JPH04344467A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH04344467A
JPH04344467A JP3146741A JP14674191A JPH04344467A JP H04344467 A JPH04344467 A JP H04344467A JP 3146741 A JP3146741 A JP 3146741A JP 14674191 A JP14674191 A JP 14674191A JP H04344467 A JPH04344467 A JP H04344467A
Authority
JP
Japan
Prior art keywords
permanent magnet
case
acceleration
magnetic fluid
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3146741A
Other languages
Japanese (ja)
Inventor
Masatoshi Yoneyama
米山 雅利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3146741A priority Critical patent/JPH04344467A/en
Publication of JPH04344467A publication Critical patent/JPH04344467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide an acceleration sensor with an inspecting function whereby the normal action of the sensor is easily checked before use. CONSTITUTION:A magnetic fluid 11 is sealed in an annular case 10 formed of a nonmagnetic material and an annular permanent magnet 12 attached to the inside of the magnetic fluid 11 in its diametral direction is made to float and is then made still by utilizing the balance between the displacement force of the permanent magnet 12 due to acceleration and the resilient force of the magnetic fluid 11 concentrated in the attached portion of the permanent magnet 12 and this still position is detected by Hall elements 13-16 provided on the outer periphery of the case 10 and acceleration of an object to which the base 10 is fixed is detected. Electromagnetic coils 17, 18 are provided on the inner periphery of the case 10 and the permanent magnet 12 is displaced by transmission of electricity to the coils 17, 18 and the displacement is detected by the Hall elements 13-16 whereby actuation of an acceleration sensor can be readily recognized before the sensor is used.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は物体の加速度を検出する
加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor for detecting the acceleration of an object.

【0002】0002

【従来の技術】従来、この種の装置は、例えば特開平2
−205775号公報に示されているように、非磁性材
料で構成されると共に密閉された円筒状のケース内に、
磁性流体を封入すると共に、この磁性流体内に円形又は
環状の径方向に着磁された永久磁石を浮遊状態で置き、
ケースの加速度による永久磁石の変位力と永久磁石の着
磁箇所に密集した磁性流体の反発力との釣り合いを利用
して永久磁石を静止させ、この静止位置をケースの外周
上に設けたホール素子などの磁気感応素子によって検出
することより、ケースが固定された物体の加速度を検出
するようにしている。
[Prior Art] Conventionally, this type of device has been used, for example, in Japanese Patent Application Laid-Open No.
-205775, inside a sealed cylindrical case made of non-magnetic material,
enclosing a magnetic fluid and placing a circular or annular radially magnetized permanent magnet in a floating state within the magnetic fluid;
The Hall element uses the balance between the displacement force of the permanent magnet due to the acceleration of the case and the repulsive force of the magnetic fluid concentrated in the magnetized part of the permanent magnet to keep the permanent magnet stationary, and this stationary position is provided on the outer periphery of the case. The case is designed to detect the acceleration of an object to which it is fixed by detecting it with a magnetically sensitive element such as a magnetic sensor.

【0003】0003

【発明が解決しようとする課題】上記従来の加速度セン
サにおいては、永久磁石が正常に変位しない、磁気感応
素子が正常に永久磁石の位置を表す信号を出力しないな
どの理由により、同センサが正常に作動しないことがあ
る。そのため、この種の加速度センサを使用する際には
、その使用前に同センサが正常に作動するか否かを検査
する必要があるが、上記従来の加速度センサには前記検
査機能が設けられていないので、同センサの信頼性が劣
るという問題があった。本発明は上記問題に対処するた
めになされたもので、その目的は、正常作動の検査機能
を備えた加速度センサを提供することにある。
[Problems to be Solved by the Invention] In the above-mentioned conventional acceleration sensor, the sensor may not function properly due to reasons such as the permanent magnet not displacing normally or the magnetic sensing element not normally outputting a signal representing the position of the permanent magnet. It may not work properly. Therefore, when using this type of acceleration sensor, it is necessary to test whether the sensor is working properly before use, but the conventional acceleration sensor mentioned above does not have the above-mentioned testing function. There was a problem in that the reliability of the sensor was poor. The present invention has been made to address the above-mentioned problems, and its purpose is to provide an acceleration sensor with a normal operation inspection function.

【0004】0004

【課題を解決するための手段】上記目的を達成するため
に、本発明の構成上の特徴は、非磁性材料により構成さ
れて内部に密閉された空間を形成してなるケースと、前
記ケース内に封入された磁性流体と、前記磁性流体内に
浮遊状態で置かれた永久磁石と、前記ケースの外部に設
けられて前記永久磁石の変位を検出する磁気感応素子と
を備えた加速度センサにおいて、通電により前記永久磁
石を変位させる電磁コイルを前記ケースの近傍に設けた
ことにある。
[Means for Solving the Problems] In order to achieve the above object, the present invention has a case that is made of a non-magnetic material and has a sealed space therein, and An acceleration sensor comprising a magnetic fluid sealed in a magnetic fluid, a permanent magnet placed in a floating state within the magnetic fluid, and a magnetic sensing element provided outside the case to detect displacement of the permanent magnet, An electromagnetic coil that displaces the permanent magnet when energized is provided near the case.

【0005】[0005]

【発明の作用・効果】上記のように構成した本発明にお
いては、加速度センサを使用する前に、電磁コイルを通
電すると、同磁石の電磁力によって永久磁石を変位させ
ることができると同時に、この永久磁石の変位に応じた
信号を磁気感応素子から取り出すことができる。これに
より、永久磁石の正常な変位、磁気感応素子の正常な作
動を確認することができ、加速度センサを使用する前に
、同センサが正常に作動するか否かを簡単に検査できる
ようになり、同センサの信頼性が向上する。
[Operations and Effects of the Invention] In the present invention configured as described above, when the electromagnetic coil is energized before using the acceleration sensor, the permanent magnet can be displaced by the electromagnetic force of the magnet. A signal corresponding to the displacement of the permanent magnet can be extracted from the magnetically sensitive element. This allows you to confirm the normal displacement of the permanent magnet and the normal operation of the magnetic sensing element, making it easy to test whether the acceleration sensor is working properly before using it. , the reliability of the sensor is improved.

【0006】[0006]

【実施例】以下、本発明の一実施例を図面を用いて説明
すると、図1は同実施例に係る加速度センサの外観を示
しており、図2は同センサを横断して示しており、また
図3は同センサを縦断して示している。
[Embodiment] An embodiment of the present invention will be explained below with reference to the drawings. Fig. 1 shows the external appearance of an acceleration sensor according to the embodiment, and Fig. 2 shows a cross section of the sensor. Moreover, FIG. 3 shows the same sensor in a longitudinal section.

【0007】この加速度センサは、アルミニウムなどの
非磁性材料で環状に形成されると共に、その内部に密閉
された環状の空間を有するケース10を備えている。ケ
ース10の内底面には、90度間隔で径方向に延設され
た突起部10a〜10dが一体的に形成されている。ケ
ース10の環状の空間内には、イソパラフィン中にマン
ガン亜鉛フェライト等の超微粒子を分散させた磁性流体
11が封入されると共に、環状に形成された永久磁石1
2が磁性流体11内に浮遊した状態で組み込まれている
。この永久磁石12は90度毎に径方向に着磁され、各
着磁極はケース10の各突起部10a〜10dの間に位
置する。
This acceleration sensor includes a case 10 which is formed into an annular shape from a non-magnetic material such as aluminum and has a sealed annular space inside the case 10. Projections 10a to 10d extending in the radial direction at 90 degree intervals are integrally formed on the inner bottom surface of the case 10. In the annular space of the case 10, a magnetic fluid 11 in which ultrafine particles such as manganese zinc ferrite are dispersed in isoparaffin is sealed, and a permanent magnet 1 formed in an annular shape is enclosed.
2 is incorporated in a suspended state within the magnetic fluid 11. This permanent magnet 12 is magnetized in the radial direction every 90 degrees, and each magnetized pole is located between each of the protrusions 10a to 10d of the case 10.

【0008】ケース10の外周上には、永久磁石12の
各着磁極に対向する位置にて、磁気感応素子を構成する
ホール素子13〜16が固定されており、各ホール素子
13〜16からはリード線13a〜16aを介して永久
磁石12との距離に略比例した電圧信号が出力されるよ
うになっている。また、ケース10の内周上には、永久
磁石12の各着磁極に向けて電磁コイル17,18が設
けられており、同電磁コイル17,18はリード線17
a,18aを介して通電されるようになっている。なお
、この電磁コイル17,18は図示しない非磁性材量で
構成した支持部材などによりケース10に固定されてい
る。
Hall elements 13 to 16 constituting a magnetically sensitive element are fixed on the outer periphery of the case 10 at positions facing each magnetized pole of the permanent magnet 12. A voltage signal approximately proportional to the distance from the permanent magnet 12 is outputted via the lead wires 13a to 16a. Further, electromagnetic coils 17 and 18 are provided on the inner circumference of the case 10, facing each magnetized pole of the permanent magnet 12, and the electromagnetic coils 17 and 18 are connected to the lead wire 17.
18a and 18a. The electromagnetic coils 17 and 18 are fixed to the case 10 by a support member (not shown) made of a non-magnetic material.

【0009】上記のような本実施例に係る加速度センサ
においては、ケース10を環状に形成して、その外周上
にホール素子13〜16を設けると共に、その内周上に
電磁コイル17,18を設けるようにしたので、センサ
装置全体をコンパクトに構成できる。
In the acceleration sensor according to the present embodiment as described above, the case 10 is formed into an annular shape, and the Hall elements 13 to 16 are provided on the outer circumference of the case 10, and the electromagnetic coils 17 and 18 are provided on the inner circumference of the case 10. Since the sensor is provided, the entire sensor device can be configured compactly.

【0010】一方、上記のように構成した本実施例に係
る加速度センサを使用する前には、同センサの検査のた
めに、電磁コイル17,18にリード線17a,18a
を介してそれぞれ通電する。永久磁石12が正常に変位
する状態にあれば、電磁コイル17の前記通電によって
永久磁石12は図2の右又は左に変位し、また電磁コイ
ル18の前記通電によって永久磁石12は図2の上又は
下に変位する。この場合、磁性流体11の密度は永久磁
石12の各着磁極の近傍にて高くなっているため、前記
電磁コイル17,18への通電による永久磁石12の変
位に対して磁性流体11が弾性的な反力として作用し、
永久磁石12は電磁コイル17,18への通電量に応じ
た位置にて静止する。そして、ホール素子13〜16が
正常であれば、各ホール素子13〜16はリード線13
a〜16aを介して前記電磁コイル17,18への通電
量に対応した信号をそれぞれ出力する。
On the other hand, before using the acceleration sensor according to this embodiment configured as described above, in order to inspect the sensor, lead wires 17a and 18a are connected to the electromagnetic coils 17 and 18.
energize each via. If the permanent magnet 12 is in a state of normal displacement, the energization of the electromagnetic coil 17 causes the permanent magnet 12 to be displaced to the right or left in FIG. 2, and the energization of the electromagnetic coil 18 causes the permanent magnet 12 to move upward in FIG. Or displaced downward. In this case, since the density of the magnetic fluid 11 is high in the vicinity of each magnetized pole of the permanent magnet 12, the magnetic fluid 11 is elastic against the displacement of the permanent magnet 12 due to the energization of the electromagnetic coils 17 and 18. acts as a reaction force,
The permanent magnet 12 comes to rest at a position corresponding to the amount of current applied to the electromagnetic coils 17 and 18. If the Hall elements 13 to 16 are normal, each Hall element 13 to 16 is connected to the lead wire 13.
A signal corresponding to the amount of current applied to the electromagnetic coils 17 and 18 is outputted via a to 16a, respectively.

【0011】一方、永久磁石12が正常に変位し得ない
状態にあったり、ホール素子13〜16の動作が正常で
なかったりして、加速度センサが正常に作動し得ない状
態にあれば、電磁コイル17,18への前記通電により
、ホール素子13〜16はリード線13a〜16aを介
して前記電磁コイル17,18の通電量に対応した信号
をそれぞれ出力しない。これにより、加速度センサが正
常な場合における電磁コイル17,18への通電量とホ
ール素子13〜16からの検出信号との関係を予め定め
ておけば、加速度センサの使用前に、同センサが正常に
作動するか否かを簡単に検査することができる。
On the other hand, if the acceleration sensor is not able to operate normally because the permanent magnet 12 cannot be displaced normally or the Hall elements 13 to 16 are not operating normally, the electromagnetic Due to the energization of the coils 17 and 18, the Hall elements 13 to 16 do not output signals corresponding to the amount of energization of the electromagnetic coils 17 and 18 via the lead wires 13a to 16a, respectively. As a result, if the relationship between the amount of current applied to the electromagnetic coils 17 and 18 and the detection signals from the Hall elements 13 to 16 when the acceleration sensor is normal can be determined in advance, it is possible to confirm that the acceleration sensor is normal before using the sensor. You can easily check whether it is working or not.

【0012】上記のような検査に合格した加速度センサ
の使用にあたっては、ケース10の底面又は上面を物体
に固定する。これにより、物体がホール素子13,15
を結ぶ直線方向に加速度をもつと、永久磁石12がケー
ス10に対して同方向と反対方向へ変位して、前記加速
度に比例した力と磁性流体12との反力とが釣り合う位
置にてケース10に対して静止する。そして、ホール素
子13,15が前記永久磁石12の静止位置を検出して
、両素子13,15を結ぶ直線方向の物体の加速度に比
例した信号を出力する。一方、物体がホール素子14,
16を結ぶ直線方向に加速度をもつと、永久磁石12は
同方向と反対方向へ変位して、前記加速度に比例した力
と磁性流体12との反力とが釣り合う位置にてケース1
0に対して静止する。そして、ホール素子14,16が
前記静止位置を検出して、両素子14,16を結ぶ直線
方向の物体の加速度に比例した信号を出力する。その結
果、前記両検出加速度のベクトル和をとれば、永久磁石
12が属する平面内の物体の加速度が検出される。
When using an acceleration sensor that has passed the above inspection, the bottom or top surface of the case 10 is fixed to an object. This causes the object to move through the Hall elements 13 and 15.
When acceleration is applied in a straight line connecting the two, the permanent magnet 12 is displaced in the same direction and the opposite direction with respect to the case 10, and the case 12 is moved at a position where the force proportional to the acceleration and the reaction force of the magnetic fluid 12 are balanced. Stand still for 10. Then, the Hall elements 13 and 15 detect the stationary position of the permanent magnet 12 and output a signal proportional to the acceleration of the object in a straight line connecting both elements 13 and 15. On the other hand, the object is the Hall element 14,
16, the permanent magnet 12 is displaced in the same direction and the opposite direction, and the case 1 is moved at a position where the force proportional to the acceleration and the reaction force of the magnetic fluid 12 are balanced.
Stand still relative to 0. Then, the Hall elements 14 and 16 detect the rest position and output a signal proportional to the acceleration of the object in a straight line connecting both the elements 14 and 16. As a result, by taking the vector sum of both detected accelerations, the acceleration of the object within the plane to which the permanent magnet 12 belongs can be detected.

【0013】また、前記物体に永久磁石12の属する平
面内で回転力が発生する場合もある。この場合、永久磁
石12は前記回転方向と逆方向にケース10に対して回
転しようとするが、前述のように磁性流体11は永久磁
石12の各着磁極の近傍に密集しているので、この密集
した磁性流体11とその両側に位置する突起部10a〜
10dの反発作用により、永久磁石12の回転は防止さ
れる。これにより、前記加速度の検出が良好となる。
[0013] Furthermore, a rotational force may be generated in the object within the plane to which the permanent magnet 12 belongs. In this case, the permanent magnet 12 tries to rotate with respect to the case 10 in the opposite direction to the rotation direction, but since the magnetic fluid 11 is concentrated near each magnetized pole of the permanent magnet 12 as described above, this Dense magnetic fluid 11 and protrusions 10a located on both sides thereof
Rotation of the permanent magnet 12 is prevented by the repulsive action of the magnet 10d. This improves the detection of the acceleration.

【0014】さらに、前記加速度センサを車両に適用す
る場合、ホール素子13,15(又はホール素子14,
16)を結ぶ直線が車両の前後方向になるように、ケー
ス10を車体に固定すれば、車両の前後加速度にしたが
って永久磁石12はホール素子13,15(又はホール
素子14,16)を結ぶ直線上を変位する。また、永久
磁石12は、車両の横加速度にしたがってホール素子1
4,16(又はホール素子13,15)を結ぶ直線上を
変位する。そして、この場合も、永久磁石12は、前記
各加速度に比例した力と磁性流体12との反力とが釣り
合う位置にて静止し、この静止位置をホール素子13〜
16が検出する。したがって、このような上記実施例の
加速度センサの適用によれば、車両の前後加速度及び横
加速度を簡単に独立して取り出すこともできる。
Furthermore, when the acceleration sensor is applied to a vehicle, the Hall elements 13 and 15 (or the Hall elements 14,
16) If the case 10 is fixed to the vehicle body so that the straight line connecting Hall elements 13 and 15 (or Hall elements 14 and 16) is fixed to the vehicle body, the permanent magnet 12 will move along the straight line connecting Hall elements 13 and 15 (or Hall elements 14 and 16) according to the longitudinal acceleration of the vehicle. Displace the top. Further, the permanent magnet 12 moves the Hall element 1 according to the lateral acceleration of the vehicle.
4 and 16 (or Hall elements 13 and 15). In this case as well, the permanent magnet 12 comes to rest at a position where the force proportional to each of the accelerations and the reaction force of the magnetic fluid 12 are balanced, and this resting position is maintained by the Hall elements 13 to 12.
16 detects. Therefore, by applying the acceleration sensor of the above embodiment, the longitudinal acceleration and lateral acceleration of the vehicle can be easily and independently extracted.

【0015】なお、上記実施例においては、直交する2
方向の加速度を検出できるようにした例について説明し
たが、1方向の加速度のみを検出すれば足りる場合には
、永久磁石12の着磁箇所を相対向する一対の箇所にす
ると共に、ホール素子13〜16に代えて相対向する一
対のホール素子のみを用いればよい。また、この場合、
電磁コイル17,18もホール素子に向けた一方のみを
用いるようにすればよい。
[0015] In the above embodiment, two orthogonal
Although an example has been described in which acceleration in one direction can be detected, if it is sufficient to detect acceleration in one direction, the permanent magnet 12 is magnetized at a pair of opposite locations, and the Hall element 13 is .about.16, only a pair of opposing Hall elements may be used. Also, in this case,
It is sufficient to use only one of the electromagnetic coils 17 and 18 facing the Hall element.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の一実施例に係る加速度センサの
外観を示した斜視図である。
FIG. 1 is a perspective view showing the appearance of an acceleration sensor according to an embodiment of the present invention.

【図2】図2は図1の加速度センサの横断平面図である
FIG. 2 is a cross-sectional plan view of the acceleration sensor of FIG. 1;

【図3】図3は図2の3−3線に沿って見た加速度セン
サの縦断正面図ある。
FIG. 3 is a longitudinal sectional front view of the acceleration sensor taken along line 3-3 in FIG. 2;

【符号の説明】[Explanation of symbols]

10…ケース、11…磁性流体、12…永久磁石、13
〜16…ホール素子、17,18…電磁コイル。
10... Case, 11... Magnetic fluid, 12... Permanent magnet, 13
~16... Hall element, 17, 18... Electromagnetic coil.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  非磁性材料により構成されて内部に密
閉された空間を形成してなるケースと、前記ケース内に
封入された磁性流体と、前記磁性流体内に浮遊状態で置
かれた永久磁石と、前記ケースの外部に設けられて前記
永久磁石の変位を検出する磁気感応素子とを備えた加速
度センサにおいて、通電により前記永久磁石を変位させ
る電磁コイルを前記ケースの近傍に設けたことを特徴と
する加速度センサ。
1. A case made of a non-magnetic material and forming a sealed space inside, a magnetic fluid sealed in the case, and a permanent magnet placed in a floating state within the magnetic fluid. and a magnetic sensing element provided outside the case to detect displacement of the permanent magnet, characterized in that an electromagnetic coil for displacing the permanent magnet when energized is provided near the case. acceleration sensor.
JP3146741A 1991-05-22 1991-05-22 Acceleration sensor Pending JPH04344467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3146741A JPH04344467A (en) 1991-05-22 1991-05-22 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3146741A JPH04344467A (en) 1991-05-22 1991-05-22 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH04344467A true JPH04344467A (en) 1992-12-01

Family

ID=15414547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3146741A Pending JPH04344467A (en) 1991-05-22 1991-05-22 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH04344467A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985134B2 (en) 1999-11-03 2006-01-10 Innalabs Technologies, Inc. Computer input device
EP1640728A1 (en) * 2004-09-23 2006-03-29 Innalabs Technologies, Inc. Calibration of an Accelerometer
US7061469B2 (en) 2000-02-24 2006-06-13 Innalabs Technologies, Inc. Method of data input into a computer
US7178399B2 (en) 2004-03-03 2007-02-20 Innalabs Technologies, Inc. Housing for magnetofluidic accelerometer
US7191652B2 (en) 2000-02-24 2007-03-20 Innalabs Technologies, Inc. Magnetofluidic accelerometer with partial filling of cavity with magnetic fluid
US7292223B2 (en) 2000-02-24 2007-11-06 Innalabs Technologies, Inc. Location tracking device
US7296469B2 (en) 2000-02-24 2007-11-20 Innalabs Technologies, Inc. Magnetofluidic accelerometer with active suspension
CN100432677C (en) * 2006-01-28 2008-11-12 华南理工大学机械工程学院 Acceleration sensor
CN110460204A (en) * 2019-08-12 2019-11-15 北京控制工程研究所 A kind of magnetic fluid flywheel and design method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985134B2 (en) 1999-11-03 2006-01-10 Innalabs Technologies, Inc. Computer input device
US7295184B2 (en) 1999-11-03 2007-11-13 Innalabs Technologies, Inc. Computer input device
US7061469B2 (en) 2000-02-24 2006-06-13 Innalabs Technologies, Inc. Method of data input into a computer
US7191652B2 (en) 2000-02-24 2007-03-20 Innalabs Technologies, Inc. Magnetofluidic accelerometer with partial filling of cavity with magnetic fluid
US7292223B2 (en) 2000-02-24 2007-11-06 Innalabs Technologies, Inc. Location tracking device
US7296469B2 (en) 2000-02-24 2007-11-20 Innalabs Technologies, Inc. Magnetofluidic accelerometer with active suspension
US7178399B2 (en) 2004-03-03 2007-02-20 Innalabs Technologies, Inc. Housing for magnetofluidic accelerometer
EP1640728A1 (en) * 2004-09-23 2006-03-29 Innalabs Technologies, Inc. Calibration of an Accelerometer
CN100432677C (en) * 2006-01-28 2008-11-12 华南理工大学机械工程学院 Acceleration sensor
CN110460204A (en) * 2019-08-12 2019-11-15 北京控制工程研究所 A kind of magnetic fluid flywheel and design method
CN110460204B (en) * 2019-08-12 2020-09-18 北京控制工程研究所 Magnetic fluid flywheel and design method

Similar Documents

Publication Publication Date Title
KR101018230B1 (en) Ball-and-socket joint with an angle sensor
EP0799445B1 (en) Input apparatus for a data processing system
US5998989A (en) Device including magnet-biased magnetoresistive sensor and rotatable, magnetized encoder for detecting rotary movements
US5969520A (en) Magnetic ball joystick
US20070214889A1 (en) Magnetofluidic unidirectional accelerometer
US4751459A (en) Magnetic tachometer or accelerometer having highly permeable eddy current flux circuit
JPH0776682B2 (en) Power actuator
JPH04344467A (en) Acceleration sensor
US5229715A (en) Variable reluctance sensor for electromagnetically sensing the rate of movement of an object
JP3404624B2 (en) Magnetic sensor
US20070029996A1 (en) Contactless hall-effect angular position sensor
US2946226A (en) Accelerometers
JPS60133370A (en) Acceleration sensor
JPS62163972A (en) Acceleration sensor
JP3886423B2 (en) Magnetic field detector
JP3501625B2 (en) Detecting device and cylinder device using the same
JPH06213921A (en) Magnetic fluid type acceleration sensor
JPH034108B2 (en)
JPS61167869A (en) Acceleration sensor
JPS58142203A (en) Magnetic body detecting device
JPS63144261A (en) Sensor
JPH02136773A (en) Magnetic sensor
JPH0334691Y2 (en)
JP3867473B2 (en) Attitude sensor
JPH0337512A (en) Detecting apparatus