JPH043445B2 - - Google Patents

Info

Publication number
JPH043445B2
JPH043445B2 JP21585186A JP21585186A JPH043445B2 JP H043445 B2 JPH043445 B2 JP H043445B2 JP 21585186 A JP21585186 A JP 21585186A JP 21585186 A JP21585186 A JP 21585186A JP H043445 B2 JPH043445 B2 JP H043445B2
Authority
JP
Japan
Prior art keywords
component
core
discharge
sheath
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21585186A
Other languages
Japanese (ja)
Other versions
JPS6375105A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21585186A priority Critical patent/JPS6375105A/en
Publication of JPS6375105A publication Critical patent/JPS6375105A/en
Publication of JPH043445B2 publication Critical patent/JPH043445B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は芯鞘型複合繊維の溶融紡糸方法に関
し、更には均一性に優れた細芯芯鞘型複合繊維の
溶融紡糸方法に関する。 [従来の技術] 熱可塑性重合体は溶融紡糸することにより、す
ぐれた機械的性質、熱的安定性、良好な均一性を
もつ繊維となすことができ、しかも連続的にかつ
高速で安定して繊維を得ることができる。特に細
芯芯鞘型複合繊維の溶融紡糸は、通常の単成分繊
維の利点を活かしつつ、単成分繊維では得られな
い特性をもつた繊維を得る溶融紡糸法であり、工
業的に非常に価値の高い紡糸法である。 従来、芯鞘型複合繊維の溶融紡糸装置および方
法として種々の装置および方法が提案されてお
り、なかでも各成分の合流位置までの流路をどの
ように確保し、どのように合流、吐出させるかに
ついて示されたものが多い。具体的な技術的思想
としては、各成分の計量性、すなわち芯鞘成分を
常に等しい割合で合流させることに関するもの
や、同心性、すなわち芯成分をいかに繊維の中心
部に配置させるかに関するものがある。例えば、
特公昭35−2716号公報は、計量性を高めるため
に、合流する直前の成分の通路を狭める。すなわ
ち、速度を高めることに特徴がある。また、この
技術の改良方法として例えば特公昭44−7372号公
報のように、高い計量性を確保しつつ同心性を高
めるために合流する直前の芯成分の速度を低く、
鞘成分の速度を高くするものなどがある。以上の
ように、合流する直前の各成分を速度に言及して
いる発明はいくつか挙げられるが、いづれも鞘成
分の速度は比較的高く採つているのである。 [発明が解決しようとする問題点] しかし、かかる技術を細芯型の芯鞘型複合紡糸
に応用すると、単成分の溶融紡糸に比べて糸切れ
回数が多い欠点を有していた。特に紡糸速度が
5000m/分以上の高速紡糸領域では、糸切れが極
めて頻繁に発生し、高速紡糸方法の利点である高
い生産性、低コスト化が計れない状態となる。さ
らに吐出挙動に着目すると、吐出ポリマーのベン
デイングが多くみられる。ベンデイングは紡糸口
金の汚れを招き、いわゆる口金修正周期を短かく
せざるを得なくする。 本発明の目的は、細芯芯型複合繊維の溶融紡糸
法において、上記の問題点を解決し、良好な製糸
性を確保し、かつベンデイング発生頻度を低くす
ることにある。 [問題点を解決するための手段] 前記した本発明の目的は、芯と鞘の各成分の和
に対する芯成分の容積吐出重比率が20%以下の芯
鞘型溶融複合流を形成後、吐出、冷却、引取りを
行なう熱可塑性重合体の溶融紡糸において、合流
する際の各成分が下記(1)および(2)式を満足する平
均吐出線速度であることを特徴とする複合紡糸方
法によつて達成できる。 VA≦20 ……(1) VB/VA≦0.08 ……(2) 〔ただし、VAは芯成分の平均吐出線速度(cm/
秒) VBは鞘成分の平均吐出線速度(cm/秒)〕 本発明における熱可塑性重合体とはポリアミ
ド、ポリエステル、ポリエチレン、ポリプロピレ
ン、ポリスチレン、ポリ塩化ビニリデンなど、溶
融紡糸が可能なポリマが好適に用いられる。ま
た、複合紡糸に供する芯成分と鞘成分は通常性質
の異なる二種以上の物質から構成され、前記重合
体のいかなる組合わせも含むことができるが、各
成分が前記重合体の二種以上の混合体、共重合体
であつてもよい。さらに各成分は接着性、親水
性、親油性、染色性、発色性、光沢、螢光、制電
性、導電性、抗菌性、溶解性、難燃性、耐熱性、
光通過性やその他の機能付与の目的で無機粒子、
有機物質を任意の添加量、任意の共重合量で添
加、共重合することができる。 本発明の芯鞘型溶融複合流とは、鞘成分が芯成
分を完全に覆つて吐出孔に向かう流れをいい流れ
方向に直角な断面は同心芯鞘、偏心芯鞘、あるい
は芯、鞘とも異形断面繊維形状であつてもよい。 芯と鞘の各成分の和に対する芯成分の容積吐出
量比率とは 芯成分の容積吐出量比率(%)=芯成分の容積
吐出量/芯と鞘の各成分の容積吐出量の和×100 の式から求める。一組の計量装置から計量され
た各成分が複数の複合流を形成し、複数のフイラ
メントを形成するような紡糸装置においては、芯
成分の容積吐出量比率は各々の複合流を形成する
直前の各成分の容積吐出量比率から求める。鞘成
分の容積吐出量比率は芯成分のそれと同様に求め
る。 細芯芯鞘型複合繊維に一般的な特徴の一つは、
芯成分が優れた特徴をもつもののそれ単独では繊
維に形成することが不可能か、もしくは実用に耐
える機械的性質等が満足されないことである。し
たがつて、本発明における芯成分の容積吐出量比
率は20%以下とする必要があり、それを越えると
実用に耐える性質が確保されない。また、この値
は紡糸操作性の面から1%以上が好ましく、更に
好ましくは3%以上である。 次に本発明における各成分の平均吐出線速度と
は、各成分の複合流を形成する直前の平均吐出線
速度をいい、一般には複合流を形成する直前にお
ける各成分の容積吐出量を、複合流を形成する直
前における各成分の流れに直角な断面の面積で除
した値をいう。第1〜6図は複合流を形成させる
装置の部分の一例を示す。各図をもとに各成分の
平均吐出線速度を具体的に説明する。 第1,2図における芯および鞘成分平均吐出線
速度VA、VBはそれぞれ VA=4WA/πa2 VB=WB/πbt (但し、WA、WBは複合流を形成する直前におけ
る芯および鞘成分の各容積吐出量(cm3/秒)であ
る。) 第3図におけるVA、VBは VA=4WA/πa2 VB=4WB/π(c2−b2) となる。第4,5図におけるVA、VBは VA=4WA/πa2 VB=WB/πbt となる。 第6図におけるVA、VBは VA=4WA/πa2 VB=4WB/πb2 となる。 本発明においては、複合流を形成する装置の製
作の容易性の面から第1,2図のごとく、鞘成分
が芯成分に対して直角方向から合流し、しかも複
合流が芯成分と同じ方向へ流れるものが好適に用
いられる。 本発明において、VAは20(cm/秒)以下とする
必要がある。VAが20を越えると紡糸性が著しく
悪化し、また吐出ポリマーにベンデイングがみら
れるようになる。VAは計量性の確保および装置
製作の容易性の面から0.5以上とすることが好ま
しい。またVB/VAは0.08以下とする必要がある。
