JPH04345822A - Manufacture of resin tube - Google Patents
Manufacture of resin tubeInfo
- Publication number
- JPH04345822A JPH04345822A JP3120073A JP12007391A JPH04345822A JP H04345822 A JPH04345822 A JP H04345822A JP 3120073 A JP3120073 A JP 3120073A JP 12007391 A JP12007391 A JP 12007391A JP H04345822 A JPH04345822 A JP H04345822A
- Authority
- JP
- Japan
- Prior art keywords
- tubular body
- temperature
- surface layer
- calibrator
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 14
- 239000011347 resin Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 33
- 239000002344 surface layer Substances 0.000 claims abstract description 24
- 238000002844 melting Methods 0.000 claims abstract description 17
- 230000008018 melting Effects 0.000 claims abstract description 17
- 229920006038 crystalline resin Polymers 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 19
- 238000010438 heat treatment Methods 0.000 abstract description 12
- 239000000498 cooling water Substances 0.000 abstract description 10
- 238000004513 sizing Methods 0.000 abstract description 10
- 238000001125 extrusion Methods 0.000 abstract description 6
- 238000002425 crystallisation Methods 0.000 abstract description 5
- 230000008025 crystallization Effects 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 2
- 238000010791 quenching Methods 0.000 abstract 1
- 230000000171 quenching effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92609—Dimensions
- B29C2948/92619—Diameter or circumference
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92704—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92923—Calibration, after-treatment or cooling zone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92971—Fluids, e.g. for temperature control or of environment
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は結晶性樹脂からなる樹脂
管の製造方法の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for manufacturing resin pipes made of crystalline resin.
【0002】0002
【従来の技術】結晶性樹脂からなる管状体を押出成形す
る場合、一般の水槽、シャワー等による冷却では、管状
体が結晶化の充分な進行をまたずに固化されてしまい、
樹脂管に樹脂本来の機械的強度を発揮させ得ず、また得
られた樹脂管を加熱すると、顕著な寸法収縮をきたすと
いう不都合がある。[Prior Art] When extrusion molding a tubular body made of crystalline resin, cooling in a general water tank, shower, etc. will solidify the tubular body without sufficient progress of crystallization.
There are disadvantages in that the resin tube cannot exhibit the mechanical strength inherent in the resin, and furthermore, when the obtained resin tube is heated, significant dimensional shrinkage occurs.
【0003】このため押出された管状体の冷却方法を改
良して、結晶化を完全に進行させ、樹脂本来の機械特性
を発揮させ得、かつ加熱環境下での寸法収縮を著しく小
さくできる樹脂管の製造方法が提案されている(特開平
3−23923号公報)。[0003] For this reason, the method of cooling the extruded tubular body has been improved to allow complete crystallization, to exhibit the inherent mechanical properties of the resin, and to create a resin tube that can significantly reduce dimensional shrinkage in a heated environment. A manufacturing method has been proposed (Japanese Unexamined Patent Publication No. 3-23923).
【0004】この方法では、結晶性樹脂を管状に押出し
た直後において、管状体表層部のみを熱変形温度以下に
冷却し、次いで管状体の内部からの伝導熱を利用した放
冷または外部からの加熱によって管状体表層部の温度を
、融点以下で熱変形温度以上の温度に上げ、その後徐冷
して管状体の結晶化を進行させるとともに、管状体表層
部が熱変形温度以下に達した時急冷するかそのまま徐冷
していた。In this method, immediately after extruding the crystalline resin into a tubular shape, only the surface layer of the tubular body is cooled to a temperature below the heat deformation temperature, and then the cooling is carried out using conductive heat from the inside of the tubular body or by cooling from the outside. By heating, the temperature of the surface layer of the tubular body is raised to a temperature below the melting point and above the heat distortion temperature, and then slowly cooled to advance crystallization of the tubular body, and when the surface layer of the tubular body reaches the temperature below the heat distortion temperature. It was either rapidly cooled or left to cool slowly.
【0005】図3はこの方法の製造装置の一実施例の説
明図で、1は押出機、2は管状体3の押出金型である。
4は冷却水槽で入口にサイジングダイス5を装着してい
る。Aは水冷部、Dは放冷部、Cは水冷部であり、水冷
部A,Cでは冷却水12が循環している。各冷却部間は
管状体通過用パッキング7を有する仕切板6で仕切って
あり、水冷部Aで管状体表層部のみを熱変形温度以下に
冷却し、放冷部Dで管状体表層部の温度を融点以下で熱
変形温度以上の温度に上げ、水冷部Cで急冷または徐冷
している。FIG. 3 is an explanatory diagram of an embodiment of a manufacturing apparatus for this method, in which 1 is an extruder and 2 is an extrusion mold for the tubular body 3. 4 is a cooling water tank with a sizing die 5 attached to its inlet. A is a water cooling section, D is a cooling section, and C is a water cooling section. Cooling water 12 is circulated in the water cooling sections A and C. Each cooling section is partitioned by a partition plate 6 having a packing 7 for passing through the tubular body, and the water cooling section A cools only the surface layer of the tubular body to below the thermal deformation temperature, and the cooling section D cools the surface layer of the tubular body to a temperature lower than the heat deformation temperature. is raised to a temperature below the melting point and above the heat distortion temperature, and then rapidly or slowly cooled in the water cooling section C.
【0006】また管状体表層部の温度を、放冷部Dで融
点以下で熱変形温度以上の温度に上げる方法として、熱
風、液体による外部からの方法が提案されている。[0006] Furthermore, as a method of raising the temperature of the surface layer of the tubular body to a temperature below the melting point and above the heat distortion temperature in the cooling section D, an external method using hot air or liquid has been proposed.
【0007】[0007]
【発明が解決しようとする課題】しかし上記製造方法で
は、管状体表層部の温度を、融点以下で熱変形温度以上
の温度に上げるのに、管状体の内部からの伝導熱を利用
した放冷または熱風、液体などの加熱媒体による加熱に
よっているので、管状体表層部の温度を的確に制御する
のは難しく、また加熱媒体による加熱方法等では高価な
設備を必要とする。[Problems to be Solved by the Invention] However, in the above manufacturing method, in order to raise the temperature of the surface layer of the tubular body to a temperature below the melting point and above the heat deformation temperature, a cooling method using conduction heat from the inside of the tubular body is used. Alternatively, since heating is performed using a heating medium such as hot air or liquid, it is difficult to accurately control the temperature of the surface layer of the tubular body, and heating methods using a heating medium require expensive equipment.
【0008】即ち管状体の内部からの伝導熱または熱風
では外気温の影響を受け易く、液体を利用する場合は1
00℃以上に加熱しなければならず、液体の選択や加熱
設備が問題となる。That is, conductive heat or hot air from inside the tubular body is easily affected by the outside temperature, and when using a liquid, 1
It must be heated to 00°C or higher, which poses problems in the selection of liquid and heating equipment.
【0009】また管状体の表層部を再度熱変形温度以上
に加熱するため、管状体の外径が変形し、真円度が著し
く低下するなどの問題もあった。本発明は上記点に鑑み
、機械的強度の向上と加熱収縮率の減少を図るとともに
管状体の外表面の温度を容易に所望温度に制御でき、か
つ寸法精度、真円度を向上させた結晶性樹脂管の製造方
法を提供することを目的とする。Furthermore, since the surface layer of the tubular body is heated again to a temperature above the heat deformation temperature, the outer diameter of the tubular body is deformed and the roundness is significantly reduced. In view of the above-mentioned points, the present invention aims to improve mechanical strength and reduce heat shrinkage rate, easily control the temperature of the outer surface of a tubular body to a desired temperature, and improve dimensional accuracy and roundness of the crystal. The purpose of the present invention is to provide a method for manufacturing a plastic pipe.
