前記撮像装置2は、画像データを
画像処理部5へ出力し、その測定データと前記アクチュ
エータの位置データとに基づいて、演算装置6は歪み又
は変位を演算し、測定結果7を出力すると共に、前記移
動制御装置4へアクチュエータの移動指令を送る。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of the measuring section of the present invention. In the figure, 1 is a test piece of a target object, and 2 is an imaging device such as a CCD camera or a line sensor. The imaging device 2 is attached to an actuator 3, which is its driving mechanism, and is driven parallel to the measurement surface of the test piece 1. There is also a method of setting the number of imaging devices 2 to be the same as the number between the gauge points 1a set in advance by marking lines or indentations on the measurement surface of the test piece 1, or by moving a plurality of imaging devices to adjust the number of gauge points 1a. There is also a way to measure. The actuator 3 receives a movement command from the movement control device 4 of the movement mechanism of the present invention, and reports position data. The imaging device 2 outputs image data to an image processing unit 5, and based on the measurement data and the position data of the actuator, the calculation device 6 calculates distortion or displacement, and outputs a measurement result 7. An actuator movement command is sent to the movement control device 4.

【0008】図2は、上記の撮像装置から画像処理部5
へ出力される画像データの説明図である。同図において
、画像データ21には所要の太さをもつ線状のマーク2
2が付与されている。マーク22は、重心23を有し、
通常「線」又は「圧痕」の形で、マークの存在する部分
と存在しない部分とでは明るさが異なり、前記撮像装置
2はこの明るさの差異により標点のマーク位置を検出す
る。画像処理部5はマーク22が測定範囲内にあるか否
かを判定し、測定範囲内になければ撮像装置2を移動さ
せ、マーク22がその測定範囲内に入ったらマーク22
の位置を演算する。マーク22の重心位置と基準位値と
の距離が重心23の移動量で、画素数を単位として示さ
れる。前記演算装置6は、撮像装置2の位置演算値とア
クチュエータ3の移動量とを加算して試験片1の変形量
とし、そのときの荷重(応力)と共に出力する。
FIG. 2 shows the image processing unit 5 from the above imaging device.
FIG. 2 is an explanatory diagram of image data output to. In the figure, image data 21 includes a linear mark 2 having a desired thickness.
2 is given. The mark 22 has a center of gravity 23,
Usually in the form of a "line" or "indentation", the brightness differs between the part where the mark is present and the part where the mark is not present, and the imaging device 2 detects the mark position of the gauge point based on this difference in brightness. The image processing unit 5 determines whether the mark 22 is within the measurement range, moves the imaging device 2 if the mark 22 is not within the measurement range, and moves the mark 22 if the mark 22 is within the measurement range.
Calculate the position of. The distance between the center of gravity position of the mark 22 and the reference position value is the amount of movement of the center of gravity 23, and is expressed in units of pixels. The calculation device 6 adds the position calculation value of the imaging device 2 and the movement amount of the actuator 3 to obtain the deformation amount of the test piece 1, and outputs it together with the load (stress) at that time.