VB/VAが0.08を越えると、紡糸性が著しく悪化
し、ベンデイングがみられるようになる。VB
VAは吐出量を低下すると紡糸性が不安定となる
こと、また装置の操作の面から0.001以上が好ま
しく、0.005以上とすることが更に好ましい。こ
のような本発明の範囲外の値を採つたときに生じ
る紡糸性の不良は当然ながら、糸に欠陥を内在さ
せているため、延伸工程、延伸同時仮ヨリ工程、
仮ヨリ工程、撚糸工程、製織編工程での断糸、毛
羽、巻付等の弊害を招く。 また、この紡糸性不良は、高速紡糸において特
に顕著に見られ、紡糸速度5000m/分以上での断
糸、毛羽は頻繁に発生するようになる。この原因
は定かでないが、本発明の範囲外になると、すな
わち、芯成分の平均吐出線速度が速くなりすぎる
か、または鞘成分の平均吐出線速度が芯の平均吐
出線速度に対して速くなりすぎると、複合流の中
の芯成分の流れが乱れ、不安定となり、溶融複合
流の芯成分が太細となり、吐出してからのドラフ
トが繊維軸方向および断面方向に均等にかから
ず、そのため太細ムラが拡大し、糸切れに至る確
率が高くなるものと考えられる。 本発明では芯鞘型溶融複合流を形成後、吐出、
冷却、引取りを行なうが、ここでいう吐出とは、
該複合流を気体中に吐出することをいい、好まし
くは1cm/秒以上、100cm/秒以下、さらに好ま
しくは3cm/秒以上、30cm/以下の平均吐出線速
度で吐出する。また、吐出孔はその形状は任意で
あり、丸形、T形、Y形、十字形、スリツト形、
五乃至八葉形などが用いられる。 本発明でいう冷却とは、吐出された該複合流の
溶融物を引取られる以前にその融点以下に冷却す
ることをいい、冷却風、冷却浴等を用いた積極的
な冷却の他に室温雰囲気や加圧、減圧した密室中
で該複合流の溶融物を引取られる以前にその融点
以下に冷却するものであつてもよい。 本発明でいう引取りとは、積極的手段を用いて
冷却された糸状にドラフトを与えることをいい回
転体、流体吸引装置が好ましく用いられる。また
引取り速度に制限はないが好ましくは、10m/分
以上、10000m/分以下、より好ましくは1000
m/分以上である。しかしながら本発明の目的の
一つは引取り速度5000m/分以上の紡糸性の安定
化にあり、本発明を引取り速度5000m/分以上に
適用することが特に好ましい。 [実施例] 以下本発明を実施例により、さらに詳細に説明
する。 実施例 1 ポリエチレングリコールにアルカリ触媒の存在
下でアクリロニトリルを反応させ、さらに水素添
加反応を行なうことにより両末端の97%以上がア
ミノ基であるポリエチレングリコールジアミン
(数平均分子量4000)を合成し、これとアジピン
酸を常法で塩反応させることにより、ポリエチレ
ングリコールジアンモニウムアジペートの45%の
水溶液を得た。 容量2m3の濃縮缶に上記45%のポリエチレング
リコールジアンモニウムアジペート水溶液を200
Kg、85%カプロラクタム水溶液を120Kg、40%の
ヘキサメチレンジアンモニウムイソフタレート水
溶液を16Kg投入し、常圧で内温が110℃になるま
で約2時間加熱し80%濃度に濃縮した。つづいて
容量800の重合缶に上記濃縮液を移行し、重合
缶内に25/minで窒素を流しながら加熱を開始
した。 内温が120℃になつた時点でドデシルベンゼン
スルホン酸ソーダを5.2Kgと1,3,5トリメチ
ル−2,4,6−トリ(3,5ジ−tert−ブチル
4−ヒドロキシベンゼン)ベンゼン5.2Kgを添加
し、撹拌を開始して内温が245℃になるまで、18
時間加熱し重合を完結させた。 重合終了後缶内に窒素で7Kg/cm2(G)の圧力をか
け約幅15cm、厚さ1.5mmのベルト状に溶融ポリマ
を回転無端ベルト(長さ6m、ベルト材質:ステ
ンレス、裏面を水スプレーで冷却)上に押出し、
冷却後通常の方法でペレタイズした。 得られたペレツトの相対粘度は2.18であつた。
公知の複合紡糸装置を使用し、上記の方法で製造
したブロツクポリエーテルアミド組成物からなる
ペレツトを極限粘度を変更したポリエチレンテレ
フタレートペレツトに10重量%混合したペレツト
を芯成分とし、一方のホツパーから供給し、他方
のホツパーから極限粘度0.63ポリエチレンテレフ
タレートを鞘成分として供給し、芯成分の容積吐
出量比率を10%として、同心の芯鞘型複合繊維を
紡糸温度290℃、一孔当たりの芯と鞘の各成分の
容積吐出量の和を0.0196cm3/秒として、インター
レースで交絡を付与しつつ巻取速度6000m/分で
紡糸し、50デニール24フイラメントの糸を得た。
口金は第1図に模したa=0.02(cm)、b=0.25
(cm)、t=0.05(cm)の複合口金を用いた。 このとき、一孔当たりの芯、鞘成分の容積吐出
量WA、WBはそれぞれ0.00196cm3/秒、0.0176cm3
秒であり、平均吐出線速度VA、VBはそれぞれ
6.24cm/秒、0.449cm/秒であり、VB/VA=0.072
である。10時間連続巻取したところ、糸切れは無
く、巻上がつたパツケージを観察したところ毛羽
の発生も見られなかつた。また、この時点で口金
部を観察したところ、24孔の吐出孔にはいずれも
ベンデイングが発生していなかつた。 実施例2、3・比較実施例1〜3 一孔当たりの芯、鞘成分の容積吐出量の割合を
変えた以外は実施例1に従つて紡糸した。結果を
表1に示す。紡糸時の糸切れ回数および毛羽の発
生数は10時間巻取りの結果を示す。
[Industrial Field of Application] The present invention relates to a method for melt-spinning core-sheath type conjugate fibers, and more particularly to a method for melt-spinning fine core-sheath type conjugate fibers with excellent uniformity. [Prior Art] Thermoplastic polymers can be melt-spun into fibers with excellent mechanical properties, thermal stability, and good uniformity, and can be made continuously and stably at high speeds. Fiber can be obtained. In particular, melt spinning of fine core-sheath type composite fibers is a melt spinning method that takes advantage of the advantages of ordinary single-component fibers while producing fibers with properties that cannot be obtained with single-component fibers, and is of great industrial value. This is a high-quality spinning method. Conventionally, various devices and methods have been proposed as melt-spinning devices and methods for core-sheath type composite fibers, and among them, how to secure a flow path to the merging position of each component and how to merge and discharge the components has been proposed. There are many things that have been shown about this. Specific technical ideas include the measurability of each component, that is, ensuring that the core and sheath components always merge in equal proportions, and the concentricity, that is, how to arrange the core component in the center of the fiber. be. for example,
Japanese Patent Publication No. 35-2716 narrows the path of the components just before they merge in order to improve meterability. In other words, it is characterized by increasing speed. In addition, as an improvement method of this technology, for example, as in Japanese Patent Publication No. 44-7372, the speed of the core components immediately before merging is lowered to improve concentricity while ensuring high metrology.
There are some that increase the speed of the sheath component. As mentioned above, there are several inventions that refer to the speed of each component immediately before merging, but in all of them, the speed of the sheath component is relatively high. [Problems to be Solved by the Invention] However, when this technique is applied to fine-core core-sheath type composite spinning, it has the disadvantage that the number of yarn breakages is greater than that in single-component melt spinning. Especially when the spinning speed is
In the high-speed spinning region of 5000 m/min or more, yarn breakage occurs extremely frequently, making it impossible to achieve high productivity and low cost, which are the advantages of high-speed spinning methods. Furthermore, when paying attention to the discharge behavior, bending of the discharged polymer is often observed. Bending causes contamination of the spinneret, making it necessary to shorten the so-called spinneret correction cycle. An object of the present invention is to solve the above-mentioned problems in a melt-spinning method for fine-core conjugate fibers, ensure good spinning properties, and reduce the frequency of bending. [Means for Solving the Problems] The object of the present invention described above is to form a core-sheath type molten composite flow in which the volumetric discharge weight ratio of the core component to the sum of each component of the core and sheath is 20% or less, and then discharge the composite flow. In melt spinning of a thermoplastic polymer, which is performed by cooling and taking off, the composite spinning method is characterized in that each component when merging has an average discharge linear velocity that satisfies the following formulas (1) and (2). It can be achieved. V A ≦20 …(1) V B /V A ≦0.08 …(2) [However, V A is the average linear discharge velocity of the core component (cm/
V B is the average linear discharge velocity of the sheath component (cm/sec)] The thermoplastic polymer used in the present invention is preferably a polymer that can be melt-spun, such as polyamide, polyester, polyethylene, polypropylene, polystyrene, or polyvinylidene chloride. used for. Further, the core component and sheath component used in composite spinning are usually composed of two or more types of substances having different properties, and can include any combination of the above polymers, but each component is composed of two or more types of the above polymers. It may be a mixture or a copolymer. Furthermore, each component has adhesiveness, hydrophilicity, lipophilicity, dyeability, color development, gloss, fluorescence, antistatic property, conductivity, antibacterial property, solubility, flame retardancy, heat resistance,
Inorganic particles for the purpose of imparting light transmittance and other functions.
The organic substance can be added and copolymerized in any amount and in any copolymerization amount. The core-sheath type molten composite flow of the present invention refers to a flow in which the sheath component completely covers the core component and heads toward the discharge hole.The cross section perpendicular to the flow direction is a concentric core-sheath, an eccentric core-sheath, or an irregular shape for both the core and sheath. It may also have a fibrous cross-sectional shape. What is the volumetric discharge ratio of the core component to the sum of each component of the core and sheath? Volumetric discharge ratio of the core component (%) = Volumetric discharge of the core component / Sum of the volumetric discharge of each component of the core and sheath x 100 Obtained from the formula. In a spinning device in which each component metered from a set of metering devices forms multiple composite streams and multiple filaments, the volumetric discharge rate of the core component is adjusted immediately before forming each composite stream. It is determined from the volumetric discharge ratio of each component. The volumetric discharge ratio of the sheath component is determined in the same manner as that of the core component. One of the common characteristics of fine core-sheath type composite fibers is that
Although the core component has excellent characteristics, it is either impossible to form it into a fiber by itself, or the mechanical properties, etc. that can withstand practical use are not satisfied. Therefore, the volumetric discharge ratio of the core component in the present invention needs to be 20% or less, and if it exceeds this, properties that can withstand practical use cannot be ensured. Further, from the viewpoint of spinning operability, this value is preferably 1% or more, more preferably 3% or more. Next, the average discharge linear velocity of each component in the present invention refers to the average discharge linear velocity of each component immediately before forming a composite flow, and generally the volumetric discharge amount of each component immediately before forming a composite flow is the composite flow. This is the value divided by the area of the cross section perpendicular to the flow of each component immediately before the flow is formed. Figures 1-6 show an example of the parts of the device that form the composite flow. The average ejection linear velocity of each component will be specifically explained based on each figure. The average discharge linear velocities V A and V B of the core and sheath components in Figs . These are the volumetric discharge amounts (cm 3 /sec) of the core and sheath components immediately before the discharge.) In Fig. 3, V A and V B are V A =4W A /πa 2 V B =4W B /π (c 2b2 ) becomes. V A and V B in FIGS. 4 and 5 are V A =4W A /πa 2 V B = W B /πbt. V A and V B in FIG. 6 are V A =4W A /πa 2 V B =4W B /πb 2 . In the present invention, from the viewpoint of ease of manufacturing a device for forming a composite flow, as shown in Figs. A material that flows into the water is preferably used. In the present invention, V A needs to be 20 (cm/sec) or less. When V A exceeds 20, spinnability deteriorates significantly and bending appears in the discharged polymer. It is preferable that V A be 0.5 or more from the viewpoint of ensuring metrology and ease of manufacturing the device. Also, V B /V A must be 0.08 or less.
When V B /V A exceeds 0.08, spinnability deteriorates significantly and bending appears. VB /
V A is preferably 0.001 or more, and more preferably 0.005 or more, since spinning properties become unstable if the discharge rate is reduced, and from the viewpoint of device operation. The poor spinnability that occurs when such a value is outside the range of the present invention is due to inherent defects in the yarn, so it is necessary to carry out the drawing process, the simultaneous drawing process,
This causes problems such as yarn breakage, fuzz, and wrapping during the temporary twisting process, yarn twisting process, and weaving and knitting process. Moreover, this poor spinnability is particularly noticeable in high-speed spinning, and yarn breakage and fuzz frequently occur at spinning speeds of 5000 m/min or higher. The cause of this is not clear, but if it falls outside the scope of the present invention, the average linear discharge velocity of the core component becomes too high, or the average linear velocity of the sheath component becomes faster than the average linear velocity of the core. If it is too high, the flow of the core component in the composite flow will be disturbed and unstable, the core component of the molten composite flow will become thick and thin, and the draft after discharge will not be distributed evenly in the fiber axial direction and cross-sectional direction. Therefore, it is thought that the thick and thin unevenness expands and the probability of thread breakage increases. In the present invention, after forming a core-sheath type molten composite flow, discharge,
Cooling and withdrawal are performed, but discharge here means
The composite flow is discharged into a gas at an average discharge linear velocity of preferably 1 cm/sec or more and 100 cm/sec or less, more preferably 3 cm/sec or more and 30 cm/sec or less. Further, the shape of the discharge hole can be arbitrary, such as round, T-shaped, Y-shaped, cross-shaped, slit-shaped, etc.
Five- to eight-lobed shapes are used. Cooling in the present invention refers to cooling the discharged molten material of the composite stream to below its melting point before being withdrawn, and in addition to active cooling using cooling air, a cooling bath, etc. Alternatively, the melt of the composite stream may be cooled to below its melting point in a pressurized or depressurized closed chamber before being taken out. In the present invention, taking-off refers to applying a draft to the cooled filament using active means, and a rotating body or a fluid suction device is preferably used. Although there is no limit to the take-up speed, it is preferably 10 m/min or more and 10000 m/min or less, more preferably 1000 m/min or less.
m/min or more. However, one of the objects of the present invention is to stabilize spinnability at take-off speeds of 5000 m/min or more, and it is particularly preferable to apply the present invention to take-off speeds of 5000 m/min or more. [Examples] The present invention will be explained in more detail below using Examples. Example 1 Polyethylene glycol diamine (number average molecular weight 4000) in which 97% or more of both terminals are amino groups was synthesized by reacting polyethylene glycol with acrylonitrile in the presence of an alkali catalyst and further performing a hydrogenation reaction. A 45% aqueous solution of polyethylene glycol diammonium adipate was obtained by subjecting adipic acid to a salt reaction using a conventional method. Add 200% of the above 45% polyethylene glycol diammonium adipate aqueous solution to a 2m3 concentration can.
120 kg of 85% caprolactam aqueous solution and 16 kg of 40% hexamethylene diammonium isophthalate aqueous solution were charged, and heated under normal pressure for about 2 hours until the internal temperature reached 110°C, and concentrated to 80% concentration. Subsequently, the concentrated liquid was transferred to a polymerization can with a capacity of 800, and heating was started while flowing nitrogen into the polymerization can at a rate of 25/min. When the internal temperature reaches 120℃, add 5.2 kg of sodium dodecylbenzenesulfonate and 5.2 kg of 1,3,5 trimethyl-2,4,6-tri(3,5 di-tert-butyl4-hydroxybenzene)benzene. and start stirring until the internal temperature reaches 245°C.
Polymerization was completed by heating for an hour. After the polymerization is complete, pressurize the can with nitrogen at 7 kg/cm 2 (G) and rotate the molten polymer into a belt approximately 15 cm wide and 1.5 mm thick using an endless belt (length 6 m, belt material: stainless steel, back side covered with water). cooled with spray) and extruded onto
After cooling, it was pelletized in the usual manner. The relative viscosity of the pellets obtained was 2.18.
Using a known composite spinning device, pellets made by mixing 10% by weight of the block polyether amide composition produced by the method described above with polyethylene terephthalate pellets with a modified intrinsic viscosity are used as the core component, and the pellets are spun from one hopper. Then, polyethylene terephthalate with an intrinsic viscosity of 0.63 was supplied as a sheath component from the other hopper, and the volumetric discharge ratio of the core component was set to 10%, and a concentric core-sheath type composite fiber was spun at a temperature of 290°C with a core and a core per hole. The sum of the volume discharge of each component of the sheath was set to 0.0196 cm 3 /sec, and the yarn was spun at a winding speed of 6000 m/min while interlacing was provided to obtain a 50 denier 24 filament yarn.
The cap is a = 0.02 (cm), b = 0.25 as shown in Figure 1.
(cm), and a composite cap with t=0.05 (cm) was used. At this time, the volumetric discharge amounts W A and W B of the core and sheath components per hole are 0.00196 cm 3 /sec and 0.0176 cm 3 /, respectively.
seconds, and the average discharge linear velocity V A and V B are respectively
6.24cm/sec, 0.449cm/sec, V B /V A = 0.072
It is. When the yarn was continuously wound for 10 hours, there was no yarn breakage, and when the wound package was observed, no fuzz was observed. Furthermore, when the mouthpiece was observed at this point, no bending had occurred in any of the 24 discharge holes. Examples 2 and 3/Comparative Examples 1 to 3 Spinning was carried out in accordance with Example 1, except that the ratio of the volume discharge amount of the core and sheath components per hole was changed. The results are shown in Table 1. The number of yarn breaks and the number of fluffs generated during spinning are the results of winding for 10 hours.

【表】 実施例1と同様に口金部を観察したところ、い
ずれの比較実施例の場合も口金には1孔から8孔
の吐出孔にベンデイングがみられた。 実施例4・比較実施例4〜6 口金を変えて、各成分の平均吐出線速度を変更
した以外は、実施例1と同様に紡糸した。この
際、口金合流部は第1図を模したものを使用し、
各寸法a、b、tの値を変えることにより各成分
の平均吐出線速度を変更した。結果を表2に示
す。
[Table] When the mouthpiece was observed in the same manner as in Example 1, bending was observed in the discharge holes 1 to 8 of the mouthpiece in all comparative examples. Example 4/Comparative Examples 4 to 6 Spinning was carried out in the same manner as in Example 1, except that the die was changed and the average linear discharge velocity of each component was changed. At this time, use a base merging part that resembles the one shown in Figure 1,
The average ejection linear velocity of each component was changed by changing the values of each dimension a, b, and t. The results are shown in Table 2.

【表】 表2に示すように、VAおよびVB/VAの値が本
発明の範囲内にあるものは紡糸性が極めて良好で
あつた。 [発明の効果] 本発明は上述したように、細芯芯鞘型複合紡糸
において複合口金内で各成分が合流する直前の吐
出線速度を特定化することにより、紡糸時の糸切
れ及び毛羽の発生を防止し、またポリマーのベン
デイング現象を抑制したものである。本発明の要
件を満たすことにより、合流後の流れが極めて安
定し、吐出挙動および吐出後の糸状細化の挙動が
安定したために改善されたと考えている。 本発明に従つて紡糸された複合繊維は、紡糸パ
ツケージ内に毛羽等の欠陥を含んでいないので延
伸、延伸仮ヨリ、また、製織編時の毛羽発生や各
工程の糸条通過性が良好となつた。そして最終製
品は、細芯芯鞘複合繊維の高い価値を活かした品
位の優れたものとなつたのである。 さらに、高速紡糸に適用することにより、延伸
することなく実用に耐える繊維を安定して得るこ
とができ、高付加価値の繊維を極めて安価に生産
することが可能となつた。
[Table] As shown in Table 2, those whose values of V A and V B /V A were within the range of the present invention had extremely good spinnability. [Effects of the Invention] As described above, the present invention prevents yarn breakage and fluff during spinning by specifying the discharge linear velocity just before each component joins in the composite spinneret in fine core-sheath type composite spinning. This prevents the occurrence of polymer bending and also suppresses the bending phenomenon of the polymer. It is believed that by meeting the requirements of the present invention, the flow after merging became extremely stable, and the discharge behavior and fibrillation behavior after discharge became stable, resulting in improvements. The composite fiber spun according to the present invention does not contain defects such as fuzz in the spun package, so it has good resistance to drawing, drawing twist, generation of fuzz during weaving and knitting, and thread passability in each process. Summer. The final product is of excellent quality, taking advantage of the high value of the fine core-sheath composite fiber. Furthermore, by applying it to high-speed spinning, it is possible to stably obtain fibers that can be used for practical purposes without drawing, and it has become possible to produce high value-added fibers at an extremely low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は本発明で好適に用いられる芯鞘型
溶融複合流を形成させる装置の複合流を形成する
部分を示す。
FIGS. 1 to 6 show a portion of a device for forming a core-sheath type molten composite flow preferably used in the present invention for forming a composite flow.

Claims (1)

【特許請求の範囲】 1 芯と鞘の各成分の和に対する芯成分の容積吐
出量比率が20%以下の芯鞘型溶融複合流を形成
後、吐出、冷却、引取りを行なう熱可塑性重合体
の溶融紡糸において、合流する際の各成分が下記
(1)および(2)式を満足する平均吐出線速度であるこ
とを特徴とする複合紡糸方法。 VA≦20 ……(1) VB/VA≦0.08 ……(2) 〔ただし、VAは芯成分の平均吐出線速度(cm/
秒) VBは鞘成分の平均吐出線速度(cm/秒)〕
[Scope of Claims] 1. A thermoplastic polymer that is discharged, cooled, and withdrawn after forming a core-sheath type composite melt flow in which the volumetric discharge ratio of the core component to the sum of each component of the core and sheath is 20% or less. In melt spinning, each component when merging is as follows.
A composite spinning method characterized by an average discharge linear velocity that satisfies equations (1) and (2). V A ≦20 …(1) V B /V A ≦0.08 …(2) [However, V A is the average linear discharge velocity of the core component (cm/
sec) V B is the average discharge linear velocity of the sheath component (cm/sec)]
JP21585186A 1986-09-16 1986-09-16 Conjugate spinning method Granted JPS6375105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21585186A JPS6375105A (en) 1986-09-16 1986-09-16 Conjugate spinning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21585186A JPS6375105A (en) 1986-09-16 1986-09-16 Conjugate spinning method

Publications (2)

Publication Number Publication Date
JPS6375105A JPS6375105A (en) 1988-04-05
JPH043445B2 true JPH043445B2 (en) 1992-01-23

Family

ID=16679324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21585186A Granted JPS6375105A (en) 1986-09-16 1986-09-16 Conjugate spinning method

Country Status (1)

Country Link
JP (1) JPS6375105A (en)

Also Published As

Publication number Publication date
JPS6375105A (en) 1988-04-05

Similar Documents

Publication Publication Date Title
US2604667A (en) Yarn process
US2989798A (en) Filaments of improved dye-receptivity
JP2599847B2 (en) Polyethylene terephthalate type melt blown nonwoven fabric and its manufacturing method
IE23508B1 (en) Fibres and filaments having improved crimp characteristics and method for their production
JP7319470B2 (en) Method for producing spontaneously crimping elastic mixed yarn used for knitting
US3457341A (en) Process for spinning mixed filaments
JPH07501588A (en) Fine denier staple fiber
CN104562275A (en) Porous micro-fine denier nylon 6 POY filament yarns and preparation method thereof
US6432340B1 (en) High speed melt-spinning of fibers
JPH043445B2 (en)
US3300448A (en) Polyamide of enhanced dyeability containing phenyl phosphonic acid and nu-amino ethylpiperazine
US4436688A (en) Process for melt-spinning of synthetic polymers
JPH0116926B2 (en)
CA1290521C (en) Process for manufacturing yarns by meltspinning polyethylene terephthalate
JPH09137317A (en) Melt-spinning apparatus for ultrafine multifilament yarn, spinning therefor and production of the same yarn
JPH02112409A (en) Production of poly-p-phenylene terephthalamide fiber
JPH0120243B2 (en)
JPS58163714A (en) Preparation of flat yarn
JPS61138720A (en) Production of antistatic polyester composite fiber
JP2004197261A (en) Melt-spinning method and spinneret therefor
JPS6342913A (en) Production of combined filament yarn of different shrinkage
JPS6215327A (en) High-specific gravity conjugate fiber
JPH04222203A (en) Spinneret for combined filament yarn having different fineness
JPH07324226A (en) Production of blend fiber of polyhexamethylene adipamide with polyepsilon-caproamide having high stability with time
JPS6257907A (en) Production of hollow ring-shaped conjugated yarn

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees