JPH04343031A - Waveguide for measuring ultrasonic wave and detecting apparatus of liquid surface of liquid material - Google Patents
Waveguide for measuring ultrasonic wave and detecting apparatus of liquid surface of liquid materialInfo
- Publication number
- JPH04343031A JPH04343031A JP3142523A JP14252391A JPH04343031A JP H04343031 A JPH04343031 A JP H04343031A JP 3142523 A JP3142523 A JP 3142523A JP 14252391 A JP14252391 A JP 14252391A JP H04343031 A JPH04343031 A JP H04343031A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- liquid
- transducer
- liquid surface
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 41
- 239000011344 liquid material Substances 0.000 title claims abstract description 7
- 238000005259 measurement Methods 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 11
- 238000013021 overheating Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 9
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000006063 cullet Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、液状物、殊に高温の液
状物を容れた槽や容器内の液面の高さや狭い空間内にお
ける液面などの超音波計測若しくは検知等目的に有効に
利用しうる導波管及び該管を用いた高温液状物の液面検
出装置に関する。[Industrial Application Field] The present invention is effective for purposes such as ultrasonic measurement or detection of the liquid level in a tank or container containing a liquid substance, especially a high-temperature liquid substance, or the liquid level in a narrow space. The present invention relates to a waveguide that can be used for a waveguide and a liquid level detection device for high-temperature liquid material using the waveguide.
【0002】0002
■ 背景
超音波計測は、液面などの高さの検出に広く利用されて
いるが、送受信素子の振動によるエラーを防止するため
、最少検出可能距離として少なくとも30cmは必要で
あるので、対象液面の高さがトランスジューサーから3
0cm未満であるような狭い空間内での距離測定には利
用できない。また、トランスジューサーの送受信素子は
、比較的熱に弱いため、測定環境温度が数百度又はそれ
以上にもなる高温環境下での測定にも利用できない。し
かるに、測定環境温度がそのような高温となる事例は、
工業的に、例えばナトリウム、アルミナ、弗素などの製
造における溶融塩電解法、溶融金属染色法、鋼のシンタ
リングにおける溶融塩類浴、溶融紡糸法では、溶融状態
の繊維素材(ポリアミド、ポリエステル、ポリオレフィ
ン等の合成樹脂)の溶融槽、ホットメルト用接着剤の溶
融槽、ダイキャストにおけるアルミニウム合金の溶融槽
、ガラスカレット溶融用のタンク窯、フロート法板ガラ
スの製造における錫などの低融点金属の溶融槽など、多
数存在する。そしてこれら何れの事例においても、液面
制御が工程管理上重要である。■ Background Ultrasonic measurement is widely used to detect the height of liquid levels, etc., but in order to prevent errors due to vibrations in the transmitting and receiving elements, a minimum detectable distance of at least 30 cm is required. height is 3 from the transducer.
It cannot be used to measure distances in narrow spaces less than 0 cm. Furthermore, the transducer's transmitting and receiving elements are relatively susceptible to heat, and therefore cannot be used for measurements in high-temperature environments where the measurement environment temperature is several hundred degrees or more. However, in cases where the measured environmental temperature is such a high temperature,
Industrially, for example, molten salt electrolysis in the production of sodium, alumina, fluorine, etc., molten metal dyeing methods, molten salt baths in steel sintering, and melt spinning methods use fiber materials in a molten state (polyamide, polyester, polyolefin, etc.). (synthetic resins), hot melt adhesive melting tanks, aluminum alloy melting tanks for die casting, tank kilns for melting glass cullet, melting tanks for low melting point metals such as tin in the manufacture of float plate glass, etc. , there are many. In any of these cases, liquid level control is important for process management.
