JPH0434122B2 - - Google Patents

Info

Publication number
JPH0434122B2
JPH0434122B2 JP60128044A JP12804485A JPH0434122B2 JP H0434122 B2 JPH0434122 B2 JP H0434122B2 JP 60128044 A JP60128044 A JP 60128044A JP 12804485 A JP12804485 A JP 12804485A JP H0434122 B2 JPH0434122 B2 JP H0434122B2
Authority
JP
Japan
Prior art keywords
pieces
pressure
resistant layer
optical fiber
fiber unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60128044A
Other languages
Japanese (ja)
Other versions
JPS61292111A (en
Inventor
Yasushi Funaki
Jiro Ikeda
Kenichi Mochizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP60128044A priority Critical patent/JPS61292111A/en
Priority to US07/026,365 priority patent/US4867528A/en
Priority to PCT/JP1986/000296 priority patent/WO1986007469A1/en
Priority to EP86903597A priority patent/EP0224598B1/en
Publication of JPS61292111A publication Critical patent/JPS61292111A/en
Publication of JPH0434122B2 publication Critical patent/JPH0434122B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、光フアイバを伝送媒体とする海底
光ケーブルにかかわり、特に、光フアイバ(ユニ
ツト)を保護している海底光ケーブルの耐圧層に
関するものである。 〔従来の技術〕 光フアイバは低損失、広帯域性、軽量性などの
特徴と有しているため、特に、大容量の情報を長
距離にわたつて伝送する海底光ケーブルに採用す
ると経済的に大きな実益がある。 第8図はかかる海底光ケーブルの断面構造の一
例を示したもので、1は光フアイバユニツト、2
は前記光フアイバユニツト1を高水圧から保護
し、かつ、給電路としても使用されている金属性
の耐圧層で、この耐圧層2は3分割されている扇
状の分割個片2a,2b,2cを縦沿えしたもの
から構成されている。前記耐圧層2の隙間3には
コンパウンドが充填されており、、このコンパウ
ンドは主に水走りを防止するために耐圧層2内及
びその外側の抗張力線、金属チユーブの隙間3に
も充填されているものである。4は前記耐圧層2
の外周に撚られている抗張力線で、主に海底光ケ
ーブルに抗張力を付加している。5は前記抗張力
線4を固定している金属チユーブでこれらの隙間
3にもコンパウンドが充填されている。6はプラ
スチツク等で形成されている絶縁層である。 なお、絶縁層6の外周には必要によりケーブル
の損傷を防止する外装を施す場合もある。 このような海底光ケーブルの特徴は特公昭59−
7361号公報にも記載されているように耐圧層2を
構成する分割個片2a,2b,2cに特徴があ
る。 すなわち、耐圧層2は分割個片2a,2b,2
cを縦沿えして光フアイバユニツトの外周に固定
されているため高水圧のもとでも充分光フアイバ
ユニツト1を保護することができる厚みの肉厚に
することができるという特徴があり、その他に、
製造時に耐圧層を加熱成形することがないので、
光フアイバの伝送特性を損うことがないという効
果がある。又、テンシヨンメンバの機能を持たせ
ることができる等の利点がみられる。 〔発明が解決しようとする問題点〕 しかしながら、このような分割個片2a,2
b,2cは耐圧層2を形成したとき、その内周面
及び外周面に段差が生じないようにできるだけ高
い精度で表面仕上げを行うことが要請されている
が縦沿えによつて耐圧層2が構成されているの
で、曲げ応力等が加わると分割された分割個片2
a,2b,2cの相互接合面にズレや落込みが発
生しそのため耐圧層2の内部にコンパウンドが充
填されていても水走りの効果が充分発揮されない
という問題がある。特に、光フアイバユニツト1
には大きな圧接力を加えることができないため耐
圧層2と光フアイバユニツト1の層間密着力は低
く、水走りの恐れが憂慮され、耐圧層2を形成す
る分割個片2a,2b,2c相互の接合面にもコ
ンパウンドが充填されているがこの接合面でも水
走りのおそれが充分懸念される。 この発明は、かかる問題点にかんがみてなされ
たもので、分割個片の側面に梨地加工を施すこと
によつて水走りを効果的に防止し信頼性の高い海
底光ケーブルを提供するものである。 〔実施例〕 第1図はこの発明の海底光ケーブルに採用され
る耐圧層の構造を示したもので10a,10b,
10cは断面が扇形とされている3個の金属分割
個片で金属分割個片10cの部分は一点鎖線で示
している。各、金属分割個片10a,10b,1
0cはほぼ120゜の扇角となるように成形されてお
りその内周面11a,11b,11cには図示し
たように、深さ0.005〜0.02mm程度の凹凸を施す
ことにより梨地とし、同様に各、金属分割個片の
10a,10b,10cの接合する側面12a,
12b,12cにも同様な梨地加工が施されてい
る。 このような金属分割個片10a,10b,10
cは従来と同様に最終成形をロールによる圧延成
形とし、この圧延成形に使用されるロール面に予
めシヨツトブラスト法により梨地加工を施すこと
によつて作ることができる。梨地の程度は内径
3.0mmφの耐圧層とする場合は、例えばシヨツト
ブラスト#10を使用して、第2図に示すように梨
地目の個数Pを80〜100個/mm2程度とすることが
好ましい。 内周面11a,11b,11c及び側面12
a,12b,12cに梨地加工を施したこのよう
な金属分割個片10a,10b,10cを光フア
イバユニツトに対して縦沿え成形したのち、その
外周面を抗張力線で圧接する。すると各金属分割
個片10a,10b,10cの側面12a,12
b,12cが互いにくい込み接合面の密着性が強
化される。 この場合、第3図に示すように接合面が側面1
2a,〜12cの梨地面で△θだけ縮合すること
があるが、このときは、梨地加工の程度によつて
は金属分割個片の扇角θ゜より△θだけ大きくする
ことが好ましい。この縮合角△θ値は詳細な計算
例を省略するが例えば、0.002mm深さの梨地加工
で0.2゜,0.01mmの梨地加工で0.4゜、同様に0.02mmの
場合は0.8゜程度にすればよい。 上述したように、この発明の海底光ケーブルの
耐圧層は金属分割個片の側面に梨地加工を施して
いるためこのような金属分割個片で耐圧層を形成
すると各個片相互の層間密着力が増加し、ケーブ
ル成形時、又はケーブルに曲げ応力が加わつた場
合も各分割個片間相互に落込み(段差)やズレを
生じることがなくなり、光フアイバユニツト1の
保護が充分になる。 又、梨地加工を施された部分にコンパウンドが
充填されることになるから、走水経路長が従来の
耐圧層を有する光海底ケーブルと比較して長くな
り、より高い走水防止効果が得られる。 以下、本発明の海底光ケーブルの耐圧層におけ
る試験結果について説明する。 次表は第4図に示すように分割個片D(鉄)の
外径/内径の寸法を6.1mmφ/3.0mmφ、その長さ
を100mm、光フアイバユニツトPの外径を2.75mm
φとし、水走り防止用のコンパウンドCとして2
液混合常温硬化タイプのウレタン樹脂を使用した
場合の層間密着力比較データを示したもので、A
は従来の表面仕上げ後の面アラサが▽▽▽〜▽▽
▽▽の分割個片を使用した引抜きデータ、Bは梨
地加工後(深さ0.02mm、梨地目80〜100個/mm2
の金属分割個片を使用した引抜きデータ(Kg/
mm)である。
[Industrial Field of Application] The present invention relates to submarine optical cables using optical fibers as transmission media, and particularly relates to a pressure-resistant layer of submarine optical cables that protects optical fibers (units). [Conventional technology] Optical fiber has characteristics such as low loss, wide bandwidth, and light weight, so it has great economic benefits when used in submarine optical cables that transmit large amounts of information over long distances. There is. FIG. 8 shows an example of the cross-sectional structure of such a submarine optical cable, where 1 is an optical fiber unit, 2 is an optical fiber unit, and 2 is an optical fiber unit.
is a metal pressure-resistant layer that protects the optical fiber unit 1 from high water pressure and is also used as a power supply path, and this voltage-resistant layer 2 is divided into three fan-shaped pieces 2a, 2b, and 2c. It is made up of vertically aligned pieces. The gap 3 in the pressure-resistant layer 2 is filled with a compound, and this compound is also filled in the gaps 3 between the tensile strength wires and metal tubes inside and outside the pressure-resistant layer 2, mainly to prevent water running. It is something that exists. 4 is the pressure-resistant layer 2
A tensile strength wire twisted around the outer circumference of a submarine optical cable, which mainly adds tensile strength to submarine optical cables. Reference numeral 5 indicates a metal tube to which the tensile strength wire 4 is fixed, and the gap 3 between these tubes is also filled with compound. 6 is an insulating layer made of plastic or the like. Note that the outer periphery of the insulating layer 6 may be provided with an exterior covering to prevent damage to the cable, if necessary. The characteristics of such submarine optical cables are
As described in Japanese Patent No. 7361, the divided pieces 2a, 2b, and 2c constituting the pressure-resistant layer 2 have characteristics. That is, the pressure-resistant layer 2 is divided into individual pieces 2a, 2b, 2
c is vertically aligned and fixed to the outer periphery of the optical fiber unit 1, so that it can be made thick enough to protect the optical fiber unit 1 even under high water pressure. ,
Since the pressure-resistant layer is not heat-molded during manufacturing,
This has the effect of not damaging the transmission characteristics of the optical fiber. Further, it has advantages such as being able to function as a tension member. [Problem to be solved by the invention] However, such divided pieces 2a, 2
When the pressure-resistant layer 2 is formed, it is required to finish the surface with the highest possible accuracy to prevent the formation of steps on the inner and outer peripheral surfaces of the pressure-resistant layer 2. Because of the structure, when bending stress etc. are applied, the divided pieces 2
There is a problem in that the mutual bonding surfaces of a, 2b, and 2c are displaced or depressed, and therefore, even if the inside of the pressure-resistant layer 2 is filled with a compound, the water running effect is not sufficiently exhibited. In particular, the optical fiber unit 1
Since it is not possible to apply a large contact force to the pressure-resistant layer 2 and the optical fiber unit 1, the interlayer adhesion between the pressure-resistant layer 2 and the optical fiber unit 1 is low, and there is a fear of water running. The joint surface is also filled with compound, but there is a sufficient risk of water running on this joint surface as well. The present invention has been made in view of these problems, and provides a highly reliable submarine optical cable that effectively prevents water running by applying a satin finish to the side surfaces of the divided pieces. [Example] Figure 1 shows the structure of the pressure-resistant layer adopted in the submarine optical cable of the present invention.
Reference numeral 10c denotes three divided metal pieces each having a fan-shaped cross section, and the portion of the divided metal piece 10c is indicated by a dashed line. Each divided metal piece 10a, 10b, 1
0c is formed to have a sector angle of approximately 120°, and its inner peripheral surfaces 11a, 11b, and 11c are made with unevenness of about 0.005 to 0.02 mm in depth to give a satin finish, as shown in the figure. The side surfaces 12a to which the individual metal pieces 10a, 10b, and 10c are joined,
12b and 12c are also given a similar satin finish. Such metal divided pieces 10a, 10b, 10
c can be produced by performing the final forming by rolling with rolls as in the past, and by applying a satin finish to the roll surface used in this rolling in advance by shot blasting. The degree of satin finish is determined by the inner diameter
When forming a pressure-resistant layer with a diameter of 3.0 mm, it is preferable to use shot blast #10, for example, and set the number of satin grains P to about 80 to 100 pieces/mm 2 as shown in FIG. Inner peripheral surfaces 11a, 11b, 11c and side surface 12
After the metal pieces 10a, 10b, 10c, each of which has been subjected to a satin finish, are vertically formed on an optical fiber unit, the outer circumferential surface thereof is pressed with a tensile strength wire. Then, the side surfaces 12a, 12 of each metal divided piece 10a, 10b, 10c
b and 12c are embedded into each other, and the adhesion of the joint surfaces is strengthened. In this case, as shown in Figure 3, the joint surface is the side surface 1.
Condensation may occur by Δθ on the satin surfaces of 2a and 12c, but in this case, depending on the degree of satin finishing, it is preferable to make the fan angle θ° of the metal divided pieces larger by Δθ. Although detailed calculation examples are omitted, this condensation angle △θ value can be set to 0.2° for a satin finish of 0.002 mm depth, 0.4 ° for a satin finish of 0.01 mm, and 0.8 ° for a depth of 0.02 mm. good. As mentioned above, the pressure-resistant layer of the submarine optical cable of the present invention has a matte finish on the side surfaces of the individual metal pieces, so when the pressure-resistant layer is formed with such metal pieces, the interlayer adhesion between the individual pieces increases. However, even during cable molding or when bending stress is applied to the cable, there will be no depression (level difference) or misalignment between the divided pieces, and the optical fiber unit 1 will be sufficiently protected. In addition, since the compound is filled in the matte-finished area, the length of the water running path is longer than that of conventional optical submarine cables with pressure-resistant layers, resulting in a higher water running prevention effect. . Hereinafter, test results for the pressure layer of the submarine optical cable of the present invention will be explained. As shown in Figure 4, the following table shows the outer diameter/inner diameter dimensions of the divided pieces D (iron) of 6.1 mmφ/3.0 mmφ, their lengths of 100 mm, and the outer diameter of the optical fiber unit P of 2.75 mm.
φ and 2 as compound C to prevent water running.
Comparative data on interlayer adhesion when using a liquid-mix room-temperature curing type urethane resin.
The surface roughness after conventional surface finishing is ▽▽▽〜▽▽
Drawing data using the divided pieces of ▽▽, B is after satin finishing (depth 0.02 mm, satin finishing 80-100 pieces/mm 2 )
Drawing data (Kg/
mm).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の海底光ケーブ
ルは、耐圧層を構成する3分割個片の扇形角を梨
地の程度によつて120.1度から121度の間に設定
し、その接合面及び内周面に梨地加工を施し、か
つ、接合面及び内周面にコンパウンドを充填して
縦沿え成形して光フアイバを保護するようにして
いるので、3分割個片相互の接合面が互いに食い
込んだ状態で円筒状の耐圧層を構成することがで
き、3分割個片相互の密着力が増加し、3分割個
片相互の滑り込み、或いは落ち込みがなくなる。 その結果、内部に収容されている光フアイバの
保護が十分に行われると共に、海底光ケーブルの
水走りを防止する効果が高くなり、海底光ケーブ
ルのライフサイクルが長くなることにより、経済
的な実益が大きくなるという利点が得られる。
As explained above, in the submarine optical cable of the present invention, the fan-shaped angle of the three pieces constituting the pressure-resistant layer is set between 120.1 degrees and 121 degrees depending on the degree of satin finish, and the joint surface and inner peripheral surface The optical fiber is given a satin finish, and the joint surfaces and inner circumferential surfaces are filled with compound and molded vertically to protect the optical fiber, so the joint surfaces of the three separate pieces do not dig into each other. A cylindrical pressure-resistant layer can be formed, the adhesion between the three divided pieces increases, and the three divided pieces do not slip or fall into each other. As a result, the optical fibers housed inside are sufficiently protected, and the effect of preventing submarine optical cables from running in the water is increased, and the life cycle of submarine optical cables is lengthened, resulting in significant economic benefits. You get the advantage of being

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の海底光ケーブルの耐圧層を
示す斜視図、第2図は梨地加工を施した面の拡大
平面図、第3図はこの発明の耐圧層を縦沿え成形
したときの説明図、第4図は光フアイバユニツト
の引抜き試験のサンプルを示す海底光ケーブルの
斜視図、第5図は走水防止効果の実験装置を示す
説明図、第6図は本発明のケーブルと従来の海底
光ケーブルの走水長の実験データを示すグラフ、
第7図は3分割個片の他の実施例を示す断面図、
第8図は3分割個片を耐圧層とする海底光ケーブ
ルの断面図である。 図中、10a,10b,10cは耐圧層を形成
する金属分割個片、11a,11b,11cは梨
地加工が施されている内周面、12a,12b,
12cは梨地加工を施した側面、θは扇角を示
す。
Fig. 1 is a perspective view showing the pressure layer of the submarine optical cable of the present invention, Fig. 2 is an enlarged plan view of the matte finish surface, and Fig. 3 is an explanatory diagram of the pressure layer of the present invention when it is vertically formed. , Fig. 4 is a perspective view of a submarine optical cable showing a sample for a pull-out test of an optical fiber unit, Fig. 5 is an explanatory diagram showing an experimental apparatus for water running prevention effect, and Fig. 6 shows a cable of the present invention and a conventional submarine optical cable. A graph showing experimental data on the hydrotravel length of
FIG. 7 is a sectional view showing another embodiment of the three-part individual piece;
FIG. 8 is a cross-sectional view of a submarine optical cable whose pressure-resistant layers are made up of three separate pieces. In the figure, 10a, 10b, 10c are individual metal pieces forming a pressure-resistant layer, 11a, 11b, 11c are inner peripheral surfaces with satin finishing, 12a, 12b,
12c indicates a side surface with satin finishing, and θ indicates the fan angle.

Claims (1)

【特許請求の範囲】 1 少なくとも一本の光フアイバが収納されてい
る光フアイバユニツトを保護するために、断面が
扇形状の3分割個片を縦沿えした円筒状の耐圧層
を備えている海底光ケーブルにおいて 前記円筒状の耐圧層は、前記扇形状の3分割個
片の扇角を120.1度〜121度の範囲に設定するとと
もに、前記3分割個片相互の接合面及び、前記光
フアイバユニツトに対接する内周面に梨地加工を
施し、前記接合面及び内周面にコンパウンドを充
填して縦沿え成形されていることを特徴とする海
底光ケーブル。
[Claims] 1. A seabed equipped with a cylindrical pressure-resistant layer in which three pieces each having a fan-shaped cross section are vertically arranged in order to protect an optical fiber unit in which at least one optical fiber is housed. In the optical cable, the cylindrical pressure-resistant layer sets the fan angle of the fan-shaped three-part pieces in the range of 120.1 degrees to 121 degrees, and also connects the joint surfaces of the three-part pieces and the optical fiber unit. 1. A submarine optical cable, characterized in that opposing inner circumferential surfaces are given a matte finishing, and the bonding surfaces and inner circumferential surfaces are filled with a compound to be vertically formed.
JP60128044A 1985-06-14 1985-06-14 Pressure resistant layer of submarine optical cable Granted JPS61292111A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60128044A JPS61292111A (en) 1985-06-14 1985-06-14 Pressure resistant layer of submarine optical cable
US07/026,365 US4867528A (en) 1985-06-14 1986-06-13 Pressure-resistant sheath of a submarine optical fibre cable and method for the production thereof
PCT/JP1986/000296 WO1986007469A1 (en) 1985-06-14 1986-06-13 Pressure-tight layer in submarine optical cable and method of manufacturing same
EP86903597A EP0224598B1 (en) 1985-06-14 1986-06-13 Pressure-tight layer in submarine optical cable and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128044A JPS61292111A (en) 1985-06-14 1985-06-14 Pressure resistant layer of submarine optical cable

Publications (2)

Publication Number Publication Date
JPS61292111A JPS61292111A (en) 1986-12-22
JPH0434122B2 true JPH0434122B2 (en) 1992-06-05

Family

ID=14975121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128044A Granted JPS61292111A (en) 1985-06-14 1985-06-14 Pressure resistant layer of submarine optical cable

Country Status (1)

Country Link
JP (1) JPS61292111A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127338A (en) * 1978-03-15 1979-10-03 British Insulated Callenders Optical cable
JPS5532053A (en) * 1978-08-30 1980-03-06 Kokusai Denshin Denwa Co Ltd <Kdd> Optical fiber submarine cable
JPS5532054A (en) * 1978-08-30 1980-03-06 Kokusai Denshin Denwa Co Ltd <Kdd> Optical fiber submarine cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127338A (en) * 1978-03-15 1979-10-03 British Insulated Callenders Optical cable
JPS5532053A (en) * 1978-08-30 1980-03-06 Kokusai Denshin Denwa Co Ltd <Kdd> Optical fiber submarine cable
JPS5532054A (en) * 1978-08-30 1980-03-06 Kokusai Denshin Denwa Co Ltd <Kdd> Optical fiber submarine cable

Also Published As

Publication number Publication date
JPS61292111A (en) 1986-12-22

Similar Documents

Publication Publication Date Title
US4432605A (en) Optical fiber submarine cable
US4025680A (en) Curvable fibrous thermal insulation
JPH0339914A (en) Optical fiber cable
JPH0434122B2 (en)
JP2959888B2 (en) Linear external pressure sensor
EP1197775B1 (en) Fiber optic cable with non-corrugated armor shielding
JPH0129690Y2 (en)
JPH041524Y2 (en)
JPH0216323Y2 (en)
JP3129978B2 (en) Flat type optical cord
JPS5839441Y2 (en) optical transmission line
EP0224598B1 (en) Pressure-tight layer in submarine optical cable and method of manufacturing same
JPH041525Y2 (en)
JPH0453612Y2 (en)
JPS6029141Y2 (en) Composite rubber sheath cable with optical fiber
JPH0753046Y2 (en) Fiber optic cable
JPH055524Y2 (en)
JPH05196685A (en) Linear external pressure sensor and cable using it
JPS63228114A (en) Optical fiber cable
JPS60225307A (en) Composite cable
JPH0327281B2 (en)
JPS6323691Y2 (en)
JPS5816206A (en) Glass fiber cable for transmitting light
JPH0223251B2 (en)
JPH0125361Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees