JPH0434086A - Carbon fiber and carbon fiber reinforced resin composition using the same carbon fiber - Google Patents

Carbon fiber and carbon fiber reinforced resin composition using the same carbon fiber

Info

Publication number
JPH0434086A
JPH0434086A JP13237990A JP13237990A JPH0434086A JP H0434086 A JPH0434086 A JP H0434086A JP 13237990 A JP13237990 A JP 13237990A JP 13237990 A JP13237990 A JP 13237990A JP H0434086 A JPH0434086 A JP H0434086A
Authority
JP
Japan
Prior art keywords
carbon fiber
resin
weight
carbon fibers
polyalkylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13237990A
Other languages
Japanese (ja)
Other versions
JP2861260B2 (en
Inventor
Shigeki Tomono
茂樹 友納
Yoshihiro Sakamoto
阪本 吉弘
Yasushi Komata
小俣 靖
Manabu Fujitani
学 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP13237990A priority Critical patent/JP2861260B2/en
Priority to US07/702,399 priority patent/US5229202A/en
Priority to EP19910108258 priority patent/EP0459287B1/en
Publication of JPH0434086A publication Critical patent/JPH0434086A/en
Application granted granted Critical
Publication of JP2861260B2 publication Critical patent/JP2861260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain reinforcing carbon fibers extremely improving electrical conductivity between matrix resin and composite material, by coating the surface of carbon fibers with a copolymer comprising a diamine, a dicarboxylic acid, a cyclic amide and a specific ratio of a glycidylated polyalkylene oxide derivative. CONSTITUTION:A diamine compound [shown by formula I (R<3> is <=15C alkyl)] is copolymerized with a dicarboxylic acid compound [shown by formula II (R<4> is <=15C alkyl, etc.)], a cyclic amide [shown by formula III (R<5> is <=20C alkyl) and a glycidylated polyalkylene oxide derivative shown by formula IV (R<1> is H or <=20C alkyl; R<2> is H is methyl; n is 1-40) to give a sizing agent for carbon fibers, comprising a copolymer containing 10-30wt.% glycidylated polyalkylene oxide derivative as a monomer composition. The sizing agent is added to chopped strands, which are dried, blended with a matrix resin, especially acrylonitrile-butadiene styrene resin, etc., injection molded to give a resin reinforced with the carbon fibers having more extremely improved electrical conductivity than an existing carbon fiber reinforced resin.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素繊維及びその炭素繊維を配合してなる炭
素繊維強化樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to carbon fibers and carbon fiber reinforced resin compositions containing the carbon fibers.

[従来の技術] 近年炭素繊維を各種のマトリックス樹脂に混合、分散さ
せてなる繊維強化樹脂組成物は、高強度、高剛性、低比
重、高摩耗性などの機械的特性が評価され工業的に重要
な材料として注目されている。
[Prior art] In recent years, fiber-reinforced resin compositions made by mixing and dispersing carbon fibers in various matrix resins have been evaluated for their mechanical properties such as high strength, high rigidity, low specific gravity, and high abrasion resistance, and have been used industrially. It is attracting attention as an important material.

また炭素繊維の強度、弾性率等の機械的特性以外に電気
伝導性、熱伝導性、X線透過性等の性質を活用した用途
の開発も進められている。特にエレクトロニクス関連分
野に於ては炭素繊維そのものの高導電性を生かした導電
性複合材として使用されることが多い。
Further, in addition to carbon fiber's mechanical properties such as strength and elastic modulus, development of applications that utilize properties such as electrical conductivity, thermal conductivity, and X-ray transparency is also underway. Particularly in electronics-related fields, carbon fibers are often used as conductive composite materials that take advantage of the high conductivity of carbon fiber itself.

ところが、単に炭素繊維を樹脂と混合成形するだけでは
、炭素繊維を大量に添加しないと十分な導電性が得られ
ない。このことは一般に樹脂よりも高価な炭素繊維の大
量使用による樹脂コンパウンドのコスト上昇や、耐衝撃
性等の物性低下、比重の増加、加工性低下等をもたらす
場合があり炭素繊維の使用を制約してきた。こうした問
題点を解決するため、これまでにも導電性を改良するこ
とが試みられてきた。例えば特開昭57−56586号
公報ではポリビニルピロリドンで炭素繊維を被覆し複合
材の導電性の向上を図っている。
However, simply mixing and molding carbon fiber with resin does not provide sufficient electrical conductivity unless a large amount of carbon fiber is added. This generally limits the use of carbon fibers, as it can lead to increased costs for resin compounds due to the large use of carbon fibers, which are more expensive than resins, decreases in physical properties such as impact resistance, increases in specific gravity, and decreases in processability. Ta. In order to solve these problems, attempts have been made to improve conductivity. For example, in JP-A-57-56586, carbon fibers are coated with polyvinylpyrrolidone in an attempt to improve the conductivity of a composite material.