【0003】■ 従来技術の問題点そこで、超音波計
測が困難な工業分野では、これまで二本の電極を溶融物
内へ差し込み、電極間の電気抵抗や電気容量の変化を利
用して液面の高さを検出する方法(従って、一定の高さ
範囲を検出するためには2組の電極を使用する)が行わ
れて来たが、被溶融物の種類により電極が腐食してしま
って長期の使用に耐えず、さりとて電極材料として白金
などの貴金属を用いると、コストが非常に高くつくとい
う問題があった。加えて、電気抵抗を利用する方法は、
非導電性の対象物には利用できず、また電気容量測定法
は、槽の素材による影響を受けるので用途が限られてお
り、しかも測定データの精度が低いという問題を抱えて
いる。[0003] Problems with conventional technology Therefore, in the industrial field where ultrasonic measurement is difficult, two electrodes have been inserted into the melt and the liquid level has been adjusted by using changes in the electrical resistance and capacitance between the electrodes. (Therefore, two sets of electrodes are used to detect a certain height range.) However, the electrodes corrode depending on the type of material to be melted. If a noble metal such as platinum is used as an electrode material, it cannot withstand long-term use, and the cost becomes extremely high. In addition, the method of using electrical resistance is
It cannot be used for non-conductive objects, and the capacitance measurement method is affected by the material of the tank, so its applications are limited, and the accuracy of the measurement data is low.
【0004】そこで非接触型の液面検出装置として、特
殊な金属による内張りを施された窒化硅素製案内管の内
部に誘導コイルを収めた検出器が、例えばアルミニウム
の熔湯レベルの検出用に開発されているが、高価である
のみでなく、熔湯等と接触する案内管の腐食が著しいた
め、保守費用が非常に高くつくという欠点がある。[0004] Therefore, as a non-contact type liquid level detection device, a detector in which an induction coil is housed inside a silicon nitride guide tube lined with a special metal is used, for example, to detect the level of molten aluminum. Although it has been developed, it has the disadvantage that it is not only expensive, but also that the guide tube that comes into contact with the molten metal etc. is severely corroded, resulting in very high maintenance costs.
【0005】[0005]
【発明が解決しようとする課題】以上の実情に鑑み、本
発明は、超音波測定用の新規な導波管を開発することに
より、非接触的測定技術の適用範囲を広げ、超音波を利
用した、狭い空間内や高温環境下における液面高さ検出
技術における上記問題点の欠点を解決することを目的と
する。[Problems to be Solved by the Invention] In view of the above circumstances, the present invention expands the scope of application of non-contact measurement technology by developing a new waveguide for ultrasonic measurement, and utilizes ultrasonic waves. The purpose of this invention is to solve the above-mentioned drawbacks in liquid level detection technology in narrow spaces and in high-temperature environments.
【0006】[0006]
■ 概念
上述のように、融点の高い素材や材料を溶融させるため
の溶融槽内は、一般に窒素等の不活性ガスを用いてシー
ルするのが普通である。またシールを行わない場合でも
、熱効率を高めるため可及的閉鎖的とするのが通常であ
る。このため、槽内の空間温度が非常に高くなるので、
常温の空間内や海水中の距離測定に常用される超音波ト
ランスジューサーを設置することはできない。また狭い
空間内での超音波計測は、トランスジューサーから対象
液面までの距離が短すぎる関係で発射エコーによる影響
を受け、これまた計測が不可能である。このように、超
音波による計測は、環境温度及び測定距離という二つの
因子により技術的に困難であるとされていた。■ Concept As mentioned above, the interior of a melting tank for melting raw materials with high melting points is generally sealed using an inert gas such as nitrogen. Furthermore, even when sealing is not performed, it is normal to make the chamber as closed as possible in order to increase thermal efficiency. For this reason, the space temperature inside the tank becomes extremely high.
It is not possible to install ultrasonic transducers, which are commonly used for distance measurement in spaces at room temperature or in seawater. Furthermore, ultrasonic measurement in a narrow space is affected by emitted echoes because the distance from the transducer to the target liquid surface is too short, making measurement impossible. As described above, measurement using ultrasonic waves has been considered technically difficult due to two factors: environmental temperature and measurement distance.
【0007】しかるに、本発明者は研究の結果、管の一
端から発した超音波は、たとえ管が湾曲していても主と
して管の内部を伝わって目標物に到達し、その反射音の
一部が発振位置へ戻ること、及び反射音の波形を解析す
ることによって、発振位置から目標物までの距離を計測
できることを見出した。更に進んで、発明者は、管の出
口側開口面が測定対象物に対し傾斜しているとき、対象
物から最初に反射されて来る音波は、該管の突端からの
反響の影響を受けなくなるという注目すべき事実を突き
止めた。However, as a result of research, the present inventor found that even if the tube is curved, the ultrasonic waves emitted from one end of the tube mainly travel inside the tube and reach the target object, and some of the reflected sound We discovered that the distance from the oscillation position to the target object can be measured by returning to the oscillation position and analyzing the waveform of the reflected sound. Going further, the inventor found that when the exit side opening surface of the tube is inclined with respect to the object to be measured, the sound waves that are first reflected from the object are no longer affected by the echoes from the tip of the tube. We discovered a remarkable fact.
【0008】即ち、図1〜図5は、上記知見に到達した
実験事実の大要を示す。図1の導波管なしにトランスジ
ューサー2から48kHZ の超音波を目標(ブロック
壁)Tに発射したときの反射波は、トランスジューサー
の先端から壁面までの実測値179.5cm に対し液
晶表示装置に182.5 cmとして現れ、殆ど誤差が
ないことが判る。因に、この誤差は測定時の温度、気圧
などによるものであるので、補正が可能である。That is, FIGS. 1 to 5 show a summary of the experimental facts that led to the above knowledge. When a 48 kHz ultrasonic wave is emitted from the transducer 2 to the target (block wall) T without a waveguide in Figure 1, the reflected wave is 179.5 cm, which is an actual measurement from the tip of the transducer to the wall surface, compared to the liquid crystal display. It appears as 182.5 cm, indicating that there is almost no error. Incidentally, since this error is caused by the temperature, atmospheric pressure, etc. at the time of measurement, it can be corrected.
【0009】次に図2のトランスジューサーを短いパイ
プ3内に収めて同様に超音波を発射した場合は、意外な
ことにパイプの先端3aからの反射波(ノイズ)が強く
現れ、液晶表示装置(LCD)に70.26 cmの距
離(実際の値は68.5cm)を表示した。Next, when the transducer of FIG. 2 is housed in a short pipe 3 and ultrasonic waves are emitted in the same way, unexpectedly, a strong reflected wave (noise) from the tip 3a of the pipe appears, and the liquid crystal display device (LCD) displayed a distance of 70.26 cm (actual value was 68.5 cm).
【0010】次いで、図3のようにパイプ3の全長を4
00 cmに伸ばしたところ、実長609 cmに対し
400.36cmなる値が表示され、この場合も管3の
先端部からの反射波が測定を妨害した。Next, as shown in FIG. 3, the total length of the pipe 3 is 4
00 cm, a value of 400.36 cm was displayed for the actual length of 609 cm, and in this case as well, the reflected wave from the tip of the tube 3 interfered with the measurement.
【0011】しかし図4のように、図3のパイプの出口
側先端部3aを45°にカットすると、これまた意外な
ことに、パイプ先端部からの反射波が消滅し、実長と実
測値が一致した。However, as shown in FIG. 4, when the tip 3a on the outlet side of the pipe in FIG. matched.
【0012】そこで図5の如く、先端をカットしたパイ
プを90°曲げてテストしたところ、パイプの曲がりに
よるノイズは発生するものの、最初の反射波は、ほぼ正
確にトランスジューサーから壁面までの実距離に対応し
ていること(実距離520 cmに対し、表示距離51
5 cm)が判った。従って、トランスジューサーから
パイプ先端までの距離が既知であれば、該先端から測定
対象面までの距離を殆ど正確に測定できることになる。
因に、溶融塩、熔湯などの物体は、密度が大きく、かつ
殆ど平面でもあるので、反射波の強度は一層大である。Therefore, as shown in Figure 5, when we tested a pipe with the tip cut off by 90 degrees, we found that although noise was generated due to the bending of the pipe, the first reflected wave almost accurately corresponded to the actual distance from the transducer to the wall. (actual distance 520 cm, display distance 51 cm)
5 cm) was found. Therefore, if the distance from the transducer to the tip of the pipe is known, the distance from the tip to the surface to be measured can be almost accurately measured. Incidentally, since objects such as molten salt and molten metal have a high density and are almost flat, the intensity of the reflected waves is even greater.
【0013】■ 概要
以上の知見に基づき、本発明は、先端部が斜めに開口す
る湾曲管であることを特徴とする超音波測定用導波管及
び先端部が斜めに開口する湾曲した導波管の該開口部を
液状物を容れた槽の液面に臨ませると共に、該管の他端
開口部に超音波トランスジューサーを密着させて取り付
けたことを特徴とする液状物の液面検出装置を要旨とす
る。以下、発明を構成する諸要素等につき項分けして説
明する。■ Overview Based on the above findings, the present invention provides a waveguide for ultrasonic measurement characterized by being a curved tube with an oblique opening at the tip, and a curved waveguide with an oblique opening at the tip. A liquid level detection device for a liquid material, characterized in that the opening of the tube faces the liquid level of a tank containing the liquid, and an ultrasonic transducer is closely attached to the opening at the other end of the tube. The gist is: Hereinafter, various elements constituting the invention will be explained in terms of sections.
【0014】■ 超音波トランスジューサーここに超
音波トランスジューサーとしては、超音波技術において
電気的エネルギー⇔機械的エネルギーの相互変換機能を
有する既存の又は今後開発さるべき材料、例えばニッケ
ル振動子、フェライト振動子などの磁気ひずみ振動子、
ニオブ酸リチウム、酸化亜鉛等の圧電振動子、ジルコン
酸・チタン酸鉛セラミックのような電気ひずみ振動子が
利用される。発振には、例えばこれらの材料から作られ
たコアの巻線に直流のバイアス磁界をかけてパルス発振
させ、目標物からのパルスを同一素子で受けて電気信号
に変換し、これを増幅及び検波してブラウン管オッシロ
スコープ等で観察したり又はA/D変換器を通じてデジ
タル表示させたり又は所定の閾値を超えた際に警報を発
しさせたりすることができる。これら超音波パルスの発
振や受信したパルスの増幅、表示、解析などの技術は周
知の事項であるので、詳説は省略する。[0014] Ultrasonic transducer The ultrasonic transducer here includes existing or to be developed materials that have the function of mutually converting electrical energy and mechanical energy in ultrasonic technology, such as nickel vibrators and ferrite vibrators. magnetostrictive oscillators, such as
Piezoelectric vibrators such as lithium niobate and zinc oxide, and electrostrictive vibrators such as zirconate/lead titanate ceramics are used. For oscillation, for example, a direct current bias magnetic field is applied to a core winding made of these materials to cause pulse oscillation, and the same element receives the pulse from the target and converts it into an electrical signal, which is then amplified and detected. It can be observed with a cathode ray tube oscilloscope, displayed digitally through an A/D converter, or an alarm can be issued when a predetermined threshold value is exceeded. Techniques for oscillating ultrasonic pulses and amplifying, displaying, and analyzing received pulses are well known, so detailed explanations will be omitted.
【0015】■ 導波管
導波管となるのは、通常の引き抜き法等で作成された継
ぎ目のない鋼管、銅管黄銅管、チタン管などが推奨され
る。管の内面における傷は、パルス波形を乱して観測を
困難にするので、シーム鋼管などの使用は避けるべきで
ある。可能ならば、電解研磨などにより内面が平滑に仕
上げられた管の使用が望ましい。[0015] Waveguide It is recommended that the waveguide be a seamless steel pipe, copper pipe, brass pipe, titanium pipe, etc. made by a normal drawing method. Since scratches on the inner surface of the tube will disturb the pulse waveform and make observation difficult, the use of seamed steel tubes should be avoided. If possible, it is desirable to use a tube whose inner surface has been finished smooth by electrolytic polishing or the like.
【0016】以上の導波管の一端は、対象溶融物等を容
れた槽又は容器の側壁部又は天井若しくは天板部を貫き
、その開口面は斜めに対象液状物に臨む。従って、該液
状物に臨む管は、湾曲して槽の壁又は天井若しくは天板
を貫く必要がある。湾曲すべき角度は普通90°である
が、特に直角に限る訳ではなく、取付位置如何によって
は、より大きな又は小さい曲げ角度、二以上の同一又は
反対方向への屈曲、三次元空間内での曲がりなど、種々
の湾曲状態をとることができる。[0016] One end of the above-mentioned waveguide penetrates the side wall, ceiling, or top plate of a tank or container containing the target molten material, and its opening face obliquely faces the target liquid. Therefore, the pipe facing the liquid must be curved and pass through the wall, ceiling, or top plate of the tank. The angle to be bent is usually 90°, but it is not limited to a right angle, and depending on the mounting position, it may be possible to bend at a larger or smaller angle, bend in two or more directions in the same or opposite directions, or bend in three-dimensional space. It can assume various curved states, such as bending.
【0017】また管の先端開口面の角度は、通常計測対
象面に対し45°前後であるが、格別正確に45°近辺
であらねばならぬことはない。なお、湾曲部の凹凸は波
形を乱す主因となるので、可能な限り一体の湾曲管とす
るのが好ましいが、実質的に平滑であれば継ぎ目付管も
利用できる。[0017]Although the angle of the opening surface of the distal end of the tube is usually around 45° with respect to the surface to be measured, it does not have to be particularly precisely around 45°. Incidentally, since the unevenness of the curved portion is the main cause of disturbing the waveform, it is preferable to use an integral curved tube as much as possible, but a jointed tube can also be used as long as it is substantially smooth.
【0018】上記トランスジューサーは、槽外の管の他
端に、好ましくはOリング等のシール乃至緩衝手段を介
して取り付けられる。音波の伝達効率を上げるため、ト
ランスジューサーの外壁は管の内壁に密着しているのが
望ましい。The transducer is attached to the other end of the tube outside the tank, preferably via a seal or buffer means such as an O-ring. To increase the efficiency of sound wave transmission, the outer wall of the transducer is preferably in close contact with the inner wall of the tube.
【0019】[0019]
【作用】トランスジューサーからの超音波パルスは、導
波管内を伝わって槽内の液面に達した後、反射されて再
び導波管内を伝わってトランスジューサーに戻り、送信
から受信までの経時的遅れから対象物までの距離が観測
される。図5の示す実験事実から、導波管内を傳播して
受信素子に到達するまでの反射波の内、最先の反射波が
管の先端面から対象物(目標)までの距離に対応してい
るので、該最初の反射波が帰還するまでの時間を計測す
ると共に、トランスジューサーの位置から管の突端まで
の距離を差し引くことにより、該突端部から目標までの
距離を正確に計測することができる。なお、最初の反射
波が帰還してから10ミリ秒程度の間、ノイズ音が観測
されるが、最初の反射波のみをピックアップするように
電気的に構成することにより、これらの後続ノイズによ
る悪影響を回避することができる。[Operation] Ultrasonic pulses from the transducer travel through the waveguide, reach the liquid level in the tank, are reflected, travel through the waveguide again, and return to the transducer. The distance from the delay to the object is observed. From the experimental facts shown in Figure 5, among the reflected waves that propagate inside the waveguide and reach the receiving element, the earliest reflected wave corresponds to the distance from the tip of the tube to the object (target). Therefore, by measuring the time until the first reflected wave returns and subtracting the distance from the transducer position to the tip of the tube, it is possible to accurately measure the distance from the tip to the target. can. Note that noise is observed for about 10 milliseconds after the first reflected wave returns, but by electrically configuring it to pick up only the first reflected wave, the negative effects of these subsequent noises can be suppressed. can be avoided.
【0020】かつ本発明装置では、トランスジューサー
の突端位置から対象液面までの距離だけが問題で、導波
管の長さによる影響を受けないため、例えばホットメル
ト接着剤容器などの狭い空間内での液面測定が可能とな
るのみでなく、導波管の長さを充分長く取れるためトラ
ンスジューサーを高温による劣化から保護することがで
きるから、長期に亙り安定した液面の検出が可能である
。なお、管の外周面を冷媒で冷却するか又はトランスジ
ューサーの管内挿入部の周囲乃至先端から30cm程度
の距離以内の管壁に孔を穿ち、該孔を経て管内に冷たい
気体を送りこむことにより、トランスジューサーの過熱
をより軽減することができる。後の冷却方式を採用する
場合、送気さるべき気体としては、必要に応じ不活性ガ
スが選択される。In addition, with the device of the present invention, only the distance from the tip of the transducer to the target liquid surface matters, and is not affected by the length of the waveguide, so it can be used in narrow spaces such as hot melt adhesive containers. Not only is it possible to measure the liquid level at a high temperature, but the length of the waveguide can be made long enough to protect the transducer from deterioration due to high temperatures, making stable liquid level detection possible over a long period of time. be. In addition, by cooling the outer peripheral surface of the tube with a refrigerant, or by drilling a hole in the tube wall within a distance of about 30 cm from the circumference or tip of the tube insertion part of the transducer, and sending cold gas into the tube through the hole, Overheating of the transducer can be further reduced. When the latter cooling method is adopted, an inert gas is selected as the gas to be supplied as necessary.
【0021】■ 用途
以上の説明から明らかなように、本発明導波管及びその
超音波計測技術への応用対象は、主として狭い空間内に
おける液面の検知や高温環境下における液面の検出であ
るが、より一般的な液面検出及び液体と類似の挙動を示
す粉粒体の表面検知にも利用できることは当然である。
例えば、粉粒体を容れた槽やホッパーなど、超音波トラ
ンスジューサーが粉塵による悪影響を受ける恐れのある
環境下における表面検出の目的にも当然応用できる。[0021] Applications As is clear from the above description, the waveguide of the present invention and its application to ultrasonic measurement technology are mainly used for detecting liquid levels in narrow spaces and in high-temperature environments. However, it goes without saying that it can also be used for more general liquid level detection and surface detection of powder and granular materials that exhibit behavior similar to liquids. For example, it can naturally be applied to surface detection in environments where ultrasonic transducers may be adversely affected by dust, such as in tanks or hoppers containing powder or granular materials.
【0022】[0022]
【実施例】以下、実施例により発明実施の態様を説明す
るが、例示は単に説明用のものであって、発明思想の制
限又は限定を意味するものではない。[Examples] Hereinafter, embodiments of the invention will be explained with reference to Examples. However, the examples are merely for explanation and do not mean any restriction or restriction on the idea of the invention.
【0023】図6は、本発明装置とその適用法の一例を
模型的に示す図である。FIG. 6 is a diagram schematically showing an example of the apparatus of the present invention and its application method.
【0024】装置1は、トランスジューサー2と導波管
3とからなる。該トランスジューサー2は、導波管3の
外端開口部に緊密に嵌挿されている。なお、トランスジ
ューサー2には、パルス発生器4、増幅器5及び指示装
置6が夫々接続されている。The device 1 consists of a transducer 2 and a waveguide 3. The transducer 2 is tightly fitted into the outer end opening of the waveguide 3. Note that a pulse generator 4, an amplifier 5, and an indicating device 6 are connected to the transducer 2, respectively.
【0025】前記導波管3は、水平に伸びて高温液状物
貯槽8の側壁8aを貫いた後、下方へ向け直角に湾曲3
bし、その先端開口面3aは、約45°の角度で該貯槽
8内の溶融液状物9の液面9aに臨む。The waveguide 3 extends horizontally and penetrates the side wall 8a of the high-temperature liquid storage tank 8, and then curves downward at a right angle 3.
b, and its tip opening surface 3a faces the liquid surface 9a of the molten liquid material 9 in the storage tank 8 at an angle of about 45°.
【0026】送気管7はトランスジューサー2よりやや
前方の導波管壁に開口7aし、外部圧力源よりの弱加圧
気体を導波管内に送り込んで該管を冷却することにより
、トランスジューサーの過熱を防止する。The air supply pipe 7 has an opening 7a in the waveguide wall slightly in front of the transducer 2, and weakly pressurized gas from an external pressure source is sent into the waveguide to cool the pipe, thereby cooling the transducer. Prevent overheating.
【0027】トランスジューサー2を作動させると、超
音波Sは導波管3内を伝わって液面9aに達した後、そ
の反射波S’は再び導波管内を通って受信素子5に達し
、増幅器5で増幅された後、指示装置6に導波管3の突
端部3a’ から液面までの距離を指示させる。When the transducer 2 is activated, the ultrasonic wave S travels through the waveguide 3 and reaches the liquid level 9a, and then the reflected wave S' passes through the waveguide again and reaches the receiving element 5. After being amplified by the amplifier 5, the indicating device 6 is made to indicate the distance from the tip end 3a' of the waveguide 3 to the liquid surface.
【0028】[0028]
【発明の効果】以上説明した通り、本発明は、超音波測
定用の新規な導波管を開発すると共に、該導波管を利用
して狭い空間内や高温環境下における高温の液面の高さ
を非接触的に検出する手段を提供できたことにより、関
連産業の工程管理の向上及び合理化に貢献する。As explained above, the present invention not only develops a new waveguide for ultrasonic measurement, but also utilizes the waveguide to measure high-temperature liquid levels in narrow spaces or in high-temperature environments. By providing a means to detect height in a non-contact manner, it will contribute to improving and rationalizing process management in related industries.
【図1】〜[Figure 1] ~
【図5】本発明装置の原理を説明する図。FIG. 5 is a diagram explaining the principle of the device of the present invention.
【図6】本発明装置とその適用法の一例を模型的に示す
図。FIG. 6 is a diagram schematically showing an example of the device of the present invention and its application method.
1:発明装置の全体 2:1のトランスジューサー 3:導波管 3a:3の先端部 3a’ 3の突端部 3b:3の湾曲部 4:パルス発生器 5:増幅器 6:指示装置 7:送気管 7a:7の開口部 8:高温液状物貯槽 8a:8の側壁 9:高温液状物 9a:9の液面 1: Overall invention device 2:1 transducer 3: Waveguide 3a: Tip of 3 3a' 3 tip 3b: Curved part of 3 4: Pulse generator 5: Amplifier 6: Instruction device 7: Air pipe 7a:7 opening 8: High temperature liquid storage tank 8a: Side wall of 8 9: High temperature liquid 9a:9 liquid level
Claims (5)
ことを特徴とする超音波測定用導波管。1. A waveguide for ultrasonic measurement, characterized in that the tip is a curved tube with an oblique opening.
1の導波管。2. The waveguide of claim 1, wherein the waveguide is curved at right angles from the bath.
2の導波管。3. The waveguide according to claim 1 or 2, wherein the inside of the waveguide is smooth.
管の該開口部を液状物を容れた槽の液面に臨ませると共
に、該管の他端開口部に超音波トランスジューサーを密
着させて取り付けたことを特徴とする液状物の液面検出
装置。4. A curved waveguide having an obliquely opened tip, with the opening thereof facing the liquid level of a tank containing a liquid, and an ultrasonic transducer being closely attached to the opening at the other end of the tube. A liquid level detection device for a liquid material, characterized in that the liquid level detection device is installed in a horizontal position.
はそれよりやや前方に気体送入用の入り口を有する請求
項4の装置。5. The apparatus of claim 4, wherein the waveguide has an inlet for introducing gas around or slightly in front of the transducer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3142523A JPH04343031A (en) | 1991-05-17 | 1991-05-17 | Waveguide for measuring ultrasonic wave and detecting apparatus of liquid surface of liquid material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3142523A JPH04343031A (en) | 1991-05-17 | 1991-05-17 | Waveguide for measuring ultrasonic wave and detecting apparatus of liquid surface of liquid material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04343031A true JPH04343031A (en) | 1992-11-30 |
Family
ID=15317342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3142523A Pending JPH04343031A (en) | 1991-05-17 | 1991-05-17 | Waveguide for measuring ultrasonic wave and detecting apparatus of liquid surface of liquid material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04343031A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6073975A (en) * | 1997-01-22 | 2000-06-13 | Hansgrohe Ag | Method of fabricating a hollow body and a hollow body |
CN104755175A (en) * | 2012-10-25 | 2015-07-01 | 格瑞克明尼苏达有限公司 | Hot melt level sensor and sensor housing |
CN109470768A (en) * | 2018-11-20 | 2019-03-15 | 西北工业大学 | Metal material dynamic solidification sound field detection device and method under vibration condition |
-
1991
- 1991-05-17 JP JP3142523A patent/JPH04343031A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6073975A (en) * | 1997-01-22 | 2000-06-13 | Hansgrohe Ag | Method of fabricating a hollow body and a hollow body |
CN104755175A (en) * | 2012-10-25 | 2015-07-01 | 格瑞克明尼苏达有限公司 | Hot melt level sensor and sensor housing |
JP2015532941A (en) * | 2012-10-25 | 2015-11-16 | グラコ ミネソタ インコーポレーテッド | Hot melt level sensor and sensor housing |
CN109470768A (en) * | 2018-11-20 | 2019-03-15 | 西北工业大学 | Metal material dynamic solidification sound field detection device and method under vibration condition |
CN109470768B (en) * | 2018-11-20 | 2019-07-23 | 西北工业大学 | Metal material dynamic solidification sound field detection device and method under vibration condition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1123946A (en) | Ultrasonic transducer with reference reflector | |
US4770038A (en) | Ultrasonic depth gauge for liquids under high pressure | |
US6517240B1 (en) | Ultrasonic thermometer system | |
US20080019217A1 (en) | Sonar transducer | |
EP0096912B1 (en) | A method of monitoring the wear of a refractory lining of a metallurgical furnace wall | |
US10739172B2 (en) | Measuring device | |
JPS62165148A (en) | Ultrasonic detector and method of inclusion in melt | |
CN110514271A (en) | A kind of adjustable ultrasonic level gage | |
US8061196B2 (en) | Bottom up contact type ultrasonic continuous level sensor | |
US6246154B1 (en) | Ultrasonic transducer | |
US4261197A (en) | Probe for the ultrasonic inspection of molten aluminum | |
US5962952A (en) | Ultrasonic transducer | |
JPH04343031A (en) | Waveguide for measuring ultrasonic wave and detecting apparatus of liquid surface of liquid material | |
AU6394980A (en) | Probe for the ultrasonic inspection of moulten aluminum | |
Parker et al. | Application of pulse-echo ultrasonics to locate the solid/liquid interface during solidification and melting | |
US5651285A (en) | Liquid level sensor having a plunger core | |
JP2526341B2 (en) | Measuring method of molten metal surface level with ultrasonic level meter | |
JPH11101631A (en) | Electrode tip position measuring method in electric furnace, and measuring sensor | |
CN110261424A (en) | A kind of material melting point measuring device based on ultrasound | |
Koo et al. | A new measurement system of very high temperature in atomic pile using ultrasonic delay time | |
JPS6128841A (en) | Corrosion testing apparatus | |
JPH07318436A (en) | Temperature distribution measuring method for high temperature object and ultrasonic wave sensor therefor | |
KR20090095796A (en) | The Apparatus of Scale Thickness using Free Ultrasonic on Tube inside | |
CA1173569A (en) | Method of detecting hydrogen embrittlement of zirconium alloy | |
JPH10142028A (en) | Reactor water level gauge |