JPH04341243A - Amenity evaluation system and amenity evaluation/ control system - Google Patents

Amenity evaluation system and amenity evaluation/ control system

Info

Publication number
JPH04341243A
JPH04341243A JP3113152A JP11315291A JPH04341243A JP H04341243 A JPH04341243 A JP H04341243A JP 3113152 A JP3113152 A JP 3113152A JP 11315291 A JP11315291 A JP 11315291A JP H04341243 A JPH04341243 A JP H04341243A
Authority
JP
Japan
Prior art keywords
physiological
estimating
comfort
evaluation
sensory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3113152A
Other languages
Japanese (ja)
Other versions
JP3053455B2 (en
Inventor
Hiromi Terashita
寺下 裕美
Mieko Osuga
美恵子 大須賀
Hiromi Shimono
下野 太海
Chie Akashi
明石 千恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3113152A priority Critical patent/JP3053455B2/en
Publication of JPH04341243A publication Critical patent/JPH04341243A/en
Application granted granted Critical
Publication of JP3053455B2 publication Critical patent/JP3053455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To obtain the amenity evaluation system which can execute more exactly the amenity evaluation in accordance with various places extending from a work environment of an office and a plant, etc., to a dwelling space. CONSTITUTION:The amenity evaluation system is constituted of a physiological reaction measuring means 11 for detecting a physiological reaction and executing a signal processing, a living body signal processing means 14 for processing a physiological reaction and calculating plural necessary parameters, a physiological quantity estimating means 15 for estimating the internal physiological quantity of a living body from these parameters, a sense quantity estimating means 16 for furthermore estimating the amenity as plural sense quantities on a multi-dimensional semantic space from the estimated physiological quantity, and am output means 17 for outputting its result, and by using the internal physiological quantity estimated from the physiological reaction, the amenity is estimated as plural sense quantities on the multi-dimensional semantic space.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、医療分野・健康機器
産業のみならず、オフィスや自動車運転時など作業空間
や居住環境などの種々の場面において、快適性を高め精
神的ストレスを軽減することを目的とし、生理反応によ
りリアルタイムで快適性や負の快適性であるストレス度
を計測・評価する快適性評価システム、及び快適な環境
になるよう環境制御を行なう快適性評価・制御システム
に関するものである。
[Industrial Application Field] This invention is useful not only in the medical field and health equipment industry, but also in various situations such as work spaces and living environments such as offices and driving a car, to improve comfort and reduce mental stress. The purpose of this project is to provide a comfort evaluation system that measures and evaluates the degree of stress, which is comfort and negative comfort, in real time based on physiological reactions, and a comfort evaluation and control system that controls the environment to create a comfortable environment. be.

【0002】0002

【従来の技術】作業・居住環境において、快適性を高め
ストレスを低減する方策を開発するために、生理反応を
用いてリアルタイムで状態評価を行い、評価に基づき必
要に応じて主観評価と外部環境データを収集するものに
、特願平3−79600号明細書による、相関データ収
集システムがあり、図4に示す。
[Conventional technology] In order to develop measures to increase comfort and reduce stress in working and living environments, physiological reactions are used to evaluate conditions in real time, and based on the evaluation, subjective evaluations and external environment A system for collecting data is a correlation data collection system disclosed in Japanese Patent Application No. 3-79600, which is shown in FIG.

【0003】図において、41は心電図、脈波、脳波等
を用い、生理反応を計測する生理反応計測部、42は計
測した生理反応を複数の内部パラメータセット(内部生
理量)に変換し、これを予め設定されたパターン群と照
合し、評価結果によりデータ収集制御信号を発生するデ
ータ評価部、43はデータ制御収集信号に基づき申告値
及び外部環境データを収集するデータ収集部、44は収
集したデータを保存するデータ記録部である。
In the figure, 41 is a physiological reaction measurement unit that measures physiological reactions using electrocardiograms, pulse waves, brain waves, etc., and 42 is a physiological reaction measurement unit that converts the measured physiological reactions into a plurality of internal parameter sets (internal physiological quantities). 43 is a data collection unit that collects declared values and external environmental data based on the data control collection signal; 44 is a data collection unit that collects declared values and external environmental data based on the data control collection signal; This is a data recording unit that stores data.

【0004】次に動作について説明する。生理反応計測
部41により計測された生理反応は、データ評価部42
において、必要な複数の指標が抽出され、生理反応モデ
ルに入力され、生体の内部パラメータセット(内部生理
量)に変換される。さらに、この内部パラメータセット
のパターンと、予め設定されたパターン群のプリセット
パターン(どのパターンの時にデータ収集するか)とが
照合され、一致した時にデータ収集制御信号が出力され
る。データ収集部43はこれに基づき申告値(主観評価
データ)と外部環境データ(室温、湿度など)を収集し
、データ記録部44に記録される。
Next, the operation will be explained. The physiological reaction measured by the physiological reaction measurement section 41 is processed by the data evaluation section 42.
In the step, a plurality of necessary indicators are extracted, input into a physiological reaction model, and converted into a set of internal parameters (internal physiological quantities) of the living body. Further, the pattern of this internal parameter set is compared with a preset pattern (when to collect data) of a preset pattern group, and when they match, a data collection control signal is output. Based on this, the data collection section 43 collects declared values (subjective evaluation data) and external environment data (room temperature, humidity, etc.), and records them in the data recording section 44 .