[発明が解決しようとする課題] しかしながら、用途によっては、いまだ十分な導電性を
持つとは言えず、従来の複合材よりも更にいっそう導電
性の優れた炭素繊維強化樹脂複合材の開発が求められて
いた。
[Problem to be solved by the invention] However, depending on the application, it still cannot be said to have sufficient electrical conductivity, and there is a need to develop carbon fiber reinforced resin composite materials that have even better electrical conductivity than conventional composite materials. It was getting worse.

[課題を解決するための手段] そこで、本発明者等はかかる課題を解決すべく鋭意検討
した結果、特定の組成からなる重合物で被覆した炭素繊
維を使用すると、従来よりも少量の配合量で同等の導電
性を発現する炭素繊維強化樹脂が得られ、かつ配合量を
従来と同量とすれば従来の樹脂組成物よりも高い導電性
が得られることを見いだし、本発明に到達した。
[Means for Solving the Problems] Therefore, as a result of intensive studies to solve the problems, the present inventors found that using carbon fiber coated with a polymer having a specific composition requires a smaller amount of compounding than before. It was discovered that a carbon fiber-reinforced resin exhibiting conductivity equivalent to that of conventional resin compositions can be obtained, and that higher conductivity than conventional resin compositions can be obtained by using the same amount as conventional resin compositions, and the present invention has been achieved.

即ち、本発明の目的は高い導電性を発現する樹脂組成物
を与える樹脂強化用炭素繊維及びそれを用いた炭素繊維
強化樹脂組成物を提供することにある。
That is, an object of the present invention is to provide a resin-reinforced carbon fiber that provides a resin composition that exhibits high conductivity, and a carbon fiber-reinforced resin composition using the same.

そしてその目白りは、 ジアミン化合物、ジカルボン酸化合物、環状アミド化合
物と下記一般式(I)で示されるグリシジル化ポリアル
キレンオキシド誘導体からなる共重合体であって、該ポ
リアルキレンオキシド誘導体をモノマー組成として10
〜30重量%含んでなる共重合物で炭素繊維の表面が被
覆されていることを特徴とする樹脂強化用炭素繊維、 (式中R1はHlまたは炭素数20以下のアルキル基、
R2はHまたはCH3、nは1〜40の整数をを表わす
。)および ジアミン化合物、ジカルボン酸化合物、環状アミド化合
物と下記一般式(I)で示されるグリシジル化ポリアル
キレンオキシド誘導体からなる共重合体であって、該ポ
リアルキレンオキシド誘導体をモノマー組成として10
〜30重量%含んでなる共重合物で炭素繊維の表面が被
覆された炭素繊維1〜50重量部を熱可塑性樹脂100
重量部に対して配合したことを特徴とする炭素繊維強化
樹脂組成物により容易に達成される。
The eyelid is a copolymer consisting of a diamine compound, a dicarboxylic acid compound, a cyclic amide compound, and a glycidylated polyalkylene oxide derivative represented by the following general formula (I), in which the polyalkylene oxide derivative is used as a monomer composition. 10
Carbon fiber for resin reinforcement, characterized in that the surface of the carbon fiber is coated with a copolymer containing ~30% by weight (wherein R1 is Hl or an alkyl group having 20 or less carbon atoms,
R2 represents H or CH3, and n represents an integer of 1 to 40. ), a diamine compound, a dicarboxylic acid compound, a cyclic amide compound, and a glycidylated polyalkylene oxide derivative represented by the following general formula (I), the copolymer comprising a glycidylated polyalkylene oxide derivative having a monomer composition of 10
1 to 50 parts by weight of carbon fibers whose surfaces are coated with a copolymer containing 30% by weight of a thermoplastic resin
This can be easily achieved by using a carbon fiber reinforced resin composition characterized in that it is blended in parts by weight.

(式中R1は水素または炭素数20以下のアルキル基、
R2はHまたはCH3、nは1〜40の整数をを表わす
。)以下本発明の詳細な説明する。
(In the formula, R1 is hydrogen or an alkyl group having 20 or less carbon atoms,
R2 represents H or CH3, and n represents an integer of 1 to 40. ) The present invention will be explained in detail below.

本発明では炭素繊維として、従来公知の種々の炭素繊維
が使用でき、具体的にはポリアクリロニトリル系、ピッ
チ系、レーヨン系等の炭素繊維が挙げられる。
In the present invention, various conventionally known carbon fibers can be used as the carbon fibers, and specific examples include polyacrylonitrile-based, pitch-based, and rayon-based carbon fibers.

被覆に使用する重合物としてはジアミン化合物、ジカル
ボン酸化合物、環状アミド化合物とグリシジル化ポリア
ルキレンオキシドの共重合体である。ジアミン化合物と
しては特に限定されないが一般式(II)で示される化
合物でR3が炭素数15以下のアルキル基、およびその
誘導体からなるものが好ましい。具体的にはエチレンジ
アミン、テトラメチレンジアミン、ヘキサメチレンジア
ミン、オクタメチレンジアミン、デカメチレンジアミン
やそのメチル化、エチル化、ハロゲン化物等の誘導体が
挙げられる。
The polymer used for coating is a copolymer of a diamine compound, a dicarboxylic acid compound, a cyclic amide compound, and a glycidylated polyalkylene oxide. The diamine compound is not particularly limited, but compounds represented by the general formula (II), in which R3 is an alkyl group having 15 or less carbon atoms, and derivatives thereof are preferred. Specific examples include ethylenediamine, tetramethylenediamine, hexamethylenediamine, octamethylenediamine, decamethylenediamine, and derivatives thereof such as methylated, ethylated, and halogenated products.

H2N R3−NH2(II ) ジカルボン酸化合物としては一般式(III)で示され
る化合物であり、好ましくはR4が炭素数15以下のア
ルキル基、単核または2核芳香族環及びこれらの誘導体
からなるものである。具体的にはコノ1り酸、グルタル
酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン
酸、セバシン酸およびそのメチル化、エチル化、ハロゲ
ン化物等の誘導体や、テレフタル酸、イソフタル酸、2
,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸
が挙げられる。
The H2N R3-NH2(II) dicarboxylic acid compound is a compound represented by the general formula (III), and R4 preferably consists of an alkyl group having 15 or less carbon atoms, a mononuclear or dinuclear aromatic ring, and derivatives thereof. It is something. Specifically, conolic acid, glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid and their methylated, ethylated, and halogenated derivatives, terephthalic acid, isophthalic acid,
, 6-naphthalene dicarboxylic acid and the like.

HOOC−R4−COOII   (III )環状ア
ミド化合物としては一般式(IV)で示される化合物で
あり、好ましくはR6は炭素数20以下のアルキル基及
びその誘導体からなるものである。具体的には、カプロ
ラクタム、ラウリルラクタム等が挙げられる。
HOOC-R4-COOII (III) The cyclic amide compound is a compound represented by the general formula (IV), and R6 preferably consists of an alkyl group having 20 or less carbon atoms and a derivative thereof. Specific examples include caprolactam and lauryllactam.

一般式(I)で示されるグリシジル化ポリアルキレンオ
キシド誘導体は、片末端にグリシジル基を有するエチレ
ンオキシド、プロピレンオキシドの付加反応生成物のア
ルエルキーチルでありnは1〜40、好ましくは5〜2
0、R1は炭素数20以下のアルキル基、R2はHまた
はCH3が挙げられる。具体的には、ポリオキシエチレ
ンラウリルグリシジルエーテル、ポリオキシエチレンオ
クチルグリシジルエーテル等が挙げられる。
The glycidylated polyalkylene oxide derivative represented by the general formula (I) is an aralkythyl addition reaction product of ethylene oxide and propylene oxide having a glycidyl group at one end, and n is 1 to 40, preferably 5 to 2.
0, R1 is an alkyl group having 20 or less carbon atoms, and R2 is H or CH3. Specific examples include polyoxyethylene lauryl glycidyl ether, polyoxyethylene octyl glycidyl ether, and the like.

モノマー組成比は混合物がほぼ完全に重合し適当な分子
量のポリマーが得られる範囲において決定されるが、導
電性向上の効果を得るにはグリシジル化ポリアルキレン
オキシド誘導体の含有率としては、10〜30重量%。
The monomer composition ratio is determined within a range where the mixture is almost completely polymerized and a polymer with an appropriate molecular weight is obtained, but in order to obtain the effect of improving conductivity, the content of the glycidylated polyalkylene oxide derivative should be 10 to 30%. weight%.

好ましくは15〜25重量%の範囲とするのがよい。含
有率が高すぎても、また低すぎても良好な導電性を得る
ことが困難となる。
It is preferably in the range of 15 to 25% by weight. If the content is too high or too low, it becomes difficult to obtain good conductivity.

通常炭素繊維は数千本から数万本の単糸を束ねたストラ
ンドを樹脂により被覆集束することにより取り扱い性を
向上させたり、樹脂に配合し複合材としたときの特性向
上を図っている。
Normally, carbon fibers are made by binding strands of several thousand to tens of thousands of single fibers together and covering them with resin to improve handling properties, or to improve properties when blended with resin to make a composite material.

得られた重合物の炭素繊維表面への付着法に制約はない
が水溶液とし炭素繊維束を含浸する方法が実用的である
。水溶液の濃度は炭素繊維に付着する重合物の量が所望
するレベルとなるよう設定すれば良い。炭素繊維に付着
する重合物量としては、0.5〜20重量%、好ましく
は2〜10重量%である。被覆量が少ないと、集束剤に
よる複合材特性向上の効果がみられなかったり、炭素繊
維の集束性不が十分だったりする。また、被覆量が多す
ぎると、かえって複合材物性が低下したり、集束後の炭
素繊維ストランドの取扱い性が低下したりする。該重合
物水溶液に含浸した炭素繊維ストランドは赤外線、熱風
等によって乾燥されるが、乾燥温度は集束剤の分解が起
こらないよう300°C以下とする事が好ましい。乾燥
し集束された炭素繊維束は、樹脂との配合を容易にする
ため長さ1〜20mm好ましくは3〜10mmに切断し
使用する。(切断された炭素繊維ストランドをチョップ
トストランドと呼ぶ。)。
Although there are no restrictions on the method of attaching the obtained polymer to the carbon fiber surface, a practical method is to impregnate the carbon fiber bundle with an aqueous solution. The concentration of the aqueous solution may be set so that the amount of polymer adhering to the carbon fibers is at a desired level. The amount of polymer attached to the carbon fibers is 0.5 to 20% by weight, preferably 2 to 10% by weight. If the amount of coating is small, the effect of improving the properties of the composite material by the sizing agent may not be observed, or the sizing agent may not have sufficient sizing ability. On the other hand, if the coating amount is too large, the physical properties of the composite material may deteriorate or the handling properties of the carbon fiber strands after convergence may deteriorate. The carbon fiber strand impregnated with the aqueous polymer solution is dried by infrared rays, hot air, etc., and the drying temperature is preferably 300° C. or lower to prevent decomposition of the sizing agent. The dried and bundled carbon fiber bundles are cut into lengths of 1 to 20 mm, preferably 3 to 10 mm, to facilitate blending with resin. (The cut carbon fiber strands are called chopped strands.)

次に本発明の樹脂強化用炭素繊維を熱可塑性樹脂に配合
した優れた導電性を有する炭素繊維強化樹脂組成物につ
いて説明する。マトリックス樹脂としては、ポリカーボ
ネート、ポリスチレン、ポリエステル、ポリオレフィン
、アクリル樹脂、ポリオキシメチレン、ポリフェニレン
エーテル、ポリフェニレンオキシド、ポリブチレンチレ
フタート、ポリエーテルエーテルケトン、ポリフェニレ
ンスルホン、フッ素樹脂などのポリマー類またはこれら
のコポリマー類などの公知の熱可塑性樹脂が挙げられ、
好ましくは、アクリロニトリル−ブタジェン−スチレン
樹脂(ABS樹脂)、ポリブチレンテレフタレート、ポ
リフェニレンオキシドを用いるのがよい。
Next, a carbon fiber-reinforced resin composition having excellent conductivity in which the resin-reinforcing carbon fiber of the present invention is blended with a thermoplastic resin will be described. Examples of matrix resins include polymers such as polycarbonate, polystyrene, polyester, polyolefin, acrylic resin, polyoxymethylene, polyphenylene ether, polyphenylene oxide, polybutylene leftate, polyether ether ketone, polyphenylene sulfone, and fluorine resin, or copolymers thereof. Examples include known thermoplastic resins such as
Preferably, acrylonitrile-butadiene-styrene resin (ABS resin), polybutylene terephthalate, and polyphenylene oxide are used.

上述した樹脂強化用炭素繊維とマトリックス樹脂の配合
割合は、熱可塑性樹脂100重量部に対して、炭素繊維
を1〜50重量部、好ましくは、5〜40重量部の範囲
である。炭素繊維の配合量が1重量部未満では炭素繊維
の導電効果が低く、また50重量部を越えるとマトリッ
クス樹脂への混合、分散の工程に於て種々の問題が発生
しやすい。
The blending ratio of the above-mentioned resin-reinforcing carbon fibers and matrix resin is in the range of 1 to 50 parts by weight, preferably 5 to 40 parts by weight, per 100 parts by weight of the thermoplastic resin. If the amount of carbon fibers is less than 1 part by weight, the conductive effect of the carbon fibers will be low, and if it exceeds 50 parts by weight, various problems will likely occur during the mixing and dispersion process in the matrix resin.

また、この様なマトリックス樹脂と本発明の炭素繊維と
の配合方法としては特に限定されるものではないが、通
常−軸押し出し機、二軸押し出し機、プレス機、高速ミ
キサー、射出成形機、引き抜き成形機等の方法により行
われる。更に、上記成分以外に本発明の効果を損なわな
り)程度に例えば、他種炭素繊維、ガラス繊維、アラミ
ド繊維、ポロン繊維、炭化ケイ素繊維等の短繊維及び長
繊維、ホイスカー類、これらにニッケル、アルミニウム
、銅などの金属をコーティングした繊維あるいは金属繊
維などの繊維状強化材類、あるいはカーボンブラック、
二硫化モリブデン、マイカ、タルク、炭酸カルシウムな
どのフィラー類からなる強化材、安定剤、滑剤、その他
添加剤などを加えることが出来る。
Further, the method of blending such a matrix resin with the carbon fiber of the present invention is not particularly limited, but it can be conventionally used - a screw extruder, a twin screw extruder, a press machine, a high-speed mixer, an injection molding machine, a drawing machine, etc. This is done using a method such as a molding machine. Furthermore, in addition to the above-mentioned components, other short and long fibers such as carbon fibers, glass fibers, aramid fibers, poron fibers, silicon carbide fibers, whiskers, nickel, Fibers coated with metals such as aluminum and copper, or fibrous reinforcement materials such as metal fibers, or carbon black,
Reinforcing agents such as fillers such as molybdenum disulfide, mica, talc, and calcium carbonate, stabilizers, lubricants, and other additives can be added.

この様にして得られた炭素繊維強化可塑性樹脂組成物は
従来の炭素繊維で強化された場合に比べ高い導電性を示
す。
The carbon fiber-reinforced plastic resin composition thus obtained exhibits higher electrical conductivity than conventional carbon fiber-reinforced resin compositions.

[実施例] 次に実施例により本発明を更に詳細に説明する。尚、導
電性の評価は日本ゴム協会標準規格(SRIS ) 2
301に記された体積固有抵抗の測定により実施した。
[Example] Next, the present invention will be explained in more detail with reference to Examples. The conductivity evaluation is based on the Japan Rubber Institute Standards (SRIS) 2.
The measurement was carried out by measuring the volume resistivity as described in 301.

実施例1 (A)サイジング剤の調製 ヘキサメチレンジアミン25重量部、アジピン酸31重
量部、カプロラクタム24重量部、ポリオキシエチレン
ラウリルグリシジルエーテル(分子量的700)20重
量部を加え窒素置換後220°Cに加熱、脱水しながら
これらのモノマーを重合せしめ重合物を得た。この重合
物の水溶液を調製し炭素繊維束の含浸用サイジング剤液
として使用した。
Example 1 (A) Preparation of sizing agent 25 parts by weight of hexamethylene diamine, 31 parts by weight of adipic acid, 24 parts by weight of caprolactam, and 20 parts by weight of polyoxyethylene lauryl glycidyl ether (molecular weight 700) were added and heated at 220°C after purging with nitrogen. These monomers were polymerized while heating and dehydrating to obtain a polymer. An aqueous solution of this polymer was prepared and used as a sizing agent solution for impregnating carbon fiber bundles.

(B)チョップトストランドの製造 ピッチ系炭素繊維(′”ダイアリード” K223、三
菱化成(株製)連続糸6000本フィラメントを、前記
重合物ポリマー4%水溶液中に含浸させた後、約120
°Cで20分間加熱乾燥し、更に切断機で6mm長のチ
ョップトストランドを製造した。得られたチョップトス
トランドの重合物付着量を比較例1〜5の結果とともに
表1に示す。
(B) Production of chopped strands After impregnating 6,000 continuous filaments of pitch-based carbon fiber ('Dialead' K223, manufactured by Mitsubishi Kasei Corporation) into a 4% aqueous solution of the polymer, approximately 120
The mixture was dried by heating at °C for 20 minutes, and chopped strands with a length of 6 mm were produced using a cutting machine. The amount of polymer deposited on the obtained chopped strands is shown in Table 1 together with the results of Comparative Examples 1 to 5.

(C)炭素短繊維強化樹脂成形体の製造予め乾燥した1
0重量部の前記チヨ・ノブトストランドとポリブチレン
テレフタレート樹脂“ツノくドウール” 5008 (
三菱化成(株)製)のペレツ) 100重量部をトライ
ブレンドした後、スクリュー押し出し機に投入、溶融混
合し、押し出し物を水冷後ベレット状に切断した。この
様にして得られた炭素繊維配合樹脂材料を120°C5
蒔間乾燥した後、射出成形機にて成形し試験片を得て体
積固有抵抗を測定した。比較例1〜5とともに測定結果
を表1に示す。
(C) Production of short carbon fiber reinforced resin molded article 1 dried in advance
0 parts by weight of the Chiyo Nobuto strands and polybutylene terephthalate resin "Tsunoku Douur" 5008 (
After tri-blending 100 parts by weight of pellets (manufactured by Mitsubishi Kasei Corporation), the mixture was put into a screw extruder, melt-mixed, and the extrudate was cooled with water and cut into pellets. The carbon fiber blended resin material thus obtained was heated to 120°C5.
After drying, it was molded using an injection molding machine to obtain a test piece, and its volume resistivity was measured. The measurement results are shown in Table 1 together with Comparative Examples 1 to 5.

比較例1 ヘキサメチレンジアミン29重量部、アジピン酸36重
量部、ポリオキシエチレンラウリルグリシジルエーテル
(分子量700)35重量部からなる七ツマー組成で実
施例1と同様に重合、チョップトストランドの製造、炭
素繊維強化樹脂成形体の製造を行ない体積固有抵抗を測
定した。
Comparative Example 1 Polymerization was carried out in the same manner as in Example 1 using a seven-mer composition consisting of 29 parts by weight of hexamethylene diamine, 36 parts by weight of adipic acid, and 35 parts by weight of polyoxyethylene lauryl glycidyl ether (molecular weight 700), production of chopped strands, carbon A fiber-reinforced resin molded article was manufactured and its volume resistivity was measured.

比較例2 実施例1のサイジング剤水溶液の代わりにα−(N。Comparative example 2 α-(N.

N−ジメチルアミノ)−ε−カプロラクタム重合体の水
溶液を用い実施例1と同様にチョップトストランドの製
造、炭素繊維強化樹脂成形体の製造を行し)体積固有抵
抗を測定した。
Using an aqueous solution of N-dimethylamino)-ε-caprolactam polymer, chopped strands and carbon fiber reinforced resin molded articles were produced in the same manner as in Example 1, and the volume resistivity was measured.

比較例3 実施例1のサイジング剤水溶液の代わりにエポキシ樹脂
1′エビコー) ”834 (シェル化学■製)60重
量部と・・エピコート9・1004 (シェル化学■製
)40重量部との水乳化系サイジング剤を使用した他は
実施例1と同様の方法で試作を行い試験片を製造した。
Comparative Example 3 Instead of the sizing agent aqueous solution of Example 1, water emulsification of 60 parts by weight of epoxy resin 1'Evicor) 834 (manufactured by Shell Chemical ■) and 40 parts by weight of Epicoat 9.1004 (manufactured by Shell Chemical ■) A test piece was produced in the same manner as in Example 1 except that a sizing agent was used.

比較例4 実施例1のサイジング剤水溶液の代わりにポリビニルピ
ロリドン(分子量40,000 )の水溶液サイジング
剤を使用した他は実施例1と同様の方法で試験片を製造
した。
Comparative Example 4 A test piece was produced in the same manner as in Example 1, except that an aqueous solution sizing agent of polyvinylpyrrolidone (molecular weight 40,000) was used instead of the aqueous sizing agent solution in Example 1.

比較例5 実施例1のサイジング剤水溶液の代わりにポリエチレン
グリコール(分子量50000 )の水溶液サイジング
剤を使用した他は実施例1と同様の方法で試験片を製造
した。
Comparative Example 5 A test piece was produced in the same manner as in Example 1, except that an aqueous solution sizing agent of polyethylene glycol (molecular weight 50,000) was used instead of the aqueous sizing agent solution in Example 1.

実施例2 実施例1のマトリックス樹脂ポリブチレンテレフタレー
トの代わりにポリカーボネート樹脂を用い樹脂被覆炭素
繊維の配合量を20重量部とした他は、実施例1と同様
の方法で試験片を製造した。体積固有抵抗の測定結果を
比較例6〜10とともに表3に示す。
Example 2 A test piece was produced in the same manner as in Example 1, except that polycarbonate resin was used instead of the matrix resin polybutylene terephthalate of Example 1, and the amount of resin-coated carbon fiber was changed to 20 parts by weight. The measurement results of volume resistivity are shown in Table 3 together with Comparative Examples 6 to 10.

比較例6〜10 比較例1〜5に使用した樹脂被覆炭素繊維を用いマトリ
ックス樹脂をポリブチレンテレフタレートからポリカー
ボネート樹脂に変え樹脂被覆炭素繊維配合量を20重量
部とした他は、比較例1〜5と同様の方法で試験片を製
造し体積固有抵抗を測定した。
Comparative Examples 6-10 Comparative Examples 1-5 were used, except that the resin-coated carbon fibers used in Comparative Examples 1-5 were used, the matrix resin was changed from polybutylene terephthalate to polycarbonate resin, and the amount of resin-coated carbon fibers was 20 parts by weight. A test piece was manufactured in the same manner as above, and the volume resistivity was measured.

表1.2に示したように本特許請求範囲に記載した組成
の樹脂で被覆した炭素繊維を用いると他の樹脂で被覆し
た炭素繊維より良好な導電性を有する樹脂組成物が得ら
れる。
As shown in Table 1.2, when carbon fibers coated with a resin having the composition described in the claims of this patent are used, a resin composition having better conductivity than carbon fibers coated with other resins can be obtained.

表−2 [発明の効果] 本発明の樹脂被覆炭素繊維は従来の炭素繊維に比べ炭素
繊維強化熱可塑性樹脂の導電性を大幅に向上させる効果
を有し、該繊維を配合した繊維強化樹脂ともども工業上
極めて有用である。
Table 2 [Effects of the invention] The resin-coated carbon fibers of the present invention have the effect of significantly improving the conductivity of carbon fiber-reinforced thermoplastic resins compared to conventional carbon fibers, and have the effect of significantly improving the conductivity of carbon fiber-reinforced thermoplastic resins, as well as the fiber-reinforced resins containing the fibers. It is extremely useful industrially.

Claims (2)

【特許請求の範囲】[Claims] (1)ジアミン化合物、ジカルボン酸化合物、環状アミ
ド化合物と下記一般式( I )で示されるグリシジル化
ポリアルキレンオキシド誘導体からなる共重合物であっ
て、該ポリアルキレンオキシド誘導体をモノマー組成と
して10〜30重量%含んでなる共重合体で炭素繊維の
表面が被覆されていることを特徴とする炭素繊維。 ▲数式、化学式、表等があります▼( I ) (式中、R^1は水素または炭素数20以下のアルキル
基、R^2は水素またはメチル基、nは1〜40の整数
をを表わす。)
(1) A copolymer consisting of a diamine compound, a dicarboxylic acid compound, a cyclic amide compound, and a glycidylated polyalkylene oxide derivative represented by the following general formula (I), wherein the monomer composition of the polyalkylene oxide derivative is 10 to 30%. A carbon fiber characterized in that the surface of the carbon fiber is coated with a copolymer containing % by weight. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R^1 is hydrogen or an alkyl group having 20 or less carbon atoms, R^2 is hydrogen or a methyl group, and n is an integer from 1 to 40. .)
(2)ジアミン化合物、ジカルボン酸化合物、環状アミ
ド化合物と下記一般式( I )で示されるグリシジル化
ポリアルキレンオキシド誘導体からなる共重合体であっ
て、該ポリアルキレンオキシド誘導体をモノマー組成と
して10〜30重量%含んでなる共重合物で炭素繊維の
表面が被覆された炭素繊維1〜50重量部を熱可塑性樹
脂100重量部に対して配合したことを特徴とする炭素
繊維強化樹脂組成物。 ▲数式、化学式、表等があります▼( I ) (式中、R^1は水素または炭素数20以下のアルキル
基、R^2は水素またはメチル基、nは1〜40の整数
をを表わす。)
(2) A copolymer consisting of a diamine compound, a dicarboxylic acid compound, a cyclic amide compound, and a glycidylated polyalkylene oxide derivative represented by the following general formula (I), wherein the monomer composition of the polyalkylene oxide derivative is 10 to 30%. 1. A carbon fiber-reinforced resin composition characterized in that 1 to 50 parts by weight of carbon fibers whose surfaces are coated with a copolymer containing % by weight are blended with 100 parts by weight of a thermoplastic resin. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R^1 is hydrogen or an alkyl group having 20 or less carbon atoms, R^2 is hydrogen or a methyl group, and n is an integer from 1 to 40. .)
JP13237990A 1990-05-22 1990-05-22 Carbon fiber and carbon fiber reinforced resin composition using the same Expired - Fee Related JP2861260B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13237990A JP2861260B2 (en) 1990-05-22 1990-05-22 Carbon fiber and carbon fiber reinforced resin composition using the same
US07/702,399 US5229202A (en) 1990-05-22 1991-05-20 Carbon fiber and carbon fiber-reinforced resin composition using it
EP19910108258 EP0459287B1 (en) 1990-05-22 1991-05-22 Carbon fiber and carbon fiber-reinforced resin composition using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13237990A JP2861260B2 (en) 1990-05-22 1990-05-22 Carbon fiber and carbon fiber reinforced resin composition using the same

Publications (2)

Publication Number Publication Date
JPH0434086A true JPH0434086A (en) 1992-02-05
JP2861260B2 JP2861260B2 (en) 1999-02-24

Family

ID=15080009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13237990A Expired - Fee Related JP2861260B2 (en) 1990-05-22 1990-05-22 Carbon fiber and carbon fiber reinforced resin composition using the same

Country Status (1)

Country Link
JP (1) JP2861260B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643503A (en) * 2013-11-25 2014-03-19 中国科学院山西煤炭化学研究所 Processing method for silane coupling agent modified carbon fiber surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643503A (en) * 2013-11-25 2014-03-19 中国科学院山西煤炭化学研究所 Processing method for silane coupling agent modified carbon fiber surface

Also Published As

Publication number Publication date
JP2861260B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
EP3256516B1 (en) Polyamide moulding composition and moulded article made from this moulding composition
US5229202A (en) Carbon fiber and carbon fiber-reinforced resin composition using it
BR102015028401B1 (en) polyamide molding compound and molded article formed from a molding compound
MXPA06010483A (en) Method for preparing long glass fiber-reinforced composition and fabricated articles therefrom.
CN106795359A (en) Polyformaldehyde composition, method and product prepared therefrom for manufacture
TW202225331A (en) Glass fiber-reinforced resin molded product
JPS6343425B2 (en)
JP3646824B2 (en) Thermoplastic resin composition and molded article thereof
EP0346825B1 (en) Molding polyamide resin composition
JPS6160861B2 (en)
KR101257693B1 (en) Electrically insulated high thermal conductive polymer composition
JPH0434086A (en) Carbon fiber and carbon fiber reinforced resin composition using the same carbon fiber
JP2002317384A (en) Electrically conductive fiber bundle for filament pellet, filament pellet made thereof, and formed article produced by using the same
JP2861261B2 (en) Carbon fiber and carbon fiber reinforced resin composition using the same
JP5162806B2 (en) Carbon fiber reinforced polycarbonate resin composition, molding material and molded article
JP2000303362A (en) Sizing agent and chopped carbon fiber treated with the sizing agent
JP2757454B2 (en) Short carbon fiber aggregate and fiber-reinforced thermoplastic resin composition obtained by blending the same
JP2946872B2 (en) Carbon fiber and carbon fiber reinforced resin composition using the same
JPH10279777A (en) Flaky phenolic resin molding material containing carbon fiber and its production
JPH02247229A (en) Fiber-reinforced thermoplastic composite material
JP3736658B2 (en) Thermoplastic polyester resin composition
JPH04153007A (en) Carbon fiber reinforced thermoplastic resin composition
JP2564559B2 (en) Aromatic polysulfone resin composition
JP2512028B2 (en) Carbon short fiber aggregate and fiber reinforced thermoplastic resin composition using the same
JP3582736B2 (en) Polystyrene resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees