JPH04345617A - Production of polyester - Google Patents

Production of polyester

Info

Publication number
JPH04345617A
JPH04345617A JP12036691A JP12036691A JPH04345617A JP H04345617 A JPH04345617 A JP H04345617A JP 12036691 A JP12036691 A JP 12036691A JP 12036691 A JP12036691 A JP 12036691A JP H04345617 A JPH04345617 A JP H04345617A
Authority
JP
Japan
Prior art keywords
polyester
compound
particles
acid
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12036691A
Other languages
Japanese (ja)
Inventor
Noboru Sato
昇 佐藤
Kazuo Endo
遠藤 一夫
Masahiko Fujimoto
正彦 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP12036691A priority Critical patent/JPH04345617A/en
Publication of JPH04345617A publication Critical patent/JPH04345617A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a polyester at an improved rate of polymerization. CONSTITUTION:A process for producing a polyester consisting mainly of tetraphtalic acid or 2,6-naphthalenedicarboxylic acid and ethylene glycol as starting materials and 0.1-3wt.% particles having a power of adsorbing a metal compound of 10% or above, wherein a magnesium compound and a phosphorus compound are added in such a mounts that the relationships: 1<=Mg<=8 and 0.05<=P/Mg<=0.5 (wherein Mg is the number of moles of the magnesium compound added per 106g of the acid component consisting the polyester, and P is the number of moles of the phosphorus compound added per 106g of the acid component constituting the polyester) are simultaneously satisfied.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はポリエステルの製造方法
に関する。さらに詳しくは、本発明は、重合速度を遅延
させる粒子を含有するポリエステルの重合速度を向上さ
せるとともに、末端カルボキシル基量を低減させ、静電
密着性も改良する、ポリエステルの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing polyester. More specifically, the present invention relates to a method for producing a polyester that improves the polymerization rate of a polyester containing particles that retard the polymerization rate, reduces the amount of terminal carboxyl groups, and also improves electrostatic adhesion.

【0002】0002

【従来の技術および発明が解決しようとする課題】ポリ
エチレンテレフタレートに代表されるポリエステルフィ
ルムは、優れた物理的および化学的特性を有することか
ら、グラフィックアーツ、ディスプレー、包材、磁気記
録媒体のベースフィルム、コンデンサー誘導体などの分
野に広く用いられている。しかしながら、その透明性を
十分に生かしたフィルムを製造しようとする場合には、
その製造工程における工程通過性、塗布や蒸着等の後加
工工程あるいは製品自体の取扱い性の面でフィルムの走
行性が特に要求されるが、従来、このことは必ずしも十
分には達成されていなかった。この原因は、多くの場合
、フィルムと基材が高速で接触することによる摩擦、摩
耗に起因するものであった。
[Background Art and Problems to be Solved by the Invention] Polyester films, represented by polyethylene terephthalate, have excellent physical and chemical properties, and are used as base films for graphic arts, displays, packaging materials, and magnetic recording media. Widely used in fields such as capacitor derivatives. However, when trying to manufacture a film that takes full advantage of its transparency,
Film runnability is particularly required in terms of process passability in the manufacturing process, post-processing processes such as coating and vapor deposition, and handling of the product itself, but this has not always been fully achieved in the past. . This is often caused by friction and wear caused by high-speed contact between the film and the base material.

【0003】従来、ポリエステルフィルムの走行性およ
び耐摩耗性を改良するためには、フィルムの表面を適度
に粗せば良いことが分かっている。そしてこのことを達
成するために、原料ポリエステル中に微粒子を存在させ
る方法が採用されており、一部実用化もされているが、
これらの特性を高度に満足することは必ずしも成功して
しない。例えば、微粒子としてポリエステル製造時の触
媒残渣等から生成する、いわゆる析出粒子を用いた場合
は、粒子量、粒子径のコントロールおよび粗大粒子の生
成防止などが困難であり、また、延伸により、微粒子が
破壊されやすいため、走行性や耐摩耗性が劣り、さらに
は再生使用も困難である。
Conventionally, it has been known that in order to improve the running properties and abrasion resistance of a polyester film, it is sufficient to appropriately roughen the surface of the film. In order to achieve this, a method has been adopted in which fine particles are present in the raw polyester, and some have been put into practical use.
It is not always possible to satisfy these characteristics to a high degree. For example, when using so-called precipitated particles, which are generated from catalyst residues during polyester production, as fine particles, it is difficult to control the particle amount and particle size, and to prevent the formation of coarse particles. Because they are easily destroyed, they have poor running performance and wear resistance, and are also difficult to recycle.

【0004】もう一つの方法である添加法と呼ばれる炭
酸カルシウム、二酸化チタン、リン酸カルシウム等のポ
リエステルに不活性な無機化合物粒子を添加した場合は
、延伸により粒子が破壊、変形されることなく、比較的
急峻な突起を与えるため、走行性は改良されるが、かか
る粒子はポリエステルとの親和性に乏しいため、延伸時
に粒子周辺に空=が生じ、透明性が著しく低下したり、
フィルム表面から粒子が脱離しやすく、白粉状物質を生
成したりするなどの現象が起こる。
[0004] Another method, called the addition method, is one in which inert inorganic compound particles such as calcium carbonate, titanium dioxide, calcium phosphate, etc. are added to polyester, and the particles are not destroyed or deformed by stretching and are relatively stable. By providing steep protrusions, runnability is improved, but since such particles have poor affinity with polyester, voids are created around the particles during stretching, resulting in a significant decrease in transparency.
Particles tend to detach from the film surface, resulting in phenomena such as the formation of white powdery substances.

【0005】この問題を解決するため粒子表面に水酸基
(−OH)のような反応性基を有するポリエステルと比
較的親和性の良好なシリカ粒子、アルミナ粒子および酸
化チタン粒子を用いることが知られているが、該粒子を
用いた場合、ポリエステルとの親和性は改良され得るが
、反面、ポリエステル製造時の重合速度を低下させると
いう難点がある。この理由は定かではないが、例えばシ
リカ粒子の場合、その表面に存在するシラノール基と重
合触媒たる金属化合物との相互作用、例えば金属化合物
が部分的にトラップされる等のためと考えられる。
In order to solve this problem, it is known to use silica particles, alumina particles, and titanium oxide particles, which have a relatively good affinity with polyester having reactive groups such as hydroxyl groups (-OH) on the particle surface. However, when such particles are used, the affinity with polyester can be improved, but on the other hand, there is a drawback that the polymerization rate during polyester production is reduced. Although the reason for this is not clear, it is thought that, in the case of silica particles, for example, this is due to the interaction between the silanol groups present on the surface of the particles and the metal compound serving as the polymerization catalyst, such as partially trapping of the metal compound.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記実情に
鑑み、鋭意検討を重ねた結果、重合速度を遅延させるあ
る特定の粒子を含むポリエステルを製造するに際し、特
定量のマグネシウム化合物とリン化合物を用いることに
より、その重合速度を向上させることができることを見
いだし、本発明を完成するに至った。
[Means for Solving the Problems] In view of the above-mentioned circumstances, the present inventors have made extensive studies and found that a specific amount of magnesium compound and phosphorus are used to produce polyester containing specific particles that retard the polymerization rate. It was discovered that the polymerization rate could be improved by using a compound, and the present invention was completed.

【0007】すなわち本発明の要旨は、テレフタル酸ま
たは2,6−ナフタレンジカルボン酸とエチレングリコ
ールとを主たる出発原料とし、金属化合物吸着能が10
%以上である粒子を0.1〜3重量%含有するポリエス
テルを製造するに際し、下記式(1)、(2)を同時に
満足するマグネシウム化合物およびリン化合物を添加す
ることを特徴とするポリエステルの製造方法に存する。
That is, the gist of the present invention is to use terephthalic acid or 2,6-naphthalene dicarboxylic acid and ethylene glycol as main starting materials, and to obtain a metal compound adsorbent having a metal compound adsorption capacity of 10.
% or more of particles by weight of 0.1 to 3% by weight, the production of a polyester characterized by adding a magnesium compound and a phosphorus compound that simultaneously satisfy the following formulas (1) and (2). It lies in the method.

【0008】1≦Mg≦8・・・・・・(1)0.05
≦P/Mg≦0.5・・(2)(上記式中、Mgはポリ
エステルを構成する酸成分106 gに対するマグネシ
ウム化合物のモル数、Pはポリエステルを構成する酸成
分106 gに対するリン化合物のモル数を表す)以下
、本発明をさらに詳細に説明する。
1≦Mg≦8 (1) 0.05
≦P/Mg≦0.5...(2) (In the above formula, Mg is the number of moles of the magnesium compound per 106 g of the acid component constituting the polyester, and P is the mole of the phosphorus compound per 106 g of the acid component constituting the polyester. The present invention will be described in more detail below.

【0009】本発明でいうポリエステルとは、テレフタ
ル酸ジメチルまたは2,6−ナフタレンジカルボン酸ジ
メチルのような芳香族ジカルボン酸の低級アルキルエス
テルと、エチレングリコールを主たる出発原料として得
られるポリエステルを指すが、他の第三成分を含有して
も構わない。この場合、ジカルボン酸エステル成分とし
ては、例えばイソフタル酸、テレフタル酸、2,6−ナ
フタレンジカルボン酸、アジピン酸およびセバシン酸等
のエステルの一種以上を併用することができる。
[0009] The polyester as used in the present invention refers to a polyester obtained using a lower alkyl ester of an aromatic dicarboxylic acid such as dimethyl terephthalate or dimethyl 2,6-naphthalene dicarboxylate and ethylene glycol as main starting materials. It may also contain other third components. In this case, as the dicarboxylic acid ester component, one or more types of esters such as isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, and sebacic acid can be used in combination.

【0010】また、グリコール成分としては、ジエチレ
ングリコール、プロピレングリコール、ブタンジオール
、1,4−シクロヘキサンジメタノールおよびネオペン
チルグリコール等の一種以上を併用することができる。 いずれにしても、本発明のポリエステルとは、繰り返し
構造単位の80%以上がエチレンテレフタレート単位ま
たはエチレン−2,6−ナフタレート単位を有するポリ
エステルを指す。
[0010] As the glycol component, one or more of diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, etc. can be used in combination. In any case, the polyester of the present invention refers to a polyester in which 80% or more of repeating structural units have ethylene terephthalate units or ethylene-2,6-naphthalate units.

【0011】本発明の対象は、ある特定範囲の金属化合
物吸着能を有する粒子が特定量存在する場合であるが、
ここでいう金属化合物吸着能とは、重合触媒として使用
されるアンチモン(Sb)化合物を吸着する能力を表し
、下記の条件下で測定したものである。
The object of the present invention is a case where a specific amount of particles having a metal compound adsorption ability in a specific range is present.
The metal compound adsorption ability herein refers to the ability to adsorb an antimony (Sb) compound used as a polymerization catalyst, and was measured under the following conditions.

【0012】すなわち、三酸化アンチモンとエチレング
リコールとを混合、加熱して、Sb金属として200p
pm含むエチレングリコール溶液を調製し、次いで、該
溶液に粒子を2重量%添加し、窒素雰囲気下、180℃
で3時間、攪拌した後、室温に冷却、遠心分離機で粒子
とエチレングリコール溶液を完全に分離し、上澄みのエ
チレングリコール中のSb化合物量を原子吸光法にて定
量する。粒子が吸着するSb化合物の量は仕込量からエ
チレングリコール中のSb化合物を引いた値であり、金
属化合物吸着能は次式のように定義される。
That is, antimony trioxide and ethylene glycol are mixed and heated to produce 200p of Sb metal.
An ethylene glycol solution containing pm was prepared, then 2% by weight of particles were added to the solution, and the mixture was heated at 180°C under a nitrogen atmosphere.
After stirring for 3 hours, the mixture was cooled to room temperature, the particles and ethylene glycol solution were completely separated using a centrifuge, and the amount of Sb compounds in the supernatant ethylene glycol was determined by atomic absorption spectrometry. The amount of Sb compound adsorbed by the particles is the value obtained by subtracting the Sb compound in ethylene glycol from the charged amount, and the metal compound adsorption capacity is defined as the following formula.

【0013】[0013]

【0014】本発明においてはかかる金属化合物の吸着
量が10%以上である粒子を対象とするが、特にその値
が15%以上の場合、本発明の効果が最大限に発揮され
る。通常の無機または有機の粒子は金属化合物吸着能が
1%以下であるが、ポリエステルとの親和性を向上させ
るために、水酸基のような反応性基を担持させた粒子は
、この値が例えば10〜70%となる。代表的な例とし
て、特定の酸化アルミニウム、酸化ケイ素、酸化チタン
を挙げることができるが、本発明においては、粒子がか
かる範囲にあるかぎり、その表面処理の有無、有機、無
機の区別等は問わない。
[0014] The present invention targets particles in which the adsorption amount of such metal compounds is 10% or more, and the effects of the present invention are maximized especially when the adsorption amount of the metal compound is 15% or more. Ordinary inorganic or organic particles have a metal compound adsorption capacity of 1% or less, but particles carrying reactive groups such as hydroxyl groups in order to improve affinity with polyester have this value of, for example, 10%. ~70%. Typical examples include specific aluminum oxide, silicon oxide, and titanium oxide, but in the present invention, as long as the particles are within this range, it does not matter whether the particles have been surface treated or not, and whether they are organic or inorganic. do not have.

【0015】本発明の特徴は、ある特定の条件下で重縮
合反応を行うことにある。すなわち、一般にポリエステ
ルを製造する際には、アンチモン化合物、ゲルマニウム
化合物等の重合触媒を用いるが、本発明では、ポリエス
テルを構成する酸成分106gに対し、マグネシウム元
素として1〜8モル、好ましくは3〜7モル、さらに好
ましくは5〜7モルとなるようにマグネシウム化合物を
添加する。
A feature of the present invention is that the polycondensation reaction is carried out under certain specific conditions. That is, when producing polyester, a polymerization catalyst such as an antimony compound or a germanium compound is generally used, but in the present invention, 1 to 8 mol, preferably 3 to 8 mol, of magnesium element is used per 106 g of the acid component constituting the polyester. The magnesium compound is added in an amount of 7 mol, more preferably 5 to 7 mol.

【0016】マグネシウム化合物の量が1モル未満では
、重合速度が著しく遅くなり、また、得られるポリエス
テルの溶融時の比抵抗値が大きくなるため、製膜性の劣
ったポリエステルとなる。一方、マグネシウムが8モル
を超えると、得られるポリエステルの色調が損なわれた
り、熱安定性が低下したりする。  本発明で用いるマ
グネシウム化合物としては、酸化物、塩化物、水素化物
、炭酸塩、アルコラート、カルボン酸塩等のいずれでも
良いが、カルボン酸塩、特に酢酸マグネシウムが好まし
く用いられる。
If the amount of the magnesium compound is less than 1 mol, the polymerization rate will be extremely slow, and the resulting polyester will have a high specific resistance value when melted, resulting in a polyester with poor film-forming properties. On the other hand, if the amount of magnesium exceeds 8 mol, the color tone of the resulting polyester may be impaired or the thermal stability may be reduced. The magnesium compound used in the present invention may be any of oxides, chlorides, hydrides, carbonates, alcoholates, carboxylates, etc., but carboxylates, particularly magnesium acetate, are preferably used.

【0017】さらに、本発明において用いる触媒系は、
リン化合物とマグネシウム化合物のモル比(P/Mg)
を0.05〜0.5、好ましくは0.1〜0.4とする
。P/Mgが0.05未満では重合速度の遅延が生じ、
また、得られるポリマーの熱安定性、色調が劣るので好
ましくない。P/Mgが0.5を超えると重合速度の改
良効果が小さい。本発明で用いるリン化合物としては、
エステル交換触媒として使用するマグネシウム化合物と
の反応を防止する等の点から、メチルアシッドホスフェ
ート、エチルアシッドホスフェート、ブチルアシッドホ
スフェート等の酸性リン酸エステルあるいはトリメチル
ホスフェート、トリエチルホスフェート、トリブチルホ
スフェート等のリン酸トリエステルが好ましいが、特に
これらに限定されるものではない。これらの中で特に好
ましいのはエチルアシッドフォスフェートである。
Furthermore, the catalyst system used in the present invention is
Molar ratio of phosphorus compound and magnesium compound (P/Mg)
is set to 0.05 to 0.5, preferably 0.1 to 0.4. When P/Mg is less than 0.05, the polymerization rate is delayed,
Furthermore, the resulting polymer has poor thermal stability and poor color tone, which is not preferable. When P/Mg exceeds 0.5, the effect of improving the polymerization rate is small. As the phosphorus compound used in the present invention,
From the viewpoint of preventing reaction with the magnesium compound used as a transesterification catalyst, acidic phosphoric acid esters such as methyl acid phosphate, ethyl acid phosphate, and butyl acid phosphate, or phosphoric acid triphosphates such as trimethyl phosphate, triethyl phosphate, and tributyl phosphate are used. Esters are preferred, but are not particularly limited thereto. Among these, ethyl acid phosphate is particularly preferred.

【0018】また、本発明で用いる重合触媒としては、
アンチモン化合物が好ましく、その量はポリエステルを
構成する酸成分に対し、通常、0.2〜4モル、好まし
くは1.6〜3.2モルである。アンチモン化合物の量
が0.2モル未満では、本発明の方法を採用したとして
も重合速度の向上が期待できない。また、4モルを超え
て使用すると、重合時にアンチモン化合物が析出し粗大
異物となるので好ましくない。
[0018] Furthermore, as the polymerization catalyst used in the present invention,
Antimony compounds are preferred, and the amount thereof is usually 0.2 to 4 mol, preferably 1.6 to 3.2 mol, based on the acid component constituting the polyester. If the amount of the antimony compound is less than 0.2 mol, no improvement in the polymerization rate can be expected even if the method of the present invention is employed. Moreover, if it is used in an amount exceeding 4 moles, the antimony compound will precipitate during polymerization and become coarse foreign matter, which is not preferable.

【0019】本発明においては、マグネシウム化合物お
よびリン化合物は、エステル化反応が実質的に終了し、
反応率が80%以上、好ましくは90%以上となった時
点で添加すればよく、アンチモン化合物はエステル化反
応開始以前から添加してもよい。
In the present invention, the esterification reaction of the magnesium compound and the phosphorus compound has been substantially completed, and
The antimony compound may be added when the reaction rate reaches 80% or more, preferably 90% or more, and the antimony compound may be added before the start of the esterification reaction.

【0020】[0020]

【実施例】以下、本発明を実施例を挙げてさらに詳細に
説明するが、本発明は、その要旨を超えない限り以下の
実施例によって限定されるものではない。なお、実施例
における種々の物性および特性の測定方法、定義は下記
のとおりである。また、実施例および比較例中「部」と
あるは「重量部」を示す。 (1)平均粒径および粒度分布 島津製作所製遠心沈降粒度分布測定装置(SA−CP3
型)で測定した等価球形分布における積算体積分率50
%の粒径(直径)を平均粒径とした。
[Examples] The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. In addition, the measurement methods and definitions of various physical properties and characteristics in Examples are as follows. Furthermore, in Examples and Comparative Examples, "parts" indicate "parts by weight." (1) Average particle size and particle size distribution Centrifugal sedimentation particle size distribution analyzer manufactured by Shimadzu Corporation (SA-CP3
The integrated volume fraction 50 in the equivalent spherical distribution measured with
% particle size (diameter) was taken as the average particle size.

【0021】(2)極限粘度 ポリマー1gをフェノール/テトラクロルエタン=50
/50(重量比)の混合溶媒100mlに溶解し、30
.0℃で測定した。 (3)末端カルボキシル基濃度 A.Conixの方法(makromol.chem.
26,226(1958))に従って求めた。
(2) 1 g of limiting viscosity polymer is mixed with phenol/tetrachloroethane = 50
/50 (weight ratio) dissolved in 100 ml of mixed solvent, 30
.. Measured at 0°C. (3) Terminal carboxyl group concentration A. Conix method (makromol.chem.
26, 226 (1958)).

【0022】(4)溶融熱安定性 内容積50mlのガラス試験管に10gのポリマーを入
れ、高真空下、160℃で2時間乾燥後、窒素ガスにて
100mmHgに復圧し、ガラス試験管を溶封後、29
0℃で1時間熱処理を行い、熱処理前後の極限粘度を測
定し、下記式から極限粘度保持率を求めた。得られた極
限粘度保持率を熱安定性の目安とした。
(4) Melting thermal stability 10 g of polymer was placed in a glass test tube with an internal volume of 50 ml, and after drying at 160° C. for 2 hours under high vacuum, the pressure was restored to 100 mmHg with nitrogen gas, and the glass test tube was melted. After sealing, 29
Heat treatment was performed at 0° C. for 1 hour, the intrinsic viscosity before and after the heat treatment was measured, and the intrinsic viscosity retention rate was determined from the following formula. The obtained limiting viscosity retention rate was used as a measure of thermal stability.

【0023】(5)色調 東京電色(株)製カラーアナライザーTC−1800M
R2.型を用いて、JIS  Z−8722の方法に準
じて測定し、そのときのb値を色調の目安とした。 (6)ポリエステルの溶融時の比抵抗 ブリティッシュ・ジャーナル・オブ・アプライド・フィ
ジックス(Brit.J.Appl.Phys.)第1
7巻,第1149〜1154頁(1966年)に記載し
てある方法に従った。ただし、ポリマーの溶融時の温度
は290℃年、直流3000vを印可した直後の値を溶
融時の比抵抗とした。
(5) Color tone Color analyzer TC-1800M manufactured by Tokyo Denshoku Co., Ltd.
R2. Using a mold, it was measured according to the method of JIS Z-8722, and the b value at that time was used as a standard for color tone. (6) Specific resistance of polyester during melting British Journal of Applied Physics (Brit. J. Appl. Phys.) No. 1
The method described in Vol. 7, pp. 1149-1154 (1966) was followed. However, the temperature at the time of melting of the polymer was 290° C., and the value immediately after applying a direct current of 3000 V was taken as the specific resistance at the time of melting.

【0024】実施例1 ビス−(β−ヒドロキシエチル)テレフタレートオリゴ
マー100部、テレフタル酸87部およびエチレングリ
コール42部を常圧下250℃で反応させてエステル化
反応を行った。反応開始から4時間後、エステル化率9
7%のポリエステルオリゴマーを得た。一方、平均粒径
0.9μm、金属化合物吸着能39%のシリカ粒子10
部とエチレングリコール90部とを混合攪拌してスラリ
ーを調整し、このスラリー10部を上記ポリエステルオ
リゴマー103部(ポリエステル100部に相当)に添
加した後、エチルアシッドホスフェート0.012部(
0.82モル)を加え、次いで、酢酸マグネシウム4水
塩0.088部(4.11モル,P/Mg=0.2)と
三酸化アンチモン0.033部(2.26モル)を添加
し、250℃から285℃まで120分かけて昇温しな
がら、同時に圧力を760mmHgから1mmHgまで
減圧し、同条件下で重縮合反応を行い、4時間9分後に
、極限粘度0.635のポリエステルを得た。
Example 1 An esterification reaction was carried out by reacting 100 parts of bis-(β-hydroxyethyl) terephthalate oligomer, 87 parts of terephthalic acid and 42 parts of ethylene glycol at 250° C. under normal pressure. 4 hours after the start of the reaction, the esterification rate was 9.
7% polyester oligomer was obtained. On the other hand, 10 silica particles with an average particle size of 0.9 μm and a metal compound adsorption capacity of 39%
and 90 parts of ethylene glycol were mixed and stirred to prepare a slurry, and 10 parts of this slurry was added to 103 parts of the above polyester oligomer (equivalent to 100 parts of polyester), followed by 0.012 parts of ethyl acid phosphate (
Then, 0.088 part (4.11 mol, P/Mg=0.2) of magnesium acetate tetrahydrate and 0.033 part (2.26 mol) of antimony trioxide were added. While raising the temperature from 250°C to 285°C over 120 minutes, the pressure was simultaneously reduced from 760mmHg to 1mmHg, and a polycondensation reaction was carried out under the same conditions. After 4 hours and 9 minutes, a polyester with an intrinsic viscosity of 0.635 was produced. Obtained.

【0025】実施例2 実施例1において、エチルアシッドホスフェートの量を
0.023部(1.65モル)と変えるほかは実施例1
と同様にして重縮合反応を行った。 実施例3 実施例1において、酢酸マグネシウム4水塩の量を0.
132部(6.17モル)、エチルアシッドホスフェー
トの量を0.017部(1.23モル)と変えるほかは
実施例1と同様にして重縮合反応を行った。
Example 2 Example 1 except that the amount of ethyl acid phosphate was changed to 0.023 parts (1.65 mol).
A polycondensation reaction was carried out in the same manner as above. Example 3 In Example 1, the amount of magnesium acetate tetrahydrate was reduced to 0.
A polycondensation reaction was carried out in the same manner as in Example 1, except that the amount of ethyl acid phosphate was changed to 132 parts (6.17 mol) and 0.017 parts (1.23 mol).

【0026】実施例4 実施例1において、シリカ粒子の代わりに一次粒径0.
018μm、金属化合物吸着量21%のアルミナ粒子を
用いるほかは実施例1と同様にして重縮合反応を行った
。 実施例5 実施例4において、エチルアシッドホスフェートの量を
0.023部(1.65モル)とするほかは実施例4と
同様にして重縮合反応を行った。
Example 4 In Example 1, instead of using silica particles, the primary particle size was 0.
A polycondensation reaction was carried out in the same manner as in Example 1, except that alumina particles having a diameter of 0.018 μm and a metal compound adsorption amount of 21% were used. Example 5 A polycondensation reaction was carried out in the same manner as in Example 4, except that the amount of ethyl acid phosphate was changed to 0.023 parts (1.65 moles).

【0027】比較例1 実施例1において、マグネシウム化合物を添加しないほ
かは実施例1と同様にして重縮合反応を行った。 比較例2 実施例1において、エチルアシッドホスフェートの量を
0.058部(4.11モル)とするほかは実施例1と
同様にして重縮合反応を行った。 比較例3 実施例1において、エチルアシッドホスフェートの量を
0.058部(4.11モル)、三酸化アンチモンの量
を0.040部(2.74モル)とするほかは実施例1
と同様にして重縮合反応を行った。
Comparative Example 1 A polycondensation reaction was carried out in the same manner as in Example 1 except that no magnesium compound was added. Comparative Example 2 A polycondensation reaction was carried out in the same manner as in Example 1, except that the amount of ethyl acid phosphate was changed to 0.058 parts (4.11 moles). Comparative Example 3 Example 1 except that the amount of ethyl acid phosphate was changed to 0.058 part (4.11 mol) and the amount of antimony trioxide was changed to 0.040 part (2.74 mol).
A polycondensation reaction was carried out in the same manner as above.

【0028】比較例4 実施例4において、マグネシウム化合物を添加しないほ
かは実施例4と同様にして重縮合反応を行った。 比較例5 実施例4において、エチルアシッドホスフェートの量を
0.058部(4.11モル)とするほかは実施例4と
同様にして重縮合反応を行った。 比較例6 実施例4において、エチルアシッドホスフェートの量を
0.058部(4.11モル)、三酸化アンチモンの量
を0.040部(2.74モル)とするほかは実施例4
と同様にして重縮合反応を行った。以上、得られた結果
をまとめて下記表1に示す。
Comparative Example 4 A polycondensation reaction was carried out in the same manner as in Example 4, except that no magnesium compound was added. Comparative Example 5 A polycondensation reaction was carried out in the same manner as in Example 4, except that the amount of ethyl acid phosphate was changed to 0.058 parts (4.11 moles). Comparative Example 6 Example 4 except that the amount of ethyl acid phosphate was changed to 0.058 part (4.11 mol) and the amount of antimony trioxide was changed to 0.040 part (2.74 mol).
A polycondensation reaction was carried out in the same manner as above. The results obtained above are summarized in Table 1 below.

【0029】[0029]

【表1】[Table 1]

【0030】表1および表2に示すように、本発明の範
ちゅうである実施例1〜5の重合時間は、これまで知ら
れていた触媒系である比較例1〜6に比べ約1時間以上
短縮され、得られたポリエステルの特性、例えば末端カ
ルボキシル基、熱安定性および色調も良好で、該ポリマ
ーは、磁気記録媒体、グラフィックアーツ、ディスプレ
ーおよび包装用のフィルム用として極めて有用である。
As shown in Tables 1 and 2, the polymerization time of Examples 1 to 5, which are within the scope of the present invention, is approximately 1 hour longer than that of Comparative Examples 1 to 6, which are conventional catalyst systems. The properties of the resulting polyester, such as terminal carboxyl groups, thermal stability, and color, are also good, making the polymer extremely useful for magnetic recording media, graphic arts, displays, and packaging films.

【0031】[0031]

【発明の効果】本発明によれば、重合速度を著しく向上
でき、得られたポリエステルをフィルムとした際の特性
も十分であり種々の用途に適用可能で、その工業的価値
は高い。
According to the present invention, the polymerization rate can be significantly improved, and when the obtained polyester is made into a film, the properties are sufficient and it can be applied to various uses, and its industrial value is high.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  テレフタル酸または2,6−ナフタレ
ンジカルボン酸とエチレングリコールとを主たる出発原
料とし、金属化合物吸着能が10%以上である粒子を0
.1〜3重量%含有するポリエステルを製造するに際し
、下記式(1)、(2)を同時に満足するマグネシウム
化合物およびリン化合物を添加することを特徴とするポ
リエステルの製造方法。 1≦Mg≦8・・・・・・(1) 0.05≦P/Mg≦0.5・・(2)(上記式中、M
gはポリエステルを構成する酸成分106 gに対する
マグネシウム化合物のモル数、Pはポリエステルを構成
する酸成分106 gに対するリン化合物のモル数を表
す)
Claim 1: Particles containing terephthalic acid or 2,6-naphthalene dicarboxylic acid and ethylene glycol as main starting materials and having a metal compound adsorption capacity of 10% or more.
.. A method for producing a polyester, which comprises adding a magnesium compound and a phosphorus compound that simultaneously satisfy the following formulas (1) and (2) when producing a polyester containing 1 to 3% by weight. 1≦Mg≦8 (1) 0.05≦P/Mg≦0.5 (2) (In the above formula, M
(g represents the number of moles of the magnesium compound relative to 106 g of the acid component constituting the polyester, and P represents the number of moles of the phosphorus compound relative to 106 g of the acid component constituting the polyester)
JP12036691A 1991-05-24 1991-05-24 Production of polyester Pending JPH04345617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12036691A JPH04345617A (en) 1991-05-24 1991-05-24 Production of polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12036691A JPH04345617A (en) 1991-05-24 1991-05-24 Production of polyester

Publications (1)

Publication Number Publication Date
JPH04345617A true JPH04345617A (en) 1992-12-01

Family

ID=14784422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12036691A Pending JPH04345617A (en) 1991-05-24 1991-05-24 Production of polyester

Country Status (1)

Country Link
JP (1) JPH04345617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090419A1 (en) * 2001-05-03 2002-11-14 Zimmer Aktiengesellschaft Composition and method for producing polyester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090419A1 (en) * 2001-05-03 2002-11-14 Zimmer Aktiengesellschaft Composition and method for producing polyester

Similar Documents

Publication Publication Date Title
US5023291A (en) Polyester composition
JPH0778134B2 (en) Polyester film
US6036905A (en) Method for preparing polyester films
JPH0873580A (en) Polyester
US4092289A (en) Polyester composition
JPH04270727A (en) Polyester composition
JP3081104B2 (en) Polyester and method for producing the same
JPH04345617A (en) Production of polyester
JPH0841219A (en) Polyester film for packaging food
JPH0550534B2 (en)
JP2590515B2 (en) Polyester composition and biaxially stretched polyester film comprising the same
JPH04320419A (en) Production of polyester
JP2005239940A (en) Polyester resin composition and film
JPH01204959A (en) Polyester composition and biaxially oriented polyester film prepared therefrom
JPH04359048A (en) Polyester composition
JP5069434B2 (en) Polyester composition and method for producing the same
JP4992171B2 (en) Polyester composition and film comprising the same
JPH023428B2 (en)
JPH04298538A (en) Polyester film
JP4527927B2 (en) Method for producing polyester composition for film
JPS6218424A (en) Production of polyester
JPH0474379B2 (en)
JPH06340734A (en) Production of polyethylene naphthalate
JP3452401B2 (en) Polyester film for food packaging
JP2690298B2 (en) Polyester production method