【0009】図3は、上記装置の画像データによる本発
明の測定処理の一例を示すフローチャートである。以下
、各図を参照しながら、本発明の実施例を更に詳細に説
明する。まず、アクチュエータ3は、画像処理の結果に
基づく移動指令を移動制御装置4より受けて初期位置へ
移動する。移動機構としては、金属材料の標準的な引張
試験では変位が数十mmなので、パルスモータを用いた
移動精度0.005mm程度の2軸のステージが使用さ
れ、構造物など大型のものには多少分解能は低下するが
移動制度0.2mm程度の1軸のものを用いれば5m程
度まで測定できる。測定が開始されると、撮像装置2は
、2箇所の標点を測定する必要がある。これには、2台
の撮像装置を用いて片方の標点の移動量のみを測定して
もよく、1台の撮像装置でアクチュエータにより2点間
を移動させて測定してもよい。具体的には512×51
2画素のCCDカメラを使用する場合、マークの大きさ
が有限であり、画面からはみ出ないように画面の一部を
使って、残り画面を計測用に使用すると、有効画素数を
例えば1軸方向に256個とすれば画面内の変形量が前
記ステージの最小位置決め精度以内であればよく、画素
1個分の測定限度Dは金属材料の場合、D=0.005
/256≒2×10−5mmとなり、大型用のものでも
D=0.2/256≒8×10−4mmとなる。これら
の値は金属材料の標準的な標点間距離が50mm前後で
あるので、歪みに換算するとステージを使用した場合、
1画素当たりの歪みの分解能は、εD=2×10−5/
50≒4×10−7%(≒4×10−3μSTRAIN
)となり、大型用は同様にεD≒1.6×10−5%(
≒1.6×10−1μSTRAIN)となる。ここで、
CCDカメラの画素数が異なれば、分解能も変化するが
、その変化量は上記の如く画素数に比例する。尚、カメ
ラはCCDのみならずビジコン等の撮像管を使用しても
測定でき、また1軸の変形のみを検出する場合はライン
センサの如きものでも差支えない。
FIG. 3 is a flowchart showing an example of measurement processing according to the present invention using image data of the above-mentioned apparatus. Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. First, the actuator 3 receives a movement command from the movement control device 4 based on the result of image processing and moves to the initial position. As for the movement mechanism, a two-axis stage with a movement accuracy of about 0.005mm using a pulse motor is used, since the displacement is several tens of mm in a standard tensile test of metal materials. Although the resolution is lower, if a single axis with a movement precision of about 0.2 mm is used, it is possible to measure up to about 5 m. When measurement is started, the imaging device 2 needs to measure two gauge points. For this purpose, two imaging devices may be used to measure only the amount of movement of one of the gauge points, or one imaging device may be used to move between two points using an actuator. Specifically, 512×51
When using a 2-pixel CCD camera, the size of the mark is finite, so if you use part of the screen so that it does not protrude from the screen and use the remaining screen for measurement, the number of effective pixels can be reduced, for example in one axis direction. If the number of pixels is 256, the amount of deformation within the screen should be within the minimum positioning accuracy of the stage, and the measurement limit D for one pixel is D = 0.005 for metal materials.
/256≒2×10−5 mm, and even for large size D=0.2/256≒8×10−4 mm. Since the standard gauge distance for metal materials is around 50 mm, these values are converted into distortion when using a stage.
The distortion resolution per pixel is εD=2×10-5/
50≒4×10-7% (≒4×10-3μSTRAIN
), and similarly for large size εD≒1.6×10-5% (
≒1.6×10−1 μSTRAIN). here,
If the number of pixels of the CCD camera differs, the resolution will also change, but the amount of change is proportional to the number of pixels as described above. Note that the camera can measure not only a CCD but also an image pickup tube such as a vidicon, and if only uniaxial deformation is to be detected, a line sensor or the like may be used.

【0010】画像処理部5は、マーク等の位置データを
撮像装置2からアナログ信号で入力され、この信号を位
置の値に換算する。例えば撮像装置2としてCCDカメ
ラを用いた場合、CCDカメラからの信号を画像処理ボ
ードに入力し、各CCD素子上の光の強さをデジタル化
する。この光の強さの分解能はマークの存在する部分と
マークの存在しない部分との明るさの差が所定の値以上
であれば通常の8bit(256段階)で十分検出する
。 マーク位置の演算工程は、CCD各素子の光の強さのデ
ータをパソコンやEWS等の演算装置6へ画像処理部5
から転送し、まず前処理として2値化を行い、マークの
部分とそうでない部分とを区別する。次に2値化された
マークの部分の位置と面積からマークの重心位置を求め
、これをマークの位置とする。例えばマークの重心から
1画素分ずれていたとすると、そのときの歪みの量は既
に述べた如く4×10−3μSTRAIN、又は1.6
×10−1μSTRAINになる。即ち、重心を検出す
ることにより、マークが多少変形しても、その位置を検
出できるようになる。尚、撮像装置によりパターン認識
を行えば、マークがない場合でも試験片の表面の傷や材
料の組織(結晶)の模様をマークの代わりとすることが
可能である。また、マークが測定範囲からはみ出した場
合、画像処理部5は、マークが測定範囲内に出現するよ
うに移動制御装置4へ指令を送る。この指令は、パソコ
ン等の換算装置6から直接にでもよいし、D/A変換ボ
ードを介してでもよい。測定範囲内にマークがあるか否
かは、2値化処理を行う際にマークに対応する光の強さ
を持つ素子数をカウントし、その数がマークの面積と同
数であれば測定範囲内にあるとし、そうでなければ測定
範囲外とする。この方法によれば、マークの有無の検出
に必要な画像処理は2値化のみとなり、高速化される。 尚、マークの大きさは有限であるので、CCDカメラの
分解能と視野を考慮して、マークが画面からはみ出さな
い倍率に設定することはもちろん必要である。
The image processing section 5 receives position data of marks and the like as an analog signal from the imaging device 2, and converts this signal into a position value. For example, when a CCD camera is used as the imaging device 2, a signal from the CCD camera is input to an image processing board, and the intensity of light on each CCD element is digitized. As for the resolution of this light intensity, if the difference in brightness between the part where the mark is present and the part where the mark is not present is more than a predetermined value, the usual 8 bits (256 steps) are sufficient for detection. In the mark position calculation process, data on the light intensity of each CCD element is sent to the image processing unit 5 to the calculation device 6 such as a personal computer or EWS.
, and first performs binarization as preprocessing to distinguish marked parts from non-marked parts. Next, the position of the center of gravity of the mark is determined from the position and area of the binarized mark portion, and this is taken as the position of the mark. For example, if the center of gravity of the mark is shifted by one pixel, the amount of distortion at that time is 4 x 10-3μSTRAIN, or 1.6
×10−1 μSTRAIN. That is, by detecting the center of gravity, even if the mark is slightly deformed, its position can be detected. Note that if pattern recognition is performed using an imaging device, even if there is no mark, it is possible to use scratches on the surface of the test piece or patterns of the material's structure (crystals) in place of the mark. Furthermore, if the mark protrudes from the measurement range, the image processing unit 5 sends a command to the movement control device 4 so that the mark appears within the measurement range. This command may be issued directly from the conversion device 6 such as a personal computer, or may be issued via a D/A conversion board. To determine whether a mark is within the measurement range, count the number of elements with the light intensity corresponding to the mark during binarization processing, and if the number is the same as the area of the mark, it is within the measurement range. If not, it is outside the measurement range. According to this method, the only image processing required to detect the presence or absence of a mark is binarization, resulting in faster processing. Note that since the size of the mark is finite, it is of course necessary to set the magnification so that the mark does not protrude from the screen, taking into consideration the resolution and field of view of the CCD camera.

【0011】移動制御装置4は、画像処理部5からアク
チュエータ移動の指令を受けると、アクチュエータ3を
駆動する。駆動の方向は、前回移動量の微分値が正であ
った場合は試験片1が伸びる方向とし、負であった場合
は試験片1が縮む方向へ移動させるように、演算装置6
が指示する、尚、移動制御装置4はアクチュエータ3と
セットになっていることが多いが、これは何かと便利で
ある。
The movement control device 4 drives the actuator 3 upon receiving a command to move the actuator from the image processing section 5 . The driving direction is set by the calculation device 6 so that if the differential value of the previous movement amount is positive, the test piece 1 is extended, and if it is negative, the test piece 1 is moved in the direction of contraction.
The movement control device 4 is often set with the actuator 3, which is convenient.

【0012】本実施例は下記の効果が明らかである。The following effects are evident in this embodiment.

【0013】(1)材料の変形や歪みを測定する際に、
高精度かつ広範囲(分解能に対して広い測定範囲)の測
定が可能になる。
(1) When measuring the deformation or strain of a material,
High precision and wide range measurement (wide measurement range relative to resolution) becomes possible.

【0014】(2)引張試験の前処理は、試験片にけが
き線やポンチ穴,堅度計の圧痕等の標点を付けるだけで
よく、ゲージの張り付けや格子縞の焼き付けなど従来の
繁雑な前処理を必要としない。
(2) Pretreatment for the tensile test requires only marking marks, punch holes, hardness meter indentations, etc. on the test piece, and conventional complicated methods such as attaching gauges and baking checkered stripes are sufficient. No pre-treatment required.

【0015】(3)歪みゲージ又はモアレ法を用いた場
合よりも分解能が良い。
(3) Better resolution than when using a strain gauge or Moiré method.

【0016】(4)微小変位の測定と大変形の測定との
両方が可能である。
(4) It is possible to measure both minute displacements and large deformations.

【0017】(5)変位や歪みの測定がリアルタイムに
可能で、かつ自動化される。
(5) Measurement of displacement and strain is possible in real time and automated.

【0018】(6)分解能や変形の大きさに応じて撮像
装置やアクチュエータを選定できる。
(6) Imaging devices and actuators can be selected depending on resolution and magnitude of deformation.

【0019】(7)高分解能CCDカメラと画像処理装
置を組合わせた場合よりも、コスト安で、かつ演算速度
が速く、応答性に優れている。
(7) The cost is lower, the calculation speed is faster, and the responsiveness is better than when a high-resolution CCD camera and an image processing device are combined.

【0020】(8)非接触なので、試験片が繰り返し変
形を受けても測定可能であり、高温,腐食チャンバの外
部からでも測定可能である。
(8) Since it is non-contact, measurement is possible even if the test piece is repeatedly deformed, and measurement is possible even at high temperatures and from outside the corrosion chamber.

【0021】(9)物体の3次元移動の測定も可能であ
る。
(9) It is also possible to measure the three-dimensional movement of an object.

【0022】[0022]

【発明の効果】以上述べたとおり、本発明によれば、低
コストかつ高精度で、零から破断までの広範囲に亘って
歪みの測定が可能な変位測定装置を提供することができ
る。
As described above, according to the present invention, it is possible to provide a displacement measuring device capable of measuring strain over a wide range from zero to breakage at low cost and with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の測定部の構成図。FIG. 1 is a configuration diagram of a measuring section of the present invention.

【図2】本発明の変形量の説明図。FIG. 2 is an explanatory diagram of the amount of deformation according to the present invention.

【図3】本発明の測定処理のフローチャート。FIG. 3 is a flowchart of measurement processing according to the present invention.

【符号の説明】[Explanation of symbols]

1…試験片、2…撮像装置、3…アクチュエータ、4…
移動制御装置、5…画像処理部、6…演算装置、7…測
定結果、21…画像データ、22…マーク、23…標点
1... Test piece, 2... Imaging device, 3... Actuator, 4...
Movement control device, 5... Image processing section, 6... Arithmetic device, 7... Measurement result, 21... Image data, 22... Mark, 23... Gauge point.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  撮像装置を駆動機構に取り付けた測定
部と、該測定部自体を物体の歪み又は変位に追従させる
移動機構とを備える変位測定装置であって、測定部自体
の移動量とその測定範囲内での撮像装置の位置とをそれ
ぞれ検出する手段を備え、それらの値から物体の歪み又
は変位を測定することを特徴とする変位測定装置。
1. A displacement measuring device comprising a measuring section in which an imaging device is attached to a drive mechanism, and a moving mechanism that causes the measuring section itself to follow the distortion or displacement of an object, the displacement measuring device being able to measure the amount of movement of the measuring section itself and its displacement. 1. A displacement measuring device comprising means for detecting the position of an imaging device within a measurement range, and measuring distortion or displacement of an object from these values.
JP11894991A 1991-05-24 1991-05-24 Displacement measuring apparatus Pending JPH04346004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11894991A JPH04346004A (en) 1991-05-24 1991-05-24 Displacement measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11894991A JPH04346004A (en) 1991-05-24 1991-05-24 Displacement measuring apparatus

Publications (1)

Publication Number Publication Date
JPH04346004A true JPH04346004A (en) 1992-12-01

Family

ID=14749245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11894991A Pending JPH04346004A (en) 1991-05-24 1991-05-24 Displacement measuring apparatus

Country Status (1)

Country Link
JP (1) JPH04346004A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072905A1 (en) 2005-12-21 2007-06-28 Nagasaki University, National University Corporation Displacement/distortion measuring method and displacement/distortion measuring apparatus
WO2011152441A1 (en) * 2010-06-02 2011-12-08 国立大学法人 熊本大学 Apparatus and method for measuring strain in micro material
CN109612400A (en) * 2018-12-07 2019-04-12 广州大学 A kind of the material deformation degree dynamic measurement method and system of view-based access control model tracking
JPWO2020065815A1 (en) * 2018-09-27 2021-08-30 株式会社島津製作所 Material tester

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072905A1 (en) 2005-12-21 2007-06-28 Nagasaki University, National University Corporation Displacement/distortion measuring method and displacement/distortion measuring apparatus
EP1972885A1 (en) * 2005-12-21 2008-09-24 Nagasaki University National University Corporatioin Displacement/distortion measuring method and displacement/distortion measuring apparatus
EP1972885A4 (en) * 2005-12-21 2010-10-27 Smart Structures Llc Displacement/distortion measuring method and displacement/distortion measuring apparatus
WO2011152441A1 (en) * 2010-06-02 2011-12-08 国立大学法人 熊本大学 Apparatus and method for measuring strain in micro material
US8844367B2 (en) 2010-06-02 2014-09-30 Kumamoto University Micromaterial strain measurement apparatus and method therefor
JP5879621B2 (en) * 2010-06-02 2016-03-08 国立大学法人 熊本大学 Micromaterial strain measuring apparatus and method
JPWO2020065815A1 (en) * 2018-09-27 2021-08-30 株式会社島津製作所 Material tester
CN109612400A (en) * 2018-12-07 2019-04-12 广州大学 A kind of the material deformation degree dynamic measurement method and system of view-based access control model tracking

Similar Documents

Publication Publication Date Title
CN109696356B (en) Geosynthetic material tensile sample global strain field measuring device and method
EP1782038B1 (en) Finite element analysis fatigue gage
EP1563252B1 (en) Positional measurement of a feature within an image and monitoring an aircraft structure
JPS63298101A (en) Non-contact determination method and apparatus for position of linear feature of article
WO2015049757A1 (en) Displacement field and strain field measurement method, and material testing machine
CN107655756B (en) Paper elastic modulus testing method based on speckle printing
CN112789494A (en) Material testing machine
CN109556774B (en) Nondestructive monitoring system and monitoring method for residual stress in ferromagnetic steel
JP3785577B1 (en) Crack detection system and crack detection method
JP2009198451A (en) Measurement method of young's modulus or poisson's ratio
JPH04346004A (en) Displacement measuring apparatus
JP2017036978A (en) Stress measurement device and stress measurement method
JP3312298B2 (en) How to measure stress intensity factor
JP2003232688A (en) Two-dimensional stress field measuring system and two- dimensional stress field measuring program
CN109870354A (en) Round metal bars sample is uniaxially stretched elongation after fracture method for automatic measurement
US20170336197A1 (en) Determining Geometric Characteristics of Reflective Surfaces
CN114518289A (en) Control method for deformation strain control by video acquisition
CN112927185A (en) True stress-true strain curve test calculation method based on digital image correlation method
KR101033031B1 (en) Strain measuring device
JPH08128805A (en) Method and apparatus for noncontact measurement of relative displacement
Reis et al. Noise reduction for DIC measurements
Le Blanc et al. Image correlation applied to single crystal plasticity experiments and comparison to strain gage data
JPH11257926A (en) Video type noncontact elongation meter
JP2004069460A (en) Method and apparatus for measuring actual stress-distortion in high-speed tension region
JP3350272B2 (en) Material testing equipment