【0010】0010
【課題を解決するための手段】本発明は、結晶性樹脂を
管状に押出した直後において、管状体表層部のみを熱変
形温度以下に冷却し、次いで温度制御され、かつ管状体
の外径を規制する内径を有するキャリブレーター内を通
過させ、管状体表層部を溶融温度以下、熱変形温度以上
の温度にした後、管状体を徐冷することを特徴とするも
のである。[Means for Solving the Problems] The present invention cools only the surface layer of the tubular body to below the heat distortion temperature immediately after extruding a crystalline resin into a tubular shape, and then the temperature is controlled and the outer diameter of the tubular body is reduced. The tubular body is characterized by passing through a calibrator having a regulated inner diameter to bring the surface layer of the tubular body to a temperature below the melting temperature and above the heat distortion temperature, and then slowly cooling the tubular body.
【0011】ここで用いられる結晶性樹脂としては、ポ
リエチレン、ポリプロピレン、ポリブデン、ポリフッ化
ビニリデン、ポリフェニレンサルファイド、ポリエーテ
ル・エーテル・ケトンなどがあげられる。Examples of the crystalline resin used here include polyethylene, polypropylene, polybutene, polyvinylidene fluoride, polyphenylene sulfide, and polyether/ether/ketone.
【0012】この結晶性樹脂を管状に押出し、サイジン
グダイ部を通過した管状体の外表面を最初の水冷部で熱
変形温度以下に急冷し、固化させて管状体の寸法、形状
を固定する。This crystalline resin is extruded into a tubular shape, and the outer surface of the tubular body that has passed through the sizing die section is rapidly cooled to below the heat distortion temperature in the first water cooling section and solidified to fix the size and shape of the tubular body.
【0013】この時用いられるサイジング方法には、公
知の真空サイジング法、多板式サイジング法、サイジン
グボックス法などがある。熱変形温度以下に急冷される
のは、管状体の表層部のみで、管状体の内面は熱変形温
度以下には冷却されない。[0013] Sizing methods used at this time include the known vacuum sizing method, multi-plate sizing method, and sizing box method. Only the surface layer of the tubular body is rapidly cooled below the heat distortion temperature, and the inner surface of the tubular body is not cooled below the heat distortion temperature.
【0014】この様な条件は、水冷部の長さ、冷却用媒
体の温度、管状体のライン速度を考慮することによって
、実現できる。次いで管状体の表層部が溶融温度以下、
熱変形温度以上の温度になるように温度制御され、かつ
管状体の外径を規制する内径を有するキャリブレーター
内を通過させる。Such conditions can be realized by considering the length of the water cooling section, the temperature of the cooling medium, and the line speed of the tubular body. Next, the surface layer of the tubular body is below the melting temperature,
The tube is passed through a calibrator whose temperature is controlled to be higher than the heat distortion temperature and whose inner diameter regulates the outer diameter of the tubular body.
【0015】キャリブレーターの温度制御は、温調され
たオイルを循環して制御する公知の温度調節機により行
われる。キャリブレーターの内径寸法は、管状体の外径
寸法、材料の熱膨張率、設定温度等を考慮して設定され
る。The temperature of the calibrator is controlled by a known temperature regulator that circulates and controls temperature-controlled oil. The inner diameter of the calibrator is set in consideration of the outer diameter of the tubular body, the coefficient of thermal expansion of the material, the set temperature, and the like.
【0016】キャリブレーターの全長は、管状体のライ
ン速度や、管状体の肉厚等を考慮して、管状体の表層部
温度を設定温度まで上げることが可能な長さとする。キ
ャリブレーターの内面即ち管状体との接触面は管状体と
の接触抵抗を少なくするために表面をメッキ仕上げとす
るのが望ましい。The total length of the calibrator is determined to be a length that can raise the temperature of the surface layer of the tubular body to a set temperature, taking into account the line speed of the tubular body, the wall thickness of the tubular body, etc. The inner surface of the calibrator, ie, the contact surface with the tubular body, is preferably plated to reduce contact resistance with the tubular body.
【0017】管状体はキャリブレーター通過後、放冷に
よって一定時間徐冷された後、次の水冷部の冷却水によ
って急冷または徐冷される。After passing through the calibrator, the tubular body is left to cool slowly for a certain period of time, and then rapidly or slowly cooled by cooling water in the next water cooling section.
【0018】[0018]
【作用】押出された管状体は、管状体の表層部が熱変形
温度以下に冷却された後、溶融温度以下、熱変形温度以
上の温度に再加熱され、次いで徐冷されて管状体の結晶
化が進行される。[Function] After the surface layer of the extruded tubular body is cooled to below the heat distortion temperature, it is reheated to a temperature below the melting temperature and above the heat distortion temperature, and then slowly cooled to crystallize the tubular body. The transformation is progressing.
【0019】温度制御されたキャリブレーターの内面部
に、管状体の外表面が直接接触して管状体の外表面が溶
融温度以下、熱変形温度以上の温度に再加熱され、管状
体の外表面の温度が容易に所望温度に制御される。The outer surface of the tubular body is brought into direct contact with the temperature-controlled inner surface of the calibrator, and the outer surface of the tubular body is reheated to a temperature below the melting temperature and above the heat distortion temperature. The temperature is easily controlled to the desired temperature.
【0020】キャリブレーターにより、管状体が溶融温
度以下、熱変形温度以上の温度に再加熱される際の管状
体の外径の変形が規制される。The calibrator regulates deformation of the outer diameter of the tubular body when the tubular body is reheated to a temperature below the melting temperature and above the heat distortion temperature.
【0021】[0021]
【実施例】以下図面の実施例により更に詳細に説明する
。図1は本発明の樹脂管の製造方法の一実施例を示す説
明図で、1は押出機、2は管状体3の押出金型である。
4は冷却水槽で入口にサイジングダイス5を装着してい
る。[Embodiments] The present invention will be explained in more detail below with reference to embodiments shown in the drawings. FIG. 1 is an explanatory view showing an embodiment of the resin pipe manufacturing method of the present invention, in which 1 is an extruder and 2 is an extrusion mold for a tubular body 3. In FIG. 4 is a cooling water tank with a sizing die 5 attached to its inlet.
【0022】Aは水冷部、Bは加熱部、Cは水冷部であ
り、水冷部A,Cには冷却水12が循環している。各冷
却部間は管状体通過用パッキング7を有する仕切板6で
仕切ってあり、水冷部Aで管状体表層部のみが熱変形温
度以下に冷却され、加熱部Bで管状体表層部の温度を融
点以下で熱変形温度以上の温度に上げられ、次いで徐冷
され、水冷部Cで急冷または徐冷される。A is a water cooling section, B is a heating section, and C is a water cooling section. Cooling water 12 is circulated in the water cooling sections A and C. Each cooling section is separated by a partition plate 6 having a packing 7 for passing through the tubular body.In the water cooling section A, only the surface layer of the tubular body is cooled to below the heat distortion temperature, and in the heating section B, the temperature of the surface layer of the tubular body is reduced. The temperature is raised to below the melting point and above the heat distortion temperature, then slowly cooled, and rapidly or slowly cooled in the water cooling section C.
【0023】8は加熱部B内に設けられた温度制御され
たキャリブレーターで、図2に示すように加熱温調され
たオイルが入口9から出口10へと循環される構造とさ
れている。Reference numeral 8 denotes a temperature-controlled calibrator provided in the heating section B, and as shown in FIG. 2, the heated and temperature-controlled oil is circulated from the inlet 9 to the outlet 10.
【0024】キャリブレーターの内面11には管状体と
の接触抵抗を少なくするためにメッキ仕上げがされてい
る。キャリブレーターの内径dは、管状体の外径寸法、
材料の熱膨張率、設定温度等を考慮して設定される。The inner surface 11 of the calibrator is plated to reduce contact resistance with the tubular body. The inner diameter d of the calibrator is the outer diameter dimension of the tubular body,
It is set taking into account the coefficient of thermal expansion of the material, the set temperature, etc.
【0025】キャリブレーターの全長Lは、管状体3の
ライン速度や、管状体3の肉厚等を考慮してキャリブレ
ーターの出口で設定温度まで加温可能な長さとされる。
押出金型2を経て押出機1から押出された管状体3は、
サイジングダイス5を通過した後、最初の水冷部Aの冷
却水12によって管状体3の外表面が熱変形温度以下の
温度に急冷され、固化されて管状体の寸法、形状が固定
される。The total length L of the calibrator is determined to be a length that can be heated to a set temperature at the outlet of the calibrator, taking into consideration the line speed of the tubular body 3, the wall thickness of the tubular body 3, etc. The tubular body 3 extruded from the extruder 1 through the extrusion die 2 is
After passing through the sizing die 5, the outer surface of the tubular body 3 is rapidly cooled to a temperature below the heat distortion temperature by the cooling water 12 of the first water cooling section A, and is solidified to fix the size and shape of the tubular body.
【0026】次いで管状体の表層部が溶融温度以下、熱
変形温度以上の温度になるように温度制御され、かつ管
状体3の外径を規制する内径を有するキャリブレーター
8内を管状体3が通過して、管状体3が溶融温度以下、
熱変形温度以上の温度に加熱される。次いで徐冷されて
管状体3の結晶化が進行される。Next, the tubular body 3 passes through a calibrator 8 whose temperature is controlled so that the surface layer of the tubular body has a temperature below the melting temperature and above the heat distortion temperature, and which has an inner diameter that regulates the outer diameter of the tubular body 3. Then, the temperature of the tubular body 3 is below the melting temperature,
Heated to a temperature above the heat distortion temperature. Next, the tubular body 3 is slowly cooled to proceed with crystallization.
【0027】徐冷されて管状体表層部が熱変形温度以下
に達すると、水冷部Cの冷却水12で急冷するかそのま
ま徐冷される。When the surface layer of the tubular body reaches a temperature below the heat distortion temperature after being slowly cooled, it is rapidly cooled with the cooling water 12 of the water cooling section C or is gradually cooled as it is.
【0028】[0028]
【発明の効果】キャリブレーターを用いて樹脂管状体を
温度制御することによって容易に管状体の結晶化度を高
めることが可能になり、機械的強度の向上と加熱収縮率
の減少を図ることが出来る。[Effect of the invention] By controlling the temperature of the resin tubular body using a calibrator, it is possible to easily increase the crystallinity of the tubular body, improving mechanical strength and reducing heat shrinkage rate. .
【0029】温度制御されたキャリブレーターの内面部
に、管状体の外表面が直接接触して溶融温度以下、熱変
形温度以上の温度に再加熱されるので、管状体の外表面
の温度を容易に所望温度に制御することが出来る。Since the outer surface of the tubular body is in direct contact with the temperature-controlled inner surface of the calibrator and reheated to a temperature below the melting temperature and above the heat distortion temperature, the temperature of the outer surface of the tubular body can be easily adjusted. The temperature can be controlled to a desired temperature.
【0030】キャリブレーターにより、管状体が溶融温
度以下、熱変形温度以上の温度に再加熱される際の管状
体の外径の変形が規制され、また外表面を加熱すること
によって、徐冷時の内外面の冷却速度の差が低減し、収
縮量の差が減少した結果、管状体の残留歪みを小さくす
ることが可能となり、管状体の寸法精度、真円度を向上
させることが出来る。The calibrator controls the deformation of the outer diameter of the tubular body when the tubular body is reheated to a temperature below the melting temperature and above the heat distortion temperature, and also controls the deformation of the outer diameter of the tubular body during slow cooling by heating the outer surface. As a result of the reduction in the difference in the cooling rate between the inner and outer surfaces and the difference in the amount of shrinkage, it becomes possible to reduce the residual strain of the tubular body, and it is possible to improve the dimensional accuracy and roundness of the tubular body.
【図1】本発明の樹脂管の製造方法の一実施例を示す説
明図である。FIG. 1 is an explanatory diagram showing one embodiment of the method for manufacturing a resin pipe of the present invention.
【図2】本発明で用いられるキャリブレーターの一実施
例の断面図である。FIG. 2 is a cross-sectional view of one embodiment of a calibrator used in the present invention.
【図3】従来の樹脂管の製造方法を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional method for manufacturing a resin pipe.
A,C 水冷部 B 加熱部 D 放冷部 d キャリブレーター内径 L キャリブレーター全長 1 押出機 2 押出金型 3 管状体 4 冷却水槽 5 サイジングダイス 6 仕切板 7 パッキング 8 キャリブレーター 9 温調オイル入口 10 温調オイル出口 11 キャリブレーター内面 A, C Water cooling section B Heating section D Cooling section d Calibrator inner diameter L Calibrator total length 1 Extruder 2 Extrusion mold 3 Tubular body 4 Cooling water tank 5 Sizing dice 6 Partition plate 7 Packing 8 Calibrator 9 Temperature control oil inlet 10 Temperature control oil outlet 11 Inside of calibrator
Claims (1)
において、管状体表層部のみを熱変形温度以下に冷却し
、次いで温度制御され、かつ管状体の外径を規制する内
径を有するキャリブレーター内を通過させ、管状体表層
部を溶融温度以下、熱変形温度以上の温度にした後、管
状体を徐冷することを特徴とする樹脂管の製造方法Claim 1: Immediately after extruding the crystalline resin into a tubular shape, only the surface layer of the tubular body is cooled to below the heat distortion temperature, and then the inside of a calibrator which is temperature controlled and has an inner diameter that regulates the outer diameter of the tubular body is heated. A method for producing a resin tube, which comprises: passing the resin tube through the tube to bring the surface layer of the tube to a temperature below the melting temperature and above the heat distortion temperature, and then slowly cooling the tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3120073A JPH04345822A (en) | 1991-05-24 | 1991-05-24 | Manufacture of resin tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3120073A JPH04345822A (en) | 1991-05-24 | 1991-05-24 | Manufacture of resin tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04345822A true JPH04345822A (en) | 1992-12-01 |
Family
ID=14777234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3120073A Pending JPH04345822A (en) | 1991-05-24 | 1991-05-24 | Manufacture of resin tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04345822A (en) |
-
1991
- 1991-05-24 JP JP3120073A patent/JPH04345822A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3950118A (en) | Control of temperature profile across a heat exchanger | |
JP2002538025A (en) | Thermoplastic tube | |
US5449487A (en) | Method and apparatus for orienting plastic of a pipe | |
US3320637A (en) | Apparatus for manufacturing thermoplastic pipes | |
JPH0137252B2 (en) | ||
US3235632A (en) | Process for producing biaxially oriented thermoplastic tubular film | |
US3720557A (en) | Process for lining conductive tubes with insulating material | |
JPH0259330A (en) | Manufacture of peek resin pipe | |
EP0153342A1 (en) | Method of and apparatus for producing tubular articles of biaxially oriented polymers. | |
JPH04345822A (en) | Manufacture of resin tube | |
US4683094A (en) | Process for producing oriented polyolefin films with enhanced physical properties | |
EP0149335A2 (en) | Apparatus and method for extruding polymer melts | |
JP2001009896A (en) | Molding method for chlorinated vinyl chloride resin pipe | |
CN112440460A (en) | Forming system and method for functional high polymer material in blown film processing | |
US3302241A (en) | Apparatus for preparation of plastic tubes | |
GB2295349A (en) | Extruding curved pipes | |
JP3529396B2 (en) | Method for manufacturing fluororesin tube | |
JPH09141729A (en) | Method and apparatus for producing hollow molded product | |
CN214324171U (en) | A molding system for blown film processing functional macromolecular material | |
JPH0323923A (en) | Manufacture of crystalline resin tube | |
JP3237183B2 (en) | Extrusion equipment for deformed wire | |
CN218256297U (en) | Film casting sheet forming cooling device | |
EP0860264A1 (en) | Improvements in or relating to the manufacture of plastics pipes | |
JP4350633B2 (en) | Cooling water circulation device for resin tube manufacturing equipment | |
GB2304620A (en) | Improvements in or relating to the manufacture of plastics pipes |