【0005】[0005]

【発明が解決しようとする課題】従来例の相関データ収
集システムは、生理反応を用い、生体の内部状態を連続
的に評価し、必要な時のみ申告値(主観評価データ)と
外部環境データの収集を目的としたものであるが、生体
の内部状態の評価値(推定された内部生理量)から、さ
らにこれらを入力として、快適性や負の快適性であるス
トレス度に相当する、多次元意味空間上の複数の評価軸
における感覚量を推定する等、快適性の評価まで行なう
ものではない。また、快適性やストレス度は、オフィス
やプラントでの作業場面から居住空間などでは、最適な
度合が異なり、例えば作業場面では、適度な緊張感や覚
醒水準を保つことが要求され、居間や風呂場ではリラッ
クス度が高まることが望ましいなど、種々の場面に対応
した評価を行なうことが必要である。
[Problems to be Solved by the Invention] Conventional correlation data collection systems continuously evaluate the internal state of living organisms using physiological reactions, and only when necessary do they compare declared values (subjective evaluation data) and external environmental data. Although it is intended for collection, from the evaluation value of the internal state of the living body (estimated internal physiological amount), and using these as input, a multidimensional value corresponding to stress level, which is comfort or negative comfort, is calculated. It does not go as far as evaluating comfort, such as estimating sensory quantities on multiple evaluation axes in a semantic space. In addition, the optimal degree of comfort and stress differs depending on work situations in offices and plants, as well as living spaces. It is necessary to conduct evaluations that correspond to various situations, such as the fact that it is desirable to increase the degree of relaxation in the workplace.

【0006】さらに、内部生理量から感覚量を推定する
際、性別や年齢などにより基準値が異なるものがあるな
ど、計測対象となる人の属性(性別・年齢・性格特性な
ど)を考慮する必要がある。
Furthermore, when estimating sensory quantities from internal physiological quantities, it is necessary to take into consideration the attributes of the person being measured (gender, age, personality characteristics, etc.), as there are cases where reference values differ depending on gender, age, etc. There is.

【0007】また、感覚量推定に際して、その時の被測
定者による申告値を用い、キャリブレーションを行なう
方が信頼性の高い感覚量が得られる。
[0007] Furthermore, when estimating the sensory amount, a more reliable sensory amount can be obtained by performing calibration using the value reported by the subject at that time.

【0008】また更に、これらを加味して推定された快
適性評価値に基づいて、制御信号を生成し、空調や室内
温度、照明やAV機器の調節をするなど、リアルタイム
で環境制御を行なうものはなかった。
[0008] Furthermore, a control signal is generated based on the comfort evaluation value estimated by taking these factors into account, and the environment is controlled in real time, such as by adjusting air conditioning, room temperature, lighting, and AV equipment. There was no.

【0009】この発明は、上記のような問題点を解消す
るためになされたもので、オフィスやプラントなどの作
業環境から居住空間に至る種々の場面に応じて、生理反
応を用いてヒトの内部状態を連続的に評価し、さらに内
部状態の変化に応じて、空調や照明、AV機器などの環
境をリアルタイムで制御し、快適でストレスの少ない環
境を創出するシステムを得ることを目的としている。
[0009] This invention was made to solve the above-mentioned problems, and uses physiological reactions to control human internal organs in various situations, from work environments such as offices and plants to living spaces. The aim is to create a system that continuously evaluates the condition and controls the environment such as air conditioning, lighting, and AV equipment in real time according to changes in the internal condition, creating a comfortable and stress-free environment.

【0010】0010

【課題を解決するための手段】この発明に係る快適性評
価システムは、生理反応を計測する生理反応計測手段、
計測した生理反応から複数の評価パラメータを算出する
生体信号処理手段、これらのパラメータから生体の内部
生理量を推定する生理量評価手段、推定された内部生理
量からさらに、複数の感覚量よりなる快適性を推定する
感覚量推定手段、及びその結果を出力する出力手段を備
えたものである。
[Means for Solving the Problems] A comfort evaluation system according to the present invention includes a physiological reaction measuring means for measuring a physiological reaction;
A biological signal processing means that calculates a plurality of evaluation parameters from the measured physiological reactions, a physiological amount evaluation means that estimates the internal physiological amount of the living body from these parameters, and a comfort evaluation method that includes a plurality of sensory quantities based on the estimated internal physiological amount. The present invention is equipped with a sensory amount estimating means for estimating sex, and an output means for outputting the result.

【0011】また、上記快適性評価システムに加え、計
測対象となる人の属性情報(性別・年齢・性格特性)を
入力する属性入力手段を設けるとよい。
[0011] In addition to the above-mentioned comfort evaluation system, it is preferable to provide attribute input means for inputting attribute information (gender, age, personality characteristics) of the person to be measured.

【0012】また、上記各快適性評価システムに加え、
被測定者の申告値(主観データ)の入力を行なう申告値
入力手段を設けてもよい。
[0012] In addition to the above-mentioned comfort evaluation systems,
A declared value input means for inputting the declared value (subjective data) of the person to be measured may be provided.

【0013】また、上記各快適性評価システムに加え、
この快適性評価システムの快適性評価結果に基づき、環
境制御のための信号を発生する制御信号発生手段、及び
制御信号を複数の環境情報に変換して環境制御を行なう
環境制御手段を設け、快適性評価・制御システムとする
とよい。
[0013] In addition to the above-mentioned comfort evaluation systems,
Based on the comfort evaluation results of this comfort evaluation system, a control signal generation means for generating a signal for environmental control and an environment control means for controlling the environment by converting the control signal into a plurality of environmental information are provided. It is recommended to use it as a sexual evaluation/control system.

【0014】[0014]

【作用】この発明における快適性評価システムは、生理
反応を計測して複数の評価パラメータを求めて推定した
生体の内部生理量を用い、さらにこれらより、快適性を
多次元意味空間上の複数の感覚量として推定するので、
作業場面から居住空間など種々の場面に応じてより正確
な快適性評価を行なうことができる。
[Operation] The comfort evaluation system of the present invention uses the internal physiological quantities of the living body estimated by measuring physiological reactions and determining multiple evaluation parameters. Since it is estimated as a sensory quantity,
More accurate comfort evaluations can be performed in various situations, from work situations to living spaces.

【0015】また、内部生理量の推定、及び感覚量の推
定に際して、属性(性別・年齢・性格特性など個人の特
性)を加味した評価を行えば、より正確な快適性評価を
行なうことができる。
[0015] Furthermore, when estimating the internal physiological amount and the sensory amount, if an evaluation is performed that takes attributes (individual characteristics such as gender, age, and personality characteristics) into consideration, a more accurate comfort evaluation can be performed. .

【0016】また、感覚量の推定に際し、被測定者の申
告値に基づくキャリブレーションを行えば、より正確な
快適性評価を行なうことができる。
[0016] Furthermore, when estimating the amount of sensation, if calibration is performed based on the values reported by the person to be measured, more accurate comfort evaluation can be performed.

【0017】さらに、多次元意味空間上の複数の感覚量
として得られた快適性評価結果を用い、これに基づいて
環境制御信号を生成し、環境制御を行なえば、オフィス
やプラントなどの作業環境から居住空間に至る種々の場
面に応じて、生理反応を用いてヒトの内部状態を連続的
に評価し、さらに内部状態の変化に応じて、空調や照明
、AV機器などの環境をリアルタイムで制御し、快適で
ストレスの少ない環境を創出することが可能となる。
Furthermore, if the comfort evaluation results obtained as a plurality of sensory quantities on a multidimensional semantic space are used and an environmental control signal is generated based on this and environmental control is performed, the work environment of an office or plant can be improved. The system uses physiological reactions to continuously evaluate a person's internal state in a variety of situations, from the environment to the living space, and then controls the environment, such as air conditioning, lighting, and AV equipment, in real time according to changes in the internal state. This makes it possible to create a comfortable and stress-free environment.

【0018】[0018]

【実施例】【Example】

実施例1.図1は、請求項1記載の発明に請求項2、及
び請求項3記載の発明が付加した場合の一実施例のブロ
ック図である。図1において、11は生理反応計測部、
14は生体信号処理部、15は生理量推定部、16は感
覚量推定部、17は出力部である。なお、請求項2の発
明により、属性入力部12、属性情報121が付加され
る。さらに、請求項3の発明により、申告値入力部13
、申告値131が付加される。
Example 1. FIG. 1 is a block diagram of an embodiment in which the inventions of claims 2 and 3 are added to the invention of claim 1. In FIG. 1, 11 is a physiological reaction measurement section;
14 is a biological signal processing section, 15 is a physiological amount estimating section, 16 is a sensory amount estimating section, and 17 is an output section. Note that according to the invention of claim 2, an attribute input section 12 and attribute information 121 are added. Furthermore, according to the invention of claim 3, the declared value input section 13
, a declared value 131 is added.

【0019】次に動作について説明する。生理反応計測
部11にて、複数のセンサーないしトランスデューサに
て検出された脳波、心電図、脈波などの複数の生理反応
は、増幅器で増幅され、フィルタリングなどの前処理が
行われたのち、さらに生体信号処理部14にて、脳波α
波パワーや周波数、瞬時心拍値、呼吸性心拍変動、T波
波高、呼吸波形、脈波高などの評価パラメータが算出さ
れ、生理量推定部15に入力され、生体の内部生理量に
変換され、心臓血管系指標より交感系・副交感系の活動
性やバランス、脳波より中枢系の賦活度などが、生理学
的メカニズムを考慮して推定され、内部生理量として出
力される。
Next, the operation will be explained. In the physiological reaction measurement unit 11, multiple physiological reactions such as brain waves, electrocardiograms, and pulse waves detected by multiple sensors or transducers are amplified by an amplifier, subjected to preprocessing such as filtering, and then further processed into the living body. In the signal processing unit 14, the brain wave α
Evaluation parameters such as wave power and frequency, instantaneous heart rate value, respiratory heart rate variability, T wave height, respiratory waveform, and pulse wave height are calculated and input to the physiological quantity estimation unit 15, where they are converted into internal physiological quantities of the living body and are The activity and balance of the sympathetic and parasympathetic systems are estimated from vascular system indicators, and the degree of activation of the central system is estimated from brain waves, taking into account physiological mechanisms, and output as internal physiological quantities.

【0020】推定された内部生理量は、感覚量推定部1
6に入力され、快適性や負の快適性であるストレス度が
、多次元意味空間上の複数の評価軸における感覚量とし
て推定される。すなわち覚醒水準や眠気度、疲労度、精
神的負担度、身体的快適度などの軸上の感覚量に変換さ
れる。感覚量の推定に際しては、生理量と感覚量との相
関関係を評価するモデルにより行なう。この生理量・感
覚量相関関係評価モデルは、重回帰や重判別などの線形
推定の他、定量的に記述したものを用いたり、生理量セ
ットに対して感覚量セットを与えるルックアップ方式の
表を予め用意しておくことや、あるいは、生理量の入力
に対し、感覚量を出力するニューラルネットを構成して
もできる。快適性は、例えばプラントで作業では適度の
緊張感と覚醒水準、居間や風呂場でのくつろぎの場合リ
ラックス度など、種々の場面で重要となる評価軸と範囲
感覚量が異なるが、多次元意味空間上の複数の評価軸を
用い、これらの手法により、その重みづけを変えること
で対応できる。この感覚量推定結果が快適性評価値とし
て、出力部17より出力され、快適性評価がリアルタイ
ムで行われる。
The estimated internal physiological amount is calculated by the sensory amount estimating unit 1.
6, and the stress level, which is comfort or negative comfort, is estimated as a sensory quantity on a plurality of evaluation axes in a multidimensional semantic space. In other words, it is converted into sensory quantities on axes such as alertness level, sleepiness level, fatigue level, mental burden level, and physical comfort level. When estimating the sensory amount, a model that evaluates the correlation between the physiological amount and the sensory amount is used. This physiological quantity/sensory quantity correlation evaluation model uses linear estimation such as multiple regression and multiple discrimination, as well as quantitative descriptions, and a look-up table that provides a set of sensory quantities for a set of physiological quantities. Alternatively, a neural network may be constructed that outputs a sensory amount in response to an input of a physiological amount. Comfort is important in various situations, such as the appropriate level of tension and alertness when working in a plant, and the degree of relaxation when relaxing in the living room or bathroom, but the evaluation axis and range of sensation vary, but it has a multidimensional meaning. This can be done by using multiple evaluation axes in space and changing their weighting using these methods. This sensory amount estimation result is output from the output unit 17 as a comfort evaluation value, and the comfort evaluation is performed in real time.

【0021】さらに、請求項2の発明により、属性入力
部12より予め入力された、被測定者の属性情報121
、例えば性別・年齢・体型・運動量・職種や仕事の形態
・性格や行動特性などが、生理量推定部15及び感覚量
推定部16における推定において用いられる。まず生理
量推定部15における推定では、例えば呼吸性心拍変動
などのように年齢の影響があるものは、各評価パラメー
タ各々について特に考慮すべきものは、その属性別の修
正係数表を予め用意し、係数を表から抽出し各評価パラ
メータもしくは推定した生理量に乗じるなどして用いる
ほか、入力データそのものとして用いる。さらに、感覚
量推定部16における推定において、例えば老人や子供
は少しストレス度の評価域値を緩くするなど、多次元意
味空間上の評価軸の各々の軸について影響する要因と程
度を、属性別の修正係数表として予め用意し、各感覚量
推定時に乗じるなど係数として扱う。また感覚量推定部
の入力データに追加して用いることもできる。
Furthermore, according to the invention of claim 2, the attribute information 121 of the subject input in advance from the attribute input section 12
For example, gender, age, body type, amount of exercise, type of job, type of work, personality, behavioral characteristics, etc. are used in the estimation by the physiological amount estimating section 15 and the sensory amount estimating section 16. First, in the estimation in the physiological quantity estimating unit 15, for parameters that are affected by age, such as respiratory heart rate variability, for each evaluation parameter that should be particularly considered, a table of correction coefficients for each attribute is prepared in advance. The coefficients are extracted from the table and used by multiplying each evaluation parameter or estimated physiological amount, or are used as input data itself. Furthermore, in the estimation by the sensory amount estimation unit 16, the factors and degree of influence on each evaluation axis in the multidimensional semantic space are determined by attributes, such as setting the evaluation threshold of stress level a little looser for elderly people and children. A correction coefficient table is prepared in advance, and used as a coefficient by which it is multiplied when estimating each sensory quantity. It can also be used in addition to the input data of the sensory quantity estimator.

【0022】さらに、請求第3の発明により、申告値入
力部13より、経時的もしくは断続的に、被測定者の主
観評価データである申告値131が、感覚量推定部16
に入力され、推定に際して、申告値に基づいた感覚量の
キャリブレーションに用いられる。申告値の入力方法は
、レバーによるアナログ値や、ボタン押しなどによる段
階値などで行われる。キャリブレーションは、例えば測
定開始前に個人の評価の重みづけ係数を決めるために、
数個の質問に対しての回答を得、これらより修正係数を
求め、感覚量推定に際して用い、さらにこれを逐次また
は断続的に繰り返す。或は、推定に用いる内部生理量と
共に、入力として用いる。これらにより、個人間での評
価の差異や個人内での評価の変動に対応することができ
る。申告値は、感覚量として推定される評価軸の一部(
ストレスや疲労感など)の他、推定する以外の評価軸に
対する回答が挙げられる。また、申告値は、被測定者自
身による入力の他、観察者が入力してもよい。
Furthermore, according to the third aspect of the present invention, the declared value 131 which is the subject's subjective evaluation data is input from the declared value input unit 13 over time or intermittently to the sensory quantity estimation unit 16.
and is used to calibrate the sensory quantity based on the declared value during estimation. Declared values can be entered using analog values using a lever or step values using button presses. Calibration is used, for example, to determine weighting factors for individual evaluations before starting measurement.
Answers to several questions are obtained, correction coefficients are determined from these, used in estimating the amount of sensation, and this process is repeated sequentially or intermittently. Alternatively, it is used as an input together with the internal physiological amount used for estimation. With these, it is possible to deal with differences in evaluations between individuals and fluctuations in evaluations within individuals. The declared value is a part of the evaluation axis estimated as a sensory quantity (
(stress, fatigue, etc.), as well as responses to evaluation axes other than estimation. Furthermore, the declared value may be input by the person to be measured or by the observer.

【0023】実施例2.図2は、請求項1に請求項2、
請求項3、請求項4が付加した場合の一実施例のブロッ
ク図である。図2において、図1の構成要素に加え、さ
らに請求項4の発明により、制御信号発生部18、環境
制御部19、外部環境パラメータ測定部20が付加され
る。生理反応計測部11にて計測された生理反応より、
生体信号処理部14にて評価パラメータが算出され、生
理量推定部15に入力されて内部生理量に変換され、感
覚量推定部16に入力され、複数の感覚量が推定され、
出力部17より出力された快適性評価結果は、さらに、
個々の環境制御信号発生部18において、例えば空調や
照明、AV機器などを制御するための信号に変換され、
環境制御信号181として環境制御部19に送られる。 環境制御部19では、各種のセンサーよりなる外部環境
パラメータ測定部20からの環境情報を加味しながら、
空調器や照明、AV機器などに制御を加える。制御対象
としては、空調器の空気質や温度・湿度や香りの発生、
照明の明るさや方向、点灯する照明数、AV機器のBG
Mの音量や提示する画像情報の選択や、その他OA機器
による作業時のCRT表示画面(見やすくしたり、メッ
セージを表示したりなど表示画像の制御)や作業量など
が挙げられるが、実施例に限るものではなく、その一部
や別のものでもよい。環境制御信号181は、複数の快
適性評価値、すなわち推定された感覚量の組み合せによ
り、個々の制御対象に対する程度の他、制御する対象の
組み合せを規定する。例えばストレス度と疲労度が高ま
ったら、照明を少し落しBGMを軽く流し、鎮静効果を
促す香りを発生し、覚醒水準が下がったら、照明を明る
くし、BGMは軽快な音楽に替え、リフレッシュ効果の
ある香りや冷気を発生させるなどの制御を行なう。
Example 2. FIG. 2 shows claim 1, claim 2,
It is a block diagram of an example when Claim 3 and Claim 4 are added. In FIG. 2, in addition to the components shown in FIG. 1, a control signal generation section 18, an environment control section 19, and an external environment parameter measurement section 20 are further added. From the physiological reaction measured by the physiological reaction measuring section 11,
Evaluation parameters are calculated in the biological signal processing unit 14, inputted to the physiological amount estimating unit 15, converted to internal physiological amounts, inputted to the sensory amount estimating unit 16, and a plurality of sensory quantities are estimated,
The comfort evaluation results output from the output unit 17 further include:
In each environmental control signal generation unit 18, it is converted into a signal for controlling, for example, air conditioning, lighting, AV equipment, etc.
It is sent to the environment control section 19 as an environment control signal 181. The environment control unit 19 takes into account environmental information from an external environment parameter measurement unit 20 consisting of various sensors.
Add control to air conditioners, lighting, AV equipment, etc. Control targets include air quality, temperature, humidity, and scent generation from air conditioners.
Brightness and direction of lighting, number of lights lit, BG of AV equipment
Examples include the volume of M, the selection of image information to be presented, the CRT display screen when working with other OA equipment (control of the display image, such as making it easier to see, displaying messages, etc.), the amount of work, etc. It is not limited to this, and it may be a part of it or something else. The environmental control signal 181 defines the degree of each control object as well as the combination of objects to be controlled, based on a combination of a plurality of comfort evaluation values, that is, estimated sensory quantities. For example, when stress and fatigue levels increase, the lights may be lowered a little and background music played lightly to create a scent that promotes a sedative effect; when alertness level decreases, the lights may be brightened and the background music may be replaced with light music to create a refreshing effect. It performs controls such as generating a certain scent or cool air.

【0024】実施例3.図3は、この発明の快適性評価
・制御システムをプラント監視作業における快適性評価
・制御へ応用した例を示したものである。H/Wとして
は、図のように、生理反応計測部11、属性入力部12
、申告値入力部13及び外部環境パラメータ測定部20
を一体化し、これとテレメータで通信するワークステー
ションなどに生体信号処理部14、生理量推定部15、
感覚量推定部16、出力部17をもたせるように構成し
てもよい。
Example 3. FIG. 3 shows an example in which the comfort evaluation/control system of the present invention is applied to comfort evaluation/control in plant monitoring work. As shown in the figure, the H/W includes a physiological reaction measurement section 11 and an attribute input section 12.
, declared value input section 13 and external environment parameter measurement section 20
A biological signal processing section 14, a physiological amount estimating section 15,
It may be configured to include a sensory amount estimation section 16 and an output section 17.

【0025】[0025]

【発明の効果】以上のように、この発明によれば、生理
反応の検出と信号処理を行なう生理反応計測手段、生理
反応を処理して複数の必要パラメータを算出する生体信
号処理手段、これらのパラメータから生体の内部生理量
を推定する生理量推定手段、推定された生理量からさら
に快適性を多次元意味空間上の複数の感覚量として推定
する感覚量推定手段、及びその結果を出力する出力手段
より快適性評価システムを構成し、生理反応より推定さ
れた内部生理量を用い、快適性を多次元意味空間上の複
数の感覚量として推定したので、作業場面から居住空間
など種々の場面に応じて、より正確な快適性評価を行な
える効果がある。
[Effects of the Invention] As described above, according to the present invention, there is a physiological reaction measuring means for detecting a physiological reaction and signal processing, a biological signal processing means for calculating a plurality of necessary parameters by processing the physiological reaction, and a biological signal processing means for calculating a plurality of necessary parameters by processing the physiological reaction. Physiological amount estimating means for estimating the internal physiological amount of a living body from parameters, sensory amount estimating means for further estimating comfort from the estimated physiological amount as a plurality of sensory amounts on a multidimensional semantic space, and an output for outputting the results. We constructed a comfort evaluation system based on the method, and estimated comfort as multiple sensory quantities in a multidimensional semantic space using internal physiological quantities estimated from physiological reactions. Accordingly, there is an effect that more accurate comfort evaluation can be performed.

【0026】また、請求項1の発明に、計測対象となる
人の属性情報(性別・年齢・性格特性など個人のという
性)を入力する属性入力手段を付加すれば、感覚量の推
定に際して、属性を加味した評価を行え、より正確な快
適性評価を行える効果がある。
[0026] Furthermore, if attribute input means for inputting attribute information of the person to be measured (gender, age, personality characteristics, etc.) is added to the invention of claim 1, when estimating the sensory quantity, This has the effect of making it possible to perform evaluations that take attributes into consideration, allowing for more accurate comfort evaluations.

【0027】また、請求項1または請求項2の発明に申
告値入力手段を付加することにより、感覚量の推定に際
し、申告値に基づいたキャリブレーションを行なえば、
より正確な快適性評価を行なえる効果がある。
Furthermore, by adding a declared value input means to the invention of claim 1 or claim 2, if calibration is performed based on the declared value when estimating the sensory amount,
This has the effect of enabling more accurate comfort evaluation.

【0028】また、請求項4の発明である快適性評価・
制御システムは、請求項1ないし請求項3のいずれかの
発明に、環境制御のための信号を発生する制御信号発生
手段、及び制御信号を複数の環境情報に変換して環境制
御を行なう環境制御手段を付加することにより、正確な
快適性評価値を用いて環境制御を行なうので、オフィス
やプラントなどの作業環境から居住空間に至る種々の場
面に応じて、生理反応を用いてヒトの内部状態を連続的
に評価し、さらに内部状態の変化に応じて、空調や照明
、AV機器などの環境をリアルタイムで制御し、快適で
ストレスの少ない環境を創出できる効果がある。
[0028] Furthermore, the comfort evaluation and
The control system according to any one of claims 1 to 3 includes a control signal generating means for generating a signal for environmental control, and an environmental control for converting the control signal into a plurality of environmental information to perform environmental control. By adding a method, we can control the environment using accurate comfort evaluation values, so we can monitor the internal state of humans using physiological reactions in various situations, from work environments such as offices and plants to living spaces. It is effective in creating a comfortable and stress-free environment by continuously evaluating the environment and controlling the environment such as air conditioning, lighting, and AV equipment in real time according to changes in internal conditions.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例1による快適性評価システム
を示すブロック図である。
FIG. 1 is a block diagram showing a comfort evaluation system according to a first embodiment of the present invention.

【図2】この発明の実施例2による快適性評価・制御シ
ステムを示すブロック図である。
FIG. 2 is a block diagram showing a comfort evaluation/control system according to a second embodiment of the present invention.

【図3】この発明の実施例3による、プラント監視作業
における快適性評価・制御システムを示す説明図である
FIG. 3 is an explanatory diagram showing a comfort evaluation/control system in plant monitoring work according to a third embodiment of the present invention.

【図4】従来の相関データ収集システムを示すブロック
図である。
FIG. 4 is a block diagram illustrating a conventional correlation data collection system.

【符号の説明】[Explanation of symbols]

11  生理反応計測部 12  属性入力部 13  申告値入力部 14  生体信号処理部 15  生理量推定部 16  感覚量推定部 17  出力部 18  環境制御信号発生部 19  環境制御部 20  外部環境パラメータ測定部 11 Physiological reaction measurement section 12 Attribute input section 13 Declared value input section 14 Biosignal processing unit 15 Physiological amount estimation section 16 Sensory quantity estimation part 17 Output section 18 Environmental control signal generation section 19 Environmental control department 20 External environment parameter measurement section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  生理反応を計測する生理反応計測手段
、計測した生理反応を処理して複数の評価パラメータを
算出する生体信号処理手段、これらのパラメータから生
体の内部生理量を推定する生理量推定手段、推定された
内部生理量からさらに、快適性を多次元意味空間上の感
覚量として推定する感覚量推定手段、及び推定結果を出
力する出力手段より構成された快適性評価システム。
1. Physiological reaction measuring means for measuring a physiological reaction, biological signal processing means for calculating a plurality of evaluation parameters by processing the measured physiological reaction, and physiological amount estimation for estimating the internal physiological amount of a living body from these parameters. A comfort evaluation system comprising means, a sensory quantity estimating means for further estimating comfort as a sensory quantity on a multidimensional semantic space from the estimated internal physiological quantity, and an output means for outputting the estimation result.
【請求項2】  計測対象となる人の属性情報を入力す
る属性入力手段を備え、生体の内部生理量の推定、及び
感覚量の推定に際して、属性を考慮した推定を行なうこ
とを特徴とする請求項1記載の快適性評価システム。
[Claim 2] A claim characterized in that the method comprises an attribute input means for inputting attribute information of a person to be measured, and performs estimation taking attributes into consideration when estimating an internal physiological amount of a living body and estimating a sensory amount. Comfort evaluation system described in item 1.
【請求項3】  申告値入力手段を備え、感覚量推定に
際して、被測定者の申告値に基づくキャリブレーション
を行なうことを特徴とする請求項1または2記載の快適
性評価システム。
3. The comfort evaluation system according to claim 1, further comprising a declared value input means, and performing calibration based on the reported value of the subject when estimating the sensory amount.
【請求項4】  請求項1ないし3のいずれかに記載の
快適性評価システムによりリアルタイムで快適性を多次
元意味空間上の感覚量として推定し、その結果に基づき
環境制御のための制御信号を発生する制御信号発生手段
、及び上記制御信号を複数の環境情報に変換して環境制
御を行なう環境制御手段を備えた快適性評価・制御シス
テム。
4. The comfort evaluation system according to any one of claims 1 to 3 estimates comfort as a sensory quantity in a multidimensional semantic space in real time, and generates a control signal for environmental control based on the result. A comfort evaluation/control system comprising: a control signal generating means; and an environment control means: converting the control signal into a plurality of pieces of environmental information to control the environment.
JP3113152A 1991-05-17 1991-05-17 Comfort evaluation system and comfort evaluation / control system Expired - Fee Related JP3053455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3113152A JP3053455B2 (en) 1991-05-17 1991-05-17 Comfort evaluation system and comfort evaluation / control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3113152A JP3053455B2 (en) 1991-05-17 1991-05-17 Comfort evaluation system and comfort evaluation / control system

Publications (2)

Publication Number Publication Date
JPH04341243A true JPH04341243A (en) 1992-11-27
JP3053455B2 JP3053455B2 (en) 2000-06-19

Family

ID=14604889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3113152A Expired - Fee Related JP3053455B2 (en) 1991-05-17 1991-05-17 Comfort evaluation system and comfort evaluation / control system

Country Status (1)

Country Link
JP (1) JP3053455B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304616A (en) * 2001-04-05 2002-10-18 Motosan Engineering Kk Music selection support method, program, and recording medium
JP2007170761A (en) * 2005-12-22 2007-07-05 Chugoku Electric Power Co Inc:The Air conditioning system and air conditioner
JP2010533007A (en) * 2007-04-04 2010-10-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Stress level judgment based on human performance in games or puzzles
US7959567B2 (en) 2000-06-16 2011-06-14 Bodymedia, Inc. Device to enable quick entry of caloric content
US8708904B2 (en) 2000-06-16 2014-04-29 Bodymedia, Inc. Device utilizing data of a user's context or activity to determine the user's caloric consumption or expenditure
US9168001B2 (en) 2002-08-22 2015-10-27 Bodymedia, Inc. Adhesively mounted apparatus for determining physiological and contextual status
CN106950908A (en) * 2012-08-28 2017-07-14 戴尔斯生活有限责任公司 For improve with can the associated happiness of living environment system, method and object
US9763581B2 (en) 2003-04-23 2017-09-19 P Tech, Llc Patient monitoring apparatus and method for orthosis and other devices
JP2017164215A (en) * 2016-03-15 2017-09-21 オムロン株式会社 Interest degree estimation apparatus, interest degree estimation method, program, and recording medium
JP2018518205A (en) * 2015-03-03 2018-07-12 ルノー エス.ア.エス.Renault S.A.S. Apparatus and method for predicting alertness level of driver of powered vehicle
WO2022038776A1 (en) * 2020-08-21 2022-02-24 日本電気株式会社 Stress inference device, inference method, program, and storage medium
US11649977B2 (en) 2018-09-14 2023-05-16 Delos Living Llc Systems and methods for air remediation
US11668481B2 (en) 2017-08-30 2023-06-06 Delos Living Llc Systems, methods and articles for assessing and/or improving health and well-being
US11763401B2 (en) 2014-02-28 2023-09-19 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments
US11844163B2 (en) 2019-02-26 2023-12-12 Delos Living Llc Method and apparatus for lighting in an office environment
US11898898B2 (en) 2019-03-25 2024-02-13 Delos Living Llc Systems and methods for acoustic monitoring

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8708904B2 (en) 2000-06-16 2014-04-29 Bodymedia, Inc. Device utilizing data of a user's context or activity to determine the user's caloric consumption or expenditure
US7959567B2 (en) 2000-06-16 2011-06-14 Bodymedia, Inc. Device to enable quick entry of caloric content
US8073707B2 (en) 2000-06-16 2011-12-06 Bodymedia, Inc. System for detecting, monitoring, and reporting an individual's physiological or contextual status
JP2002304616A (en) * 2001-04-05 2002-10-18 Motosan Engineering Kk Music selection support method, program, and recording medium
US9168001B2 (en) 2002-08-22 2015-10-27 Bodymedia, Inc. Adhesively mounted apparatus for determining physiological and contextual status
US9165117B2 (en) 2002-10-09 2015-10-20 Bodymedia, Inc. Method and apparatus for identifying and reporting a physiological condition of an individual utilizing physiological and contextual parameters
US9763581B2 (en) 2003-04-23 2017-09-19 P Tech, Llc Patient monitoring apparatus and method for orthosis and other devices
JP2007170761A (en) * 2005-12-22 2007-07-05 Chugoku Electric Power Co Inc:The Air conditioning system and air conditioner
JP2010533007A (en) * 2007-04-04 2010-10-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Stress level judgment based on human performance in games or puzzles
US11587673B2 (en) 2012-08-28 2023-02-21 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments
CN106950908A (en) * 2012-08-28 2017-07-14 戴尔斯生活有限责任公司 For improve with can the associated happiness of living environment system, method and object
US11763401B2 (en) 2014-02-28 2023-09-19 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments
JP2018518205A (en) * 2015-03-03 2018-07-12 ルノー エス.ア.エス.Renault S.A.S. Apparatus and method for predicting alertness level of driver of powered vehicle
JP2017164215A (en) * 2016-03-15 2017-09-21 オムロン株式会社 Interest degree estimation apparatus, interest degree estimation method, program, and recording medium
CN107847195B (en) * 2016-03-15 2020-06-12 欧姆龙株式会社 Attention estimation device, attention estimation method, and recording medium
US20180368748A1 (en) * 2016-03-15 2018-12-27 Omron Corporation Degree-of-interest estimation device, degree-of-interest estimation method, program, and storage medium
CN107847195A (en) * 2016-03-15 2018-03-27 欧姆龙株式会社 Care degree estimation unit, care degree method of estimation, program and recording medium
US11668481B2 (en) 2017-08-30 2023-06-06 Delos Living Llc Systems, methods and articles for assessing and/or improving health and well-being
US11649977B2 (en) 2018-09-14 2023-05-16 Delos Living Llc Systems and methods for air remediation
US11844163B2 (en) 2019-02-26 2023-12-12 Delos Living Llc Method and apparatus for lighting in an office environment
US11898898B2 (en) 2019-03-25 2024-02-13 Delos Living Llc Systems and methods for acoustic monitoring
WO2022038776A1 (en) * 2020-08-21 2022-02-24 日本電気株式会社 Stress inference device, inference method, program, and storage medium

Also Published As

Publication number Publication date
JP3053455B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
JP3310498B2 (en) Biological information analyzer and biological information analysis method
Wang et al. Experimental investigation about effect of emotion state on people's thermal comfort
JPH04341243A (en) Amenity evaluation system and amenity evaluation/ control system
US8608655B2 (en) Sleep evaluation device
JP5828111B2 (en) Psychological state evaluation device, psychological state evaluation system, and program
JP5241598B2 (en) Psychological state evaluation device
JP6414393B2 (en) Sleep evaluation device
JP2593625B2 (en) Biological information automatic identification device
US8271077B1 (en) Learning optimization using biofeedback
CN110650685B (en) Method for assessing psychophysiological state of human
RU2711976C1 (en) Method for remote recognition and correction using a virtual reality of a psychoemotional state of a human
JPH07231880A (en) Stress evaluation method and device therefor
US20190357792A1 (en) Sensibility evaluation apparatus, sensibility evaluation method and method for configuring multi-axis sensibility model
JPH0515598A (en) Personal comfort control apparatus
JP2772413B2 (en) Correlation survey system
JP2965618B2 (en) Stress degree judgment device
Wang et al. Investigating the neurophysiological effect of thermal environment on individuals’ performance using electroencephalogram
JP3523007B2 (en) Satisfaction measurement system and feedback device
JP2015171394A (en) Sleep depth determination device
CN112006652B (en) Sleep state detection method and system
CN112294263B (en) Unstable sleep state evaluation method model based on brain wave frequency
Dourou et al. IoT-enabled analysis of subjective sound quality perception based on out-of-lab physiological measurements
JP3050624B2 (en) Correlation data collection system
Lee et al. Relationship between psycho-physiological indicators and task performance under various indoor space designs for telecommuting environment by introducing mixed-reality
JP7435965B2 (en) Information processing device, information processing method, learning model generation method, and program